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ABSTRACT Regulatory small RNAs (sRNAs) play large-scale and essential roles in
many cellular processes across all domains of life. Microbial sRNAs have been exten-
sively studied in model organisms, but very little is known about the dynamics of
sRNA synthesis and their roles in the natural environment. In this study, we discov-
ered hundreds of intergenic (itsRNAs) and antisense (asRNAs) sRNAs expressed in an
extremophilic microbial community inhabiting halite nodules (salt rocks) in the Ata-
cama Desert. For this, we built SnapT, a new sRNA annotation pipeline that can be
applied to any microbial community. We found asRNAs with expression levels nega-
tively correlated with that of their overlapping putative target and itsRNAs that were
conserved and significantly differentially expressed between 2 sampling time points.
We demonstrated that we could perform target prediction and correlate expression
levels between sRNAs and predicted target mRNAs at the community level. Func-
tions of putative mRNA targets reflected the environmental challenges members of
the halite communities were subjected to, including osmotic adjustments to a major
rain event and competition for nutrients.

IMPORTANCE Microorganisms in the natural world are found in communities, commu-
nicating and interacting with each other; therefore, it is essential that microbial regula-
tory mechanisms, such as gene regulation affected by small RNAs (sRNAs), be investi-
gated at the community level. This work demonstrates that metatranscriptomic
field experiments can link environmental variation with changes in RNA pools
and have the potential to provide new insights into environmental sensing and
responses in natural microbial communities through noncoding RNA-mediated
gene regulation.
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Noncoding RNAs (ncRNAs) are untranslated short transcripts that are found in the
three domains of life, where they play essential roles in many cellular processes (1,

2). In prokaryotes, a subset of these ncRNAs, thereby called small RNAs (sRNAs), is
specifically involved in gene regulation through RNA-RNA mediated interactions, mod-
ulating core metabolic functions and stress-related responses (3). These sRNAs range
from 50 to 500 nucleotides in size and can be of two types. trans-encoded sRNAs, also
called intergenic sRNAs (itsRNAs), bind their mRNA targets via imperfect base pairing
and can target multiple genes, including key transcription factors and regulators (4).
itsRNAs can activate or inhibit translation initiation by interacting with the ribosome
binding site (RBS) and/or modulating mRNA stability (4). In contrast, cis-encoded
antisense RNAs (asRNAs) are transcribed on the DNA strand opposite their target gene
and thus can act via extensive base pairing; they have been found to repress trans-
posons and toxic protein synthesis (4).
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The functional roles of microbial sRNAs have been extensively studied in a few
model organisms, and very little is known about the dynamics of sRNA synthesis in
natural environments and the roles of these short transcripts at the community level (1,
5). To our knowledge, only a few studies have reported the discovery of sRNAs in
natural microbial communities (6–9), and there is no publicly available bioinformatic
tool for sRNA discovery in single-species isolates and in the metagenomic context (1).
This paucity of knowledge suggests that an abundance of sRNAs remain to be discov-
ered with potentially essential roles in stress response (10), interspecies communica-
tion, and/or cross-species RNA interference (11–13). This might be relevant to extreme
environments where microbial communities are specifically adapted to a narrow set of
environmental conditions, i.e., high salt and low pH, and are particularly sensitive to
perturbations (14).

In hyperarid deserts, microbial communities find refuge inside rocks as a survival
strategy against the extreme conditions of their environment (15). Such a community
inhabits halite (salt) nodules in Salars of the Atacama Desert, Chile, which is one of the
oldest and driest deserts on Earth (16, 17). The halite endolithic (within rock) commu-
nity harbors mostly members of the Archaea (Halobacteria), unique Cyanobacteria,
diverse heterotrophic bacteria, and a novel type of algae (16, 17), all of which were
shown to be transcriptionally active (18). The main source of liquid water for this
community is from salt deliquescence (19), and it is sustained by CO2 fixed via
photosynthesis (16, 20). While previous studies have demonstrated the role of sRNAs in
the stress response of one of the members of this community, the halophilic archaeon
Haloferax volcanii (21, 22), there is no information on any of the other members.

Here, we used a combination of genome-resolved metagenomics and metatran-
scriptomics to investigate the role of sRNAs in the adaptive response of microorganisms
inhabiting halite nodules. We developed an analytical pipeline, SnapT, built on our
previous work on sRNAs from the archaeon H. volcanii (21), to enable the discovery of
sRNAs at the community level. Using strand-specific metatranscriptomics, we found
hundreds of sRNAs (both itsRNAs and asRNAs) from multiple trophic levels in the halite
community, including conserved sRNAs, validating our experimental approach. Previ-
ous studies were limited to either intergenic or antisense sRNAs, never both; analysis of
both types of sRNAs in our study allowed for the most comprehensive view of the sRNA
regulatory landscape in a microbial community (6–9). A number of itsRNAs were
significantly differentially regulated between 2 sampling time points, providing valida-
tion that sRNAs can be modulated in the natural environment. For a subset of these, we
were able to perform structure and target prediction of conserved sRNAs to decipher
their potential regulatory roles, a first at the metatranscriptomic level. Coupling met-
agenomics and metatranscriptomics with SnapT allows for the potential to uncover the
complex regulatory networks that govern the state of a microbial community.

RESULTS
Landscape of predicted sRNAs in the halite community and validation. We

discovered hundreds of ncRNAs in an extremophilic community inhabiting halite
nodules (salt rocks) in the Atacama Desert by using SnapT (https://github.com/ursky/
SnapT), a bioinformatic tool for sRNA discovery (Table 1; see also Data Set S1 in the
supplemental material). We used metatranscriptomics data from multiple replicate

TABLE 1 Summary of ncRNAs discovered in halite community

RNA type No. (%)a % in Archaea % in Bacteria

Total ncRNA 1,538 (100) 54 46
Rfam ncRNA 79 (5) 73 27
Conserved sRNAb 155 (10) 60 40
Antisense sRNA 925 (60) 40 60
Intergenic sRNA 613 (40) 75 25
aPercent from total ncRNAs.
bConserved other than Rfam ncRNAs.
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samples collected in the field in 2016 and 2017 (21 and 24 replicates for 2016 and 2017,
respectively) (see Table S1). Using SnapT, we aligned reads from stranded RNA se-
quencing (RNA-seq) libraries to our reference coassembled metagenome from a pre-
vious study (14) (See Fig. S1). The assembled transcripts were then intersected with the
metagenome annotation as well as open reading frames to select for either novel
transcripts on the opposite strand of coding transcripts (asRNAs) or novel transcripts
that fell into intergenic regions (itsRNAs). Putative ncRNA transcripts were then further
enriched using thresholds at 5� and 10� assembly coverage to identify intergenic and
antisense ncRNAs, respectively. (Table 1; see Fig. S2A). The size of these ncRNAs was
then filtered from 50 to 500 nucleotides to produce a final set of noncoding sRNAs. The
size distribution of these sRNAs was primarily between 50 and 200 nt for itsRNAs and
�200 nt for asRNAs. (Fig. S2B and C).

The halite ncRNAs were taxonomically assigned to diverse members of the com-
munity; their distributions between Archaea (54%) and Bacteria (46%) (Table 1) were
similar to that of the total metatranscriptomic reads for the community (Fig. 1B and C).
In contrast, the taxonomic profile of the metagenome showed a larger contribution of
bacterial reads and, in particular, of reads assigned to Cyanobacteria and Bacteroidetes
(Fig. 1A). Because of the use of strand-specific RNA-seq libraries, we confidently

FIG 1 Taxonomic distribution. Krona graphs of the halite metagenome based of DNA sequence reads (A) and the halite metatranscriptome based on RNA
sequence reads (B). Voronoi plots of total sRNAs (C), itsRNAs (D), and asRNAs (E) discovered in the halite community. Partitions of the Voronoi plots correspond
to relative abundances of the indicated taxa.
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identified both intergenic (it)sRNA, located between coding regions, and antisense
(a)sRNA, overlapping with their putative target (Table 1). We found 3 times more
itsRNAs in the Archaea than in the Bacteria, whereas asRNAs were more abundant in the
Bacteria and more often associated with members of the Cyanobacteria (38%) and
Bacteriodetes (15%) (Table 1; Fig. 1D and E). We also found 79 ncRNAs that belong to
6 known families of RNAs present in the Rfam database (Fig. S2D; Data Set S1) (23),
validating our experimental and computational approaches. This database is a collec-
tion of RNA families, each represented by multiple sequence alignments, consensus
secondary structures, and covariance models. Of the Rfam-conserved ncRNAs, 70%
were assigned to archaea and included RNaseP RNAs, signal recognition particle RNAs
(SRP RNAs), and tRNAs. Of the Rfam-conserved bacterial ncRNAs, most were from SRP
RNAs and tRNA conserved families. In addition, a cobalamin riboswitch and the
regulatory sRNA, CyVA-1, were detected in low abundance in the halite Cyanobacteria.
We also found 3 ncRNAs (4%) from eukarya, a tRNA, a U4 spliceosomal RNA, and a
RNase for mitochondrial RNA processing (MRP). Using blastn analysis (maximum E value
of 1E�3, sequence similarity of 70% or more, coverage of 50% or more), we discovered
another 155 ncRNAs that were conserved in the NCBI nt database, with 60% from
archaea and 40% from bacteria (Table 1). The majority were asRNAs (109), with only 44
itsRNAs. The conserved asRNAs most highly expressed (standardized transcripts per
million [TPM] � 100) were all SPR RNAs in haloarchaea that were not found in the Rfam
database. Of the conserved itsRNAs, we identified 3 tRNAs, 13 SRP RNAs, and 22 ncRNAs
that were found in the genome of multiple species, all Halobacteria, but with no
function assigned. The most highly expressed and conserved itsRNAs (standardized
TPM � 100; 13 ncRNAs) were SRP RNAs not included in the Rfam database.

Another validation of our findings was the presence of canonical promoter elements
upstream of archaeal itsRNAs, suggesting that they were indeed bona fide transcripts
that could recruit basal transcription factors (see Fig. S3A). We did not find significant
promoter elements upstream of the bacterial itsRNAs, which might reflect the diversity
of promoter elements across the various bacterial taxa we identified in the halite
community. In contrast, no promoter elements were identified in the upstream regions
of asRNAs from both domains of life.

When looking at the expression levels of all itsRNAs normalized to contig abun-
dances, we found that they were similar for both the 2016 and 2017 samples and
slightly higher than that of the asRNAs, whereas the expression profile of the asRNAs
was more variable across samples for both years (Fig. S3B). Remarkably, the expression
levels of itsRNAs and asRNAs for both years were 2-fold higher than that of protein-
encoding genes. Whereas there is an inherent bias in our approach to identifying sRNAs
at the community level (coverage threshold in SnapT) compared to that for protein-
encoding genes, this finding strongly indicates potential functional relevance for a
number of these sRNAs.

We experimentally validated several sRNAs using reverse transcription-PCR (RT-PCR)
with environmental and enrichment cultures (see Table S2). Enrichments were per-
formed with several media containing high (25%) and relatively low (18%) salt and
various combinations of carbon sources. Amplicon sequencing of the enrichments
revealed that high salt and diverse carbon sources resulted in a higher diversity of taxa,
although haloarchaea dominated in all enrichments (see Fig. S4). All validated sRNAs
belong to haloarchaea except for one from Cyanobacteria. Sequences of the PCR
products confirmed that they were sRNAs and validated our computational approach.

Relationship with target genes and putative function of community asRNAs.
Using our strand-specific RNA-seq data, we were able to identify the overlap positions
of asRNAs to their antisense transcripts. We found that, in both Archaea and Bacteria,
the majority of asRNAs start within the span of their cognate gene and end near the 5=
end of its mRNA. In both domains, there is also an enrichment for asRNA-mRNA
overlaps near the 5= end of the mRNA (Fig. S2E). A similar trend was previously reported
in two species of archaea (21, 24).
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We compared the expression levels of asRNAs with those of their putative target
genes and found that highly expressed asRNAs were associated with lowly expressed
genes (Fig. 2A). Of gene pairs with asRNA expression �100 TPM and gene expression
�0.1 TPM, most where from haloarchaea (77%), with 12% of Cyanobacteria, and 11% of
other bacteria (Bacteriodetes and Acinetobacter) (Data Set S1). Gene functions were
enriched for transport (16%) and cell membrane/wall metabolism (5%), while most
were hypothetical proteins (44%). Of the genes potentially negatively regulated by their
cognate asRNAs, we found an archaeal regulator of the IclR family and potassium
uptake protein TrkA. Only 2 asRNAs with high expression levels (�100 standardized
TPM) were associated with genes with relatively high expression levels (�1 standard-
ized TPM), while still being negatively correlated (Fig. 2A). The corresponding genes
encoded an iron complex outer membrane receptor protein from Salinibacter and an
ABC-type sodium efflux pump permease subunit from a Halobacteria. When applying a
stringent cutoff, we found 9 statistically significant and negatively correlated asRNA-
gene pairs (Fig. 2B and S5A). Four were from Bacteroidetes, 4 from Halobacteria, and 1
from an unidentified bacterium. At the functional level, transport systems, and in
particular, iron transport systems, were particularly enriched (Data Set S1). In contrast,
we did not find any significant positive regulation between asRNAs and their cognate
genes. When adjusted for the carrying organism’s abundance, expressed as the average
RNA read coverage of the contigs, we found that, overall, itsRNAs were more highly
expressed than asRNAs (Fig. 2C and D). Highly expressed sRNAs, for both types, were
mostly carried by haloarchaea.

Differential expression of itsRNAs at the community level and target predic-
tion. Analysis of itsRNAs expression levels showed a clear separation between the 2016

FIG 2 sRNA expression levels. (A) asRNAs and their putative targets (mean expression levels of all
replicates) (TPM). (B) Pearson correlations for expression levels of asRNAs and their putative mRNA
targets across all the replicates, with significant correlations (P � 0.01) highlighted in blue. Average
expression of itsRNAs (C) and average expression of asRNAs (D) over the average expression of the
contigs on which they are found. Dashed lines are added for simpler visual interpretation and represent
a 1:1 ratio of contig activity to sRNA expression.

sRNA Identification in an Extremophile Microbiome

January/February 2020 Volume 5 Issue 1 e00584-19 msystems.asm.org 5

https://msystems.asm.org


and 2017 samples (Fig. 3A), which was confirmed by the analysis of metatranscriptomic
expression levels of annotated genes from the metagenome (Fig. S5B). We carried out
a differential expression analysis and found that 109 (18%) of the regulatory itsRNAs
were significantly differentially expressed (false-discovery rate [FDR] � 5%) between
samples collected in 2016 and 2017 (Fig. 3 and Data Set S1), 3 and 15 months after a
major rain event in the desert, respectively (14). Of these, 72% were annotated as
archaea and 28% as bacteria, and 16 were conserved in multiple genomes (14 from
Halobacteria and 2 from Cyanobacteria). Conservation of differentially expressed itsRNAs
allowed for structure modeling and, when high-quality metagenome-assembled ge-
nomes (MAGs; �70% completion and �5% contamination) were available from the
metagenome, target prediction (Fig. 4 and S6). Several nondifferentially expressed
itsRNAs were also conserved, providing additional opportunity for structure prediction;
these included itsRNAs from Halococcus (STRG.48671.1; 69 nucleotides [nt]), Halobellus
limi (STRG.136887.1; 209 nt), and a member of the Nanohaloarchaea (STRG.4577.1;
266 nt) (Fig. S6A).

All predicted structures displayed stem-loop regions that had high sequence con-
servation (light purple regions on sequence-structure-based alignment reliability [STAR]
profile plots) and high structure conservation (dark purple), with line plots representing
the reliability of the predictions as calculated by LocaRNA (Fig. 4 and S6B). Density plots
combined with dumbbell plots were used for visualizing predicted interactions be-
tween itsRNAs and their putative targets, using IntaRNA data from the top 100 most
reliable interaction predictions with the lowest free energy of hybridization (25) (Fig. 4).
High confidence assignments were obtained for 4 differentially expressed itsRNAs from
Cyanobacteria, Halapricum salinum, and a member of the Halobacteria (Data Set S1)
More than one interaction peak was derived from density plots; peak 1 (green)
corresponded to the highest interaction density, which mapped to loop regions in the
itsRNA secondary structure with high sequence and structure conservation and was
thus a confident assignment as an interaction region, whereas peak 2 (yellow) was a
less confident assignment structurally despite high interaction density (Fig. 4 and S6B).

Using this information, we identified the most probable targets for Cyanobacteria
STRG.5354.4 candidate itsRNA (229 nt). This itsRNA was conserved as a 6S regulatory

FIG 3 itsRNA differential expression. (A) Principal-component analysis (PCA) plot showing itsRNA expression levels clustered by year. (B) Heat map
of log2-transformed fold changes for the top 50 significantly differentially expressed itsRNAs; each row is an itsRNA and each column a sample
collected in 2016 or 2017.
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RNA in the Rfam database, which, in Bacteria, is found to inhibit transcription by
binding directly to the housekeeping holoenzyme form of RNA polymerase (26). Of the
top 50 most probable targets for STRG.5354.4, which were those with the lowest free
energy of hybridization between itsRNA and targets, were cation/H� antiporters
(shown to be involved in osmoregulation [27]), a PleD family two-component response
regulator, the photosystem I PsaB protein, chemotaxis transducers, and proteins in-
volved in energy metabolism. Most probable targets for differentially expressed itsRNA,
STRG.86294.1 (281 nt) from Halapricum salinum included various transporters and
putative membrane and cell wall-associated proteins; notably, an ammonium trans-
porter (Amt family), an alkanesulfonate monooxygenase SsuD from a gene cluster
expressed under sulfate or cysteine starvation (28), and several proteins involved with
cofactors and vitamin metabolism. Predicted targets with the lowest free energy of
hybridization for STRG.49508.3 candidate itsRNA (99 nt) from Halobacteria were elon-
gation factor 1-alpha, which promotes the GTP-dependent binding of aminoacyl-tRNA
to the A-site of ribosomes during protein biosynthesis, several ribosomal proteins, and

FIG 4 Predicted structure, target identification, and expression levels for selected differentially expressed itsRNAs. (A) Two-
dimensional (2D) layout of consensus structures with base-pair coloring showing sequence and structure conservation and interac-
tions peaks (green and yellow arrows); STAR profile plots with dark regions indicating structure reliability, light regions representing
sequence reliability, and thin lines showing the combined column reliability as computed by LocARNA-P. (B) Interaction plots of
itsRNAs and their predicted targets. The top graphs are density plots calculated from the top 100 putative targets, and on the bottom
are dumbbell plots of interactions (blue dumbbells) along the length of the itsRNA for the top 100 predicted mRNA targets; interaction
peaks are shown in green and yellow in the predicted structures; (C) Expression levels represented as normalized counts for each
itsRNA in 2016 and in 2017 across all samples.
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hypothetical proteins. Target prediction for Cyanobacteria STRG.5356.1 candidate
itsRNA (242 nt) included molecular chaperones (DnaK and DnaJ classes), a cell division
protease FtsH, and several uncharacterized proteins.

DISCUSSION

The roles of regulatory sRNAs have been extensively studied in Bacteria and, to a
lesser extent, in archaeal model systems (1, 5), but to date, only four studies have
reported the discovery of sRNAs in microbial communities. In one study, Shi et al. (6)
used metatranscriptomic data to identify unique microbial intergenic sRNAs in the
ocean’s water column. In a second study, Bao et al. (7) revealed extensive antisense
transcription in the human gut microbiota, also using metatranscriptomic data sets. In
the last two studies, Hou et al. (9) conducted a survey of transcription start sites (TSS)
and identified a small number sRNA TSS, while Duran-Pinedo et al. (8) carried out an
extensive study of intergenic sRNAs 45 m deep in the northern Red Sea and focused on
those that were conserved in the Rfam database. Efforts have also been made to mine
publicly available databases for sRNA discovery (29), but this was still addressing the
role of sRNAs in single microorganisms. Each of these studies was limited to one type
of sRNA (intergenic or antisense) usually due to technical limitations (i.e., sequencing
technology, library preparations, etc.). Through the combination of strand-specific RNA
sequencing and the development of the first microbial sRNA identification pipeline,
SnapT, we were able to comprehensively identify all sRNAs in an extremophilic micro-
bial community. This combination of technologies allowed for a highly resolved view of
sRNA-mediated regulation from multiple trophic levels in the community, from primary
producing cyanobacteria to the dominant heterotrophic haloarchaea.

One major difficulty in obtaining metatranscriptomic data from natural microbial
communities, in particular, from extreme environments, is the small amount of biomass
that can be collected, resulting in low RNA yields (14). This, in turn, prevents attempts
at ribodepletion, resulting in a decreased number of non-rRNA reads available for
analysis. Nevertheless, using SnapT, a flexible pipeline to process metagenomics and
metatranscriptomic data, we report the discovery of hundreds of diverse sRNAs from an
extremophilic community inhabiting halite nodules in the Atacama Desert. In the
process, we applied extensive quality control with coverage thresholding, correction for
contig edge misannotation, and the removal of potential protein-coding RNAs through
sequence and homology searches. While this approach might potentially result in false
negatives and may bias our findings toward the most highly expressed sRNAs in the
community, it also ensured the robustness of our sRNA predictions by minimizing the
number of false positives. The identification of ncRNAs in the halite community that
belongs to the Rfam database (23), together with experimental validation of several
sRNAs with environmental and enrichment cultures, substantiated our analytical ap-
proach. Additionally, expression levels of sRNAs 2-fold higher than that of protein-
encoding genes strongly indicate potential functional relevance for a number of these
sRNAs.

The taxonomic composition of the halite sRNAs matched that of the community’s
metatranscriptomic profile, reflecting the contribution of the most active members,
including Cyanobacteria, Bacteriodetes, and several Halobacteria. We found significantly
more itsRNAs in the Archaea than in the Bacteria, and the trend was reversed for the
asRNAs. This novel finding is representative of published work in model organisms,
where a wide range of sRNAs has been found so far in prokaryotes, from less than a
dozen to more than a thousand per genome (see Fig. S7 in the supplemental material)
(1, 5).

Antisense sRNAs overlap their putative targets, providing insights into their func-
tional role (4). In the halite community, we found that asRNA expression levels were
negatively correlated with those of their putative targets, with highly expressed asRNAs
overlapping lowly expressed protein-encoding genes. A similar trend was reported in
the haloarchaeon H. volcanii when investigating oxidative stress-responsive sRNAs, and
most of the putative targets were transposase genes (21). Putative target gene func-

Gelsinger et al.

January/February 2020 Volume 5 Issue 1 e00584-19 msystems.asm.org 8

https://msystems.asm.org


tions in our study were mostly from haloarchaea and enriched for transport systems,
cell membrane, and cell wall metabolism, with a large number of hypotheticals. Of
particular interest was an archaeal IcIR transcription regulator; these regulators are
known to be involved in diverse physiological functions, including multidrug resistance,
degradation of aromatics, and secondary metabolite production (30), and are distrib-
uted in a wide range of prokaryotes, including archaea (31). Also of interest was a Trk
potassium uptake system, also found in both bacteria and archaea and essential for the
maintenance of high intracellular potassium in salt-in strategists (32). Salt-in strategists
accumulate KCl to balance the high osmotic pressure of their environment, hence the
need to actively pump potassium into the cell. In contrast, we did not find any
significant positive regulation between asRNAs and their cognate genes (upregulation
of both), which might be due to the inherent quality of our data set, i.e., no ribodeple-
tion and heterogeneity across replicates (14). Alternatively, it might also reflect pro-
miscuous transcription processes as argued when considering the functionality of
asRNAs (33). Other arguments in favor of spurious transcription were the size distribu-
tion for asRNAs found in the halite community, which was significantly larger than that
of itsRNAs, low expression level when adjusted for organism abundance compared to
that of itsRNAs, and the absence of canonical regulatory elements in the upstream
regions of asRNAs. However, we also found putative target functions that reflected the
environmental challenges faced by members of this extremophile community, such as
osmoregulation and nutrient uptake, indicating that these asRNAs might indeed reg-
ulate fundamental biological functions at the community level.

We previously showed that the halite community dramatically shifted its taxonomic
and functional composition after a major rain event in 2015, and while it recovered at
the functional level in 2017, 15 months after the rain, members of the communities
were permanently replaced (14). Here, we found that 18% of the halite community
itsRNAs were significantly differentially expressed (FDR � 5%) between samples col-
lected in 2016 and 2017 (3 and 15 months after the rain, respectively), potentially
indicating a transcriptional response to changes in environmental conditions. Inter-
genic sRNAs are of particular interest because they can target multiple genes, including
key transcription factors and regulators (3). As a consequence, a single sRNA can
modulate the expression of large regulons and thus have a significant effect on
metabolic processes (5). However, they do not overlap their target genes or bind their
target mRNAs with perfect complementary, which makes finding targets for these
sRNAs very challenging without genetic tools (1).

To solve this problem at the community level, we focused on itsRNAs that were
conserved and for which we could perform structural prediction. The intersection of
this small subset of sRNAs with high-quality MAGs that could be used as reference
genomes yielded confident target predictions for 4 differentially expressed itsRNAs,
giving insights into metabolic functions potentially regulated by sRNAs at the commu-
nity level. These included transporters, particularly, those related to osmotic stress,
nutrient uptake, and starvation, and pathways for chemotaxis and energy production
and conversion. These pathways reflect the environmental challenges members of the
halite communities are subjected to, including osmotic adjustments to climate pertur-
bation (14) and competition for nutrients in a near-closed system with primary pro-
duction as the major source of organic carbon (16). Using the genomic context of
sRNAs from the ocean’s water column microbial communities, Shi et al. (6) reported
similar metabolic functions, underlying the specific regulatory needs for natural com-
munities. In contrast, genes with antisense transcription to asRNAs identified in the
human gut microbiome were mostly transposase genes, with a small component of
bacterial housekeeping genes (7). It important to note that no computational target
prediction, using sRNA conserved predicted structure, was reported in either study. Our
ability to predict de novo targets for sRNAs drastically increases the scale of regulatory
potential we can map to a microbial community. Target prediction is entirely reliant on
high-quality MAGs and gene annotation, which we have successfully performed
through method development (14). Taking this together, we suggest that extremophilic
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communities, including the halite communities, can be used as model systems to study
sRNA dynamics in a natural environment.

Regulation of transcription by 6S sRNA has been shown to increase competitiveness
and long-term survival in bacteria (26), suggesting an important role for Cyanobacteria
candidate sRNA STRG.5354.4, identified as a 6S sRNA. Because of high RNA-seq cover-
age of the Cyanobacteria MAGs, we were able to show that 40% of the top 50 targets
for sRNA STRG.5354.4 were differentially regulated and more highly expressed in 2016,
suggesting positive regulation by this sRNAs of its putative targets. Transcriptional
factors and regulators were also found as putative targets of differentially regulated
itsRNAs in the halite community, underlying the capacity of microbial sRNAs to mod-
ulate the expression of large regulons (1, 3, 34). Finally, a candidate itsRNA from the
Halobacteria had several predicted targets associated with ribosomal proteins and
proteins involved in translation processes. This finding, together with those from a
recent study in H. volcanii (35), supports the idea of sRNA modulation of protein
biosynthesis in the Archaea. A potential framework for mechanisms for sRNA regulation
of translation might be provided by a report on the modular translation subsystems in
the haloarchaeon Halobacterium salinarum that might selectively translate a subset of
the transcriptome under specific growth conditions (36).

In this study, we characterized the taxonomic and functional landscape of sRNAs
across two domains of life in an extremophilic microbial community, demonstrating
that asRNAs and itsRNAs can be reliably identified from natural environmental com-
munities. This is essential because sRNAs play essential roles in gene regulation across
the 3 domains of life, but most sRNA studies have only been conducted with single
organisms. Microorganisms do not live by themselves in the natural environment: they
are found in communities, and if we want to understand the molecular mechanisms
underlying community stress responses, it is essential to address the role of sRNAs in
those regulatory processes. To facilitate this work, we built a flexible pipeline, SnapT
(https://github.com/ursky/SnapT), leveraged by our expertise of sRNA biology in a
model halophilic archaeon and which is available to use with metatranscriptomic data
from any community. We demonstrated that we could perform target prediction and
correlate expression levels between itsRNAs and predicted target mRNAs, paving the
way for novel discoveries at the community level. While additional work with enrich-
ment cultures remains to be conducted to fully characterize the functional roles of
sRNAs from the halite community and their mechanism of action, these differentially
expressed sRNAs for which we found putative targets show the power of community-
level culture-independent approach analysis for gene regulation processes.

MATERIALS AND METHODS
Sample and weather data collection and nucleic acid extraction. Halite nodules were harvested

in Salar Grande, an ancient evaporated lake in the Northern part of the Atacama Desert (37) in February
2016 and 2017, 3 and 15 months after a major rain event, respectively (14). All nodules were harvested
within a 50-m2 area as previously described (37). The colonization zone of each nodule was grounded
into a powder, pooling 1 to 3 nodules until sufficient material was collected, and stored in the dark under
dry conditions until DNA extraction in the lab. Samples used for RNA were stored in RNAlater at 4°C until
RNA extraction in the lab within 14 days of collection. Genomic DNA was extracted with the DNeasy
PowerSoil DNA extraction kit (Qiagen) as previously described (16, 37) (Qiagen). Total RNA was
extracted from the fixed samples by first isolating the cells, gradual dissolving the salt particles as
previously described (16, 37), and lysing them by mechanical bead beating with the RNAeasy
PowerSoil RNA extraction kit (Qiagen). Total RNA was then extracted from the lysate with a
Quick-RNA miniprep kit (RNA � 17 nt) (Zymo Research). We obtained 10 to 100 ng of RNA/g of
grounded halite. RT-PCR was used to validate the absence of contaminating DNA in the total RNA
used for RNA-seq libraries with 16S rRNA primers 515F/926R (18).

Library preparation. Whole-genome sequencing libraries were prepared using the KAPA HyperPlus
kit (Roche) as previously described (14) and sequenced with paired 150-bp reads on the HiSeq 2000
platform at the Johns Hopkins Genetic Resources Core Facility (GRCF). Total RNA-seq libraries were
prepared with the SMARTer Stranded RNA-seq kit (38), using 25 ng of RNA input and 12 cycles for library
amplification, as previously described (18). We sequenced 21 libraries from replicate samples from 2016
and 24 libraries from replicate samples from 2017 (see Table S1 in the supplemental material).

Metagenomic sequence processing and MAG recovery. The demultiplexed shotgun metagenomic
sequencing reads were processed with the complete metaWRAP v0.8.2 pipeline (39) with recommended
databases on a UNIX cluster with 48 cores and 1024 GB of RAM available. This study used the publicly
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available metagenomic assembly, annotation, and metagenome-assembled genomes (MAGs) from
previous work (14). MAGs with minimum completion of 70% and maximum contamination of 5%, as
determined with CheckM (40), were used in this study. Detailed scripts for the entire analysis pipeline can
be found at https://github.com/ursky/timeline_paper.

SnapT for sRNA community identification. An analytic pipeline, SnapT for Small ncRNA Annotation
Pipeline for (meta)Transcriptomic data, was adapted from our previous work (21) to find, annotate, and
quantify intergenic and antisense sRNA transcripts from transcriptomic or metatranscriptomic data. In
brief, de novo transcripts were assembled from RNA reads mapped to the metagenomic assembly, and
transcripts that could not be explained by any protein-coding region and did not encode peptides were
extracted and further validated as sRNAs. Detailed scripts for the pipeline can be found at https://github
.com/ursky/SnapT, and search criteria were as follows: intergenic transcripts were at least 30 nt away
from any gene or open reading frame (ORF) on both strands; antisense transcripts were 30 nt away from
any gene on their strand, but overlapped with a gene on the opposite strand by at least 10 nt; small
peptides (�100 nt) were not counted as genes if they were encoded in a transcript that was more than
3 times their length; noncoding transcripts could not contain any reading frame greater than one-third
of their lengths; predicted noncoding transcripts near contig edges were discarded, and the minimum
distance to the edge of a contig was dynamically computed such that the tips of contigs were not
statistically enriched in annotated ncRNAs; small ncRNAs were between 50 nt and 500 nt in length; sRNA
transcripts could not have significant homology with any protein in the NCBI nr database (query
cover � 30%, Bitscore � 50, E value � 0.0001, and identity � 30%) and with any tRNA, RNase P, or signal
recognition particle (SRP) model in the Rfam noncoding RNA database.

Taxonomic assignment and distribution of sRNAs. The taxonomic origin of each annotated sRNA
was taken to be that of the contig on which it lies. The taxonomy of each contig was estimated by taking
the weighted average of the taxonomic assignment of the genes encoded on it, as determined through
the JGI IMG functional and taxonomic annotation service (https://img.jgi.doe.gov/).

Metatranscriptomic correlation and differential expression analysis. We used a read count-
based differential expression analysis to identify differentially expressed sRNA and mRNA transcripts. The
program featureCounts (41) was used to rapidly count reads that map to the assembled RNA transcripts
(described above) as previously described (21). To account for organism abundance changes (as opposed
to true transcript changes), we normalized the transcript read counts to the total read counts from the
contig on which the transcript lies. The read counts were then used in the R differential expression
software package DESeq2 (42) to calculate differential expression by determining the difference in read
counts between 2016 normalized read counts from 2017 normalized read counts. The differentially
expressed RNAs were filtered based on the statistical parameter of false-discovery rate (FDR), and those
that were equal to or les than an FDR of 5% were classified as true differentially expressed transcripts.
We carried out differential expression analysis using a pairwise Wald test to find any possible differences
between years (42). In parallel, normalized expression values were calculated using stringtie in transcripts
per million (TPM). TPM of transcripts was normalized in the same way as read counts, except using contig
TPM. TPM of transcripts was used for ranking of expression within samples as opposed to differential
expression analysis.

Regulatory element motif identification of sRNAs and structure and target prediction. Fifty
nucleotides upstream from the sRNA transcript start coordinates were searched for transcription motifs
(BRE and TATA box for archaea and �35 and �10 consensus sequences for bacteria) using multiple
sequence alignments, visualization with WebLogo, and motif searching with MEME (21). Conserved
sRNAs were identified using blastn against the NCBI nt database. Secondary structures of conserved
sRNAs were predicted using sRNAs that had an E value maximum of 1E�3, sequence similarity of 70%
or more, and 50% or more coverage with a NCBI nt database blastn hit; a minimum of 14 alignments was
used in the program LocARNA using global alignment settings (43). Lastly, putative targets were
predicted for itsRNAs by searching for optimal sRNA-mRNA hybridization using the IntaRNA program
with the “no seed” parameter (25) and the reference genes for each respective MAG. Targets were ranked
by lowest P value. Expression levels for putative targets of antisense sRNAs were obtained from
coexpression analysis of transcripts (21). The sRNA and putative target mRNA TPM expression values
were tracked across the replicates, and the Pearson correlation was computed.

Enrichment cultures. Three types of culture medium were inoculated in triplicates with �2 g of
grounded halite colonization zones and incubated at 42°C with shaking at 220 rpm (Amerex Gyromax
737) for 1 to 2 weeks. Cells were harvested by centrifugation, and nucleic acids were extracted as
described above. The media were GN101 medium (44) containing 250 g of salt per liter and 10 g of
peptone as carbon source, Hv-YPC medium (45) containing 250 g of salt per liter and 8.5 g of yeast
extract, 1.7 g of peptone, and 1.7 of Casamino Acids as carbon sources, and IO medium containing 250
g of salt and the same carbon sources as the Hv-YPC medium. The taxonomic distributions of the cultures
were obtained with 16S rRNA gene sequencing as previously described (14).

sRNA validation. Total RNA extracted from environmental samples and enrichment cultures was
converted into cDNA using the SuperScript III first-strand synthesis system (Thermo Fisher) using 5 ng of
input RNA. The cDNA was then amplified using 515F/926R 16S rRNA primers as previously described (18).
Amplicons were sequenced using Sanger sequencing (GENEWIZ).

Data availability. Raw sequencing data are available from the National Center for Biotechnology
Information under NCBI project identifier (ID) PRJNA484015. The metagenome coassembly and func-
tional annotation are available from the JGI Genome Portal under IMG taxon OID 3300027982. Meta-
transcriptome data have been deposited in NCBI’s Gene Expression Omnibus and are accessible through
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GEO Series accession number GSE137164. Scripts for functional annotation, statistical analyses, differ-
ential expression, and figures are available at https://github.com/ursky/srna_metatranscriptome_paper.
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