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A strategy is introduced for achieving high accuracy in synthetic aperture radar (SAR) automatic target recognition (ATR) tasks.
Initially, a novel pose rectification process and an image normalization process are sequentially introduced to produce images
with less variations prior to the feature processing stage. Then, feature sets that have a wealth of texture and edge information
are extracted with the utilization of wavelet coefficients, where more effective and compact feature sets are acquired by reducing
the redundancy and dimensionality of the extracted feature set. Finally, a group of discrimination trees are learned and combined
into a final classifier in the framework of Real-AdaBoost. The proposed method is evaluated with the public release database for
moving and stationary target acquisition and recognition (MSTAR). Several comparative studies are conducted to evaluate the
effectiveness of the proposed algorithm. Experimental results show the distinctive superiority of the proposed method under both
standard operating conditions (SOCs) and extended operating conditions (EOCs).Moreover, our additional tests suggest that good
recognition accuracy can be achieved even with limited number of training images as long as these are captured with appropriately
incremental sample step in target poses.

1. Introduction

Synthetic aperture radar (SAR) is a valuable technique for
remote sensing and monitoring applications. Automatic tar-
get recognition (ATR) of SAR images is one of the most
challenging SAR applications [1]. A typical SAR ATR system
recognizes tactical ground targets of interests, that is, tanks,
howitzers, and armoured vehicles, which is essential for iden-
tifying friends and foes and prerequisite for precision strikes.

SAR ATR involves a sequence of processes, such as
some type of preprocessing, feature extraction, classifier con-
struction, and finally target classification. The preprocessing
stage may involve multiple types of processing that aims at
facilitating the efficiency of image interpretation and analysis
in the subsequent stages, for example, by suppressing the
clutter reflections that obscure the contrast between the target
of interest and the clutter. Moreover, SAR images are resized,
shifted, and rotated to predefined standards. The so-called
resizing is normally implemented by cropping out part of the

image. The shifting and rotating processes are also known as
image registration and pose rectification, respectively [2, 3].

Feature extraction is another essential stage which
extracts effective discriminant features for improving recog-
nition accuracy. Several features have already been exploited
in SAR ATR [4–10]. Based on the consideration that tactical
ground targets usually have a rectangular shape with different
widths and lengths, geometric features are commonly used
in SAR ATR. Zernike moments (ZMs) are employed in [6],
taking advantage of their linear transformation invariance
properties and robustness to the presence of noise. In [7],
features are extracted based on pseudo-Zernike moments
(pZm), which have merits such as the invariance properties,
the independent property, andmuch lower sensitivity to noise
in comparison with the ZMs. In [11], multiple geometric
features are produced from calculating the axis projection of
a target shape blob rotated clockwise with certain increment
about the centre of the target. Then, the redundancy of the
learned feature set is eliminated by keeping the rank of the
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Figure 1: The SAR ATR scheme.

covariancematrix of the new feature set the same as that of the
entire data set. However, the geometric features of the target
of interest in SAR images are difficult to measure precisely
due to the cluttered background and variations in poses
and depression angles. Therefore, the recognition accuracy
is not guaranteed. The polar mapping method, which is
frequently used in ISAR image classification, is modified and
used in [3] to address the SAR ATR problem. The original
images are converted from the original 2D spatial domain
(range and cross-range) to images in the polar coordinate
domain (radius and angle) to produce polar-mapped images.
The polar-mapped images are similar to the images that
are mapped from the same target even in different poses.
For that reason, the commonly used pose estimator is not
necessarily needed for polar-mapped images. However, the
performance of the polar mapping method depends highly
on the determination of the reference central point for coor-
dinate transformation, which is not a simple task especially
for SAR images captured under various clutter environments.

Certain features are not feasible to be directly applied to
classification due to their high dimensionality [12–19]. In [12],
a compact representation feature, the monogenic signal, is
employed for SARATR,where the high dimensional problem
is circumvented by uniform downsampling, normalization,
and concatenation of the monogenic components. Feature
dimensionality reduction methods for SAR ATR based on
manifold learning theory are also studied in recent years
[13–17]. In [16], each sample is given a weight, which is
called the sample discriminant coefficient (SDC), relating
to its similarity to neighbouring samples, and then the
SDC is combined with the Local Discriminant Embedding
(LDE) method for producing redundancy-reduced features.
Similarly, in [17], the so-called neighbourhood geometric
centre scaling embedding (NGCSE) method is proposed,
where geometric centre scaling is introduced into the neigh-
bourhoods such that the samples are provided with clear
clustering directions. However, the performance of most
of the nonlinear dimensionality reduction methods relies
heavily on the parameter selection of the neighbourhood,
which is still an open problem.

The nearest neighbour classifier is one of the most used
classifiers, where the extracted features are directly fed into
the classifier to achieve the classification results [16]. Sparse
representation based classification (SRC) is recently devel-
oped and exploited in SAR ATR, where the feature vectors of
the testing samples are coded as sparse linear combinations

of the feature vectors of the training samples, and the target
with the minimum residual energy is recognized [12, 20].
Methods such as Support Vector Machines (SVM), Neural
Networks (NN), and adaptive boosting (AdaBoost) are all
vastly exploited in SAR ATR [2, 5, 21–23]. Various choices of
base learners can be combined with the AdaBoost algorithm
to solve the SAR ATR problem [2]. As explained in the
Hughes phenomenon (also known as the curse of dimension-
ality), the difficulty of constructing classifier models becomes
more prominent especially when the feature set is high in
dimensionality while the number of the training data is
limited (a fact in SARATR). However, the combination of the
AdaBoost and graphical models is empirically proven in [24]
to demonstrate good performance even when the training
data is limited in number.

The SAR images are known for their indistinct appear-
ances, variations in target appearances, and small number of
available training samples. These problems must be properly
addressed to achieve good recognition results for ATR tasks.
To this end, a SAR ATR scheme is introduced as illustrated
in Figure 1. Firstly, an initial processing stage is applied to
facilitate the efficiency of feature extraction in the subsequent
stages. More specifically, aiming at reducing the impact of
variations in SAR images caused by variational echo energy
and target poses, an image energy normalization process
and a pose rectification process are applied sequentially. The
construction of effective feature sets forATR tasks is of crucial
importance for achieving reliable recognition results. There-
fore, it is suggested to extract a rich feature set that is formed
by combining various types of discrimination features and
then construct a more compact feature set by eliminating the
redundancy of the rich feature set.Wehave decided to employ
wavelet-based features. A rich feature set is firstly formed
by combining the decomposed wavelet subband features,
for example, the low-frequency information in LL subband
coefficients and the high-frequency information in both LH
and HL subband coefficients, where the HH subband is not
involved since it is not stable feature in SAR images [25]. The
involved coefficients actually depict the combination of tex-
ture features and horizontal and vertical edge features. After
this, a compact low dimensional feature set which comprises
features which retain most of the variance is constructed
by employing the Principle Component Analysis (PCA)
technique [26].The relationship among features is statistically
learned in a discriminative fashion rather than a generative
fashion. Specifically, instead of using the true distribution,
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which is usually unknown for most of the time, the empirical
estimates are learned in a discriminative fashion bymaximiz-
ing the 𝐽-divergence.Therefore, although the learned models
may have low consistency with the realmodel of target classes
due to limited amount of training data, high discrimina-
tion ability can still be achieved. Then, a final classifier is
constructed by combining several discriminative tree based
classifiers with the Real-AdaBoost framework [27]. To eval-
uate the performance of the proposed method, the moving
and stationary target acquisition and recognition (MSTAR)
public release data set is involved. Experimental results
demonstrate that the proposed method outperforms several
widely cited methods under both standard operating condi-
tions (SOCs) and extended operating conditions (EOCs).

Variation reduction techniques that facilitate the effi-
ciency of feature extraction are introduced in Section 2. The
feature extraction and processing techniques are introduced
in Section 3. The recognition scheme is detailed in Section 4.
Experimental results using the MSTAR public database are
shown in Section 5, followed by our conclusions in Section 6.

2. Variation Reduction Techniques

2.1. Image Energy Normalization. Theecho strength of SAR is
strongly affected by, for example, the range distance between
the imaging target and its corresponding radar and several
other reasons; therefore the average amplitude of image
pixels in different image chips may be different even for
the same target [28]. To mitigate the potential influence of
amplitude variations in subsequent features extraction, the
image energy normalization process needs to be applied. Let𝑀 and 𝑁 denote the number of pixels in range and cross-
range dimension for a given SAR image chip.The SAR image
chip can be denoted as 𝑋(𝑚, 𝑛), where 𝑚 = 1, . . . ,𝑀 and𝑛 = 1, . . . , 𝑁 are the dimension of range and cross-range,
respectively.The energy normalized image pixel𝑋󸀠󸀠(𝑚, 𝑛) can
be described as

𝑋󸀠󸀠 (𝑚, 𝑛) = 𝑋󸀠 (𝑚, 𝑛) − 𝑋󸀠
min (𝑚, 𝑛)𝑋󸀠

max (𝑚, 𝑛) − 𝑋󸀠
min (𝑚, 𝑛) , (1)

where 𝑋󸀠
min(𝑚, 𝑛) and 𝑋󸀠

max(𝑚, 𝑛) is the minimum and
maximum value among all pixels of 𝑋󸀠(𝑚, 𝑛), respectively,
and𝑋󸀠(𝑚, 𝑛) is calculated as

𝑋󸀠 (𝑚, 𝑛) = 𝑋 (𝑚, 𝑛)
√∑𝑀

𝑚=1∑𝑁
𝑛=1𝑋2 (𝑚, 𝑛) . (2)

The benefit of employing the image energy normalization
process is provided in Section 5.1.

2.2. Pose Rectification. Pose rectification is beneficial for
improving the accuracy of SAR ATR and can be achieved
by rotating the given images according to the pose of target
of interests. However, targets with partial defected contour
shapes that are caused by the shadow effect may suffer from
poor pose estimation accuracies. This section introduces a
pose estimation method that is based on the exploration of
targets’ geometrical information for achieving higher estima-
tion accuracy.

Severalmethods have been proposed for achieving higher
accuracy in pose estimation. The methods proposed in
[29, 30] are based on maximizing the mutual information
with multilayer perceptron (MLP). Although a low estima-
tion error is achieved, these methods are computationally
expensive and require a long training time. The method
proposed in [31] is based on the 2D continuous wavelet
transform (CWT), where the orientation that maximizes the
angular energy is considered as the estimated pose. However,
this method is based on the assumption that the target
of interest is already placed in the image centre, which is
difficult to achieve especially for SAR images with indistinct
targets.

In fact, the tactical ground targets show rectangular
shaped boundaries, which can be used for pose estimation.
Therefore, methods based on the analysis of the geometrical
information of target of interests have been proposed. The
methods proposed in [2, 32] are based on finding the encap-
sulating box of the target of interest, where the basic assump-
tion is that the edges of the estimated box should be tangent to
the rectangular shaped target boundaries.However, this is not
always true with incomplete target shape boundaries due to
the shadow effects in SAR images.Moreover, the least squares
linear fit based methods estimate the centreline of the target
of interest, where the slope of the centreline is considered
as the target pose. However, for similar reasons, the shadow
effect in SARmay produce images with defected target, which
can affect the corresponding pose estimation results. As
discussed, the encapsulating box based methods have failed
to achieve the optimum estimation result due to the defect
targets in SAR images. However, as will be introduced, the
Radon transformbasedmethod can achieve better estimation
result in such scenarios [33]. Therefore, better estimation
accuracy can be achieved by employing these two methods
in a well-designed fashion. Firstly, the target of interest
is segmented from the SAR image, and the rectangle that
has the minimum perimeter around the segmented target
is considered as the minimum bounding rectangle (MBR)
[34]. Then, the completeness of the target of interest can be
evaluated. In the case of a target with complete contour shape
in the SAR image, the MBR estimated result is considered as
the final result. Otherwise, the Radon transform is conducted
and its estimation is used as the final result.

2.2.1. Estimation for Targets with Complete Contour Shapes.
Tactical targets in SAR images have randomly distributed
poses ranging from 0∘ to 360∘ (the target pose is defined as
the angle between the target’s longer edge and the horizontal
image axis). Tactical targets in SAR images show rectangular-
like shapes. Figure 2 shows the segmented SAR chips, where
the target poses can be estimated according to the inclination
angle of itsMBR. As introduced in [34], the rectangle that has
the shortest perimeter enclosing a convex polygon has at least
one side collinear with one of the convex edges.TheMBR can
be efficiently calculated as follows:

Step 1. Estimate the centroid of the target of interest.
Step 2. Compute the convex polygon of the target of
interest.
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Figure 2: Illustration of targets with complete contour shapes.
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Figure 3: Illustration of targets with defected contour shapes.

Step 3. Compute and store the edge orientations of the
convex polygon.
Step 4. Rotate a bounding rectangle according to the
stored edge orientations until a full rotation is done.
Step 4.1. Find a fitted rectangle.
Step 4.2. Store the perimeter of the fitted rectangle.
Step 4.3. Rotate the rectangle.
Step 5. Return the rectangle corresponding to the
minimum perimeter.

2.2.2. Estimation for Targets with Incomplete Contour Shapes.
Due to the imaging principle of SAR, partial part of the target
of interest is not radiated by radar beam, and therefore the
imaged target shows incomplete boundary shape. However,
the long edge of the target of interest is always well imaged, as
shown in Figure 3. In fact, the Radon transform (RT) can be
used for long edge detection. Therefore, for SAR images with
targets that show incomplete contour shapes, the RT based
estimation can achieve higher accuracy. The application of
the RT on a target image I(𝑥, 𝑦) limited by a set of angles
can be considered as calculating the projection of the target
along given angles. The calculated projection result is the
sum of pixel numbers in each single direction, where a line
can be found in the corresponding target image according to
the peak of the projection result [33]. Define G(𝜌, 𝜃) as the
projection at angle 𝜃with distant 𝜌 to the image centroid, and
the RT is implemented as follows:

G (𝜌, 𝜃)
= ∫∞

−∞
∫∞

−∞
I (𝑥, 𝑦) 𝛿 (𝜌 − 𝑥 cos (𝜃) − 𝑦 sin 𝜃) 𝑑𝑥 𝑑𝑦, (3)

where 𝛿(⋅) is the Dirac delta function. The parameters 𝜌 and𝜃 determine the projection direction, where the projection is
repeated from 𝜃 ∈ [0∘ : 180∘). Note that a pixel in the RT
transform is divided into four subpixels such that accurate
projection result can be achieved, where the projection
contribution is calculated according to the position of the
subpixel that hits the projection bin.

2.2.3. Degree of Overlapping Rectangle. In fact, for any given
image, the completeness of the target in SAR images can be
automatically calculated. As introduced in Section 2.2.1, the
calculated MBR has at least one edge overlap with the target
boundary. Therefore, in the case of a complete target, one
long edge of the target of interest will overlap with that of its
correspondingMBR. In the case of a targetwith partial defect,
the diagonal line of the target of interest may overlap with a
long edge of its corresponding MBR with few pixels. Let 𝑁𝑙

denote number of pixels of the two MBR long edges, and let𝑁𝑡 denote the number of target pixels that overlap with the
two MBR long edges. The completeness of the target in SAR
images can be evaluated as follows: the target is firstly dilated,
and then the degree of overlapping rectangle is calculated as𝑁𝑡/𝑁𝑙, and finally the completeness of the target boundary is
evaluated according to the calculated degree of overlapping
rectangle. After dilation, since the difference between the
complete contour shape and defected contour shape is large,
the proposedmethod is not sensitive to the selected threshold
employed for evaluating the degree of overlapping. Overall,
as shown in Figure 4, the target pose is estimated using the
MBR based method or the RT based method depending on
the evaluation result of the degree of overlapping rectangle,
and several estimation results are shown in Figure 5.

3. Feature Extraction and
Processing Techniques

3.1. Rich Feature Set Extraction. Feature extraction is of
crucial importance to the overall performance of the entire
ATR system. It is ideally preferable to extract features that
have characteristics of high discrimination ability (or, in other
words, high interclass variation) and high tolerance to target
translation. These feature characteristics can be achieved by
efficiently employing the wavelet decomposition technique.
As depicted in Figure 6, the texture features are reflected in
LL and the horizontal and vertical edge feature are reflected
in LH and HL, respectively. HH is actually a combination of
features reflected in LH andHL. Furthermore, the translation
invariant features can be extracted by sequentially further
decomposing the previously decomposed image to a much
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Figure 4: Illustration of the proposed pose estimation method.

coarser resolution. The idea behind the translation invariant
features is that each decomposition process throws away the
exact positional information of certain feature that exists in
a specific area. More specifically, as illustrated in Figure 7, a
pixel point in a newly decomposed image implicitly reflects
the presence of certain feature(s) in a corresponding entire
local region in the original image.

Several wavelet families have been proposed with the
shape andduration of themotherwavelets being themain dif-
ferences among them. The number of vanishing moments
(order number) is used as an indication of the wavelets’
smoothness and the frequency response flatness of the
wavelet filters. It is suggested that we employ one fixed
mother wavelet for the entire recognition scheme. Awavelets’
comparison test is conducted in [5], where 7 mother wavelets
with variations in order numbers are compared, according
to minimum distance. To determine the most appropriate
mother wavelet, in this paper, we compare 7 mother wavelets
with more variations in order numbers with the maximum
margin criterion (MMC) [35]. Specifically, we compare dis-
creteMeyerwavelet, Biorthogonal wavelets (orders 1.1, 1.3, 1.5,
2.2, 2.4, 2.6, 2.8, 3.1, 3.3, 3.5, 3.7, 3.9, 4.4, 5.5, and 6.8), Coiflets
(orders 1, 2, 3, 4, and 5), Haar wavelet, Daubechies wavelets
(orders 2, 3, 4, 7, 10, 25, and 45), Reverse biorthogonalwavelets
(orders 1.1, 1.3, 1.5, 2.2, 2.4, 2.6, 2.8, 3.1, 3.5, 3.7, 3.9, 4.4, 5.5, and
6.8), and Symlets (orders 2, 4, 8, and 16).

MMC finds the mother wavelet that maximizes the aver-
age margin between classes. This is achieved by comparing
the difference between the average within-class distance and
the average between-class distance 𝑑𝑤 − 𝑑𝑏. The mother
wavelet that achieves the maximum difference is the best
selection. Suppose we have 𝑐 classes 𝐶1, 𝐶2, . . . , 𝐶𝑐, each class
with 𝑛𝑖 samples and therefore, 𝑛 = ∑𝑐

𝑖=1 𝑛𝑖 samples in total.
Let 𝑥𝑖𝑗 denote the 𝑗th sample in the 𝑖th class, let 𝑚𝑖 be the
centroid of the 𝑖th class, and let 𝑚 be the centroid of the

training set. The average within-class distance 𝑑𝑤 and the
average between-class distance 𝑑𝑏 can be denoted as

𝑑𝑤 = 1𝑛
𝑐∑
𝑖=1

𝑛𝑖∑
𝑗=1

󵄩󵄩󵄩󵄩󵄩𝑥𝑖𝑗 − 𝑚𝑖

󵄩󵄩󵄩󵄩󵄩2𝐹
𝑑𝑏 = 1𝑛

𝑐∑
𝑖=1

𝑛𝑖 󵄩󵄩󵄩󵄩𝑚𝑖 − 𝑚󵄩󵄩󵄩󵄩2𝐹 .
(4)

The comparison of the discrimination performance of
the mentioned wavelets is illustrated in Figure 8. It is noted
that the Reverse biorthogonal wavelet 3.1 achieves the highest
value, an observation which indicates that it has the highest
discrimination ability among these wavelets. Therefore, the
Reverse biorthogonal wavelet 3.1 is selected as the default
mother wavelet for feature extraction in SAR images.

The above process yields large sets of features which
exhibit a high variability as far as the quality of the discrimi-
native information that they convey is concerned. To achieve
the truly effective features, the PCA is used, which achieves
comparable result to both 2D-PCA and two-stage 2D-PCA
when they are employed for SAR feature compression pur-
poses, as analysed in [26]. Moreover, the PCA is much more
efficient as far as both computation time and storage space are
concerned. The implementation of the PCA is introduced as
follows:

Given. Data 𝑋 = [𝑥1, . . . , 𝑥𝐿]. Number of principal
components 𝑘.
Step 1. Subtract the mean of variables from𝑋.
Step 2. Solve the Singular Value Decomposition
(SVD) of𝑋 = USV𝑇.

Step 3. The dimensionality reduced feature set is
calculated with the first 𝑘 column of 𝑉 as𝑋𝑉𝑘.

3.2. Learn Statistical Relationship among Features. Since
access to data arising from true distributions is often not
available, the learned models based separately on posi-
tive/negative samples are usually not accurate enough for
classification. In fact, the discriminative methods construct
models from both the positively and negatively labelled
samples in a discriminative fashion. Since the final objective
is classification, even if the learned distributionsmay not con-
verge to the true distributions, the constructed discriminative
models tend to have better discrimination performance than
the generative models [36, 37].

In binary classification case, which can be naturally
extended to the more general 𝑀-ary classification case, for
a given labelled training setS fl {(𝑥(1), 𝑦(1)), . . . , (𝑥(𝐿), 𝑦(𝐿))},
where 𝑦(𝑙) represents the sample label, each pair (𝑥(𝑙), 𝑦(𝑙)) ∈
X𝑛 × {+1, −1} (X is normally a finite set of integer values as
X = {0, . . . , 255}). Supposing we have two models 𝑝(𝑥) fl𝑃𝑋|𝑌(𝑥 | 𝑦 = 1) and 𝑞(𝑥) := 𝑃𝑋|𝑌(𝑥 | 𝑦 = −1) that can
describe the true distribution of 𝑝 and 𝑞, the log-likelihood
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(a) (b) (c) (d) (e) (f)

Figure 5: Illustration of the proposed pose estimation method, where the red rectangle is the MBR and the green line is the estimation result
of the Radon transform. Note that the Radon transform is not used when the degree of overlapping rectangle meets the specified standard.
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Biorthogonal wavelets (orders 1.1, 1.3, 1.5, 2.2, 2.4, 2.6, 2.8, 3.1, 3.3, 3.5, 3.7, 3.9, 4.4, 5.5, and 6.8), Coiflets (orders 1, 2, 3, 4, and 5), Haar wavelet,
Daubechies wavelets (orders 2, 3, 4, 7, 10, 25, and 45), Reverse biorthogonal wavelets (orders 1.1, 1.3, 1.5, 2.2, 2.4, 2.6, 2.8, 3.1, 3.5, 3.7, 3.9, 4.4,
5.5, and 6.8), and Symlets (orders 2, 4, 8, and 16). The 37th mother wavelet is the Reverse biorthogonal wavelet 3.1.

ratio test is known to be the optimal test (under both the
Neyman-Pearson and Bayesian settings [38])

log
𝑝 (𝑥)𝑞 (𝑥)

𝑦=+1≷
𝑦=−1

𝜂, (5)

where 𝜂 is the threshold [38].
In most cases, it is impossible to have access to the true

conditional distributions 𝑝 and 𝑞. Approximations 𝑝 and 𝑞
are normally built to learn the unknown distribution from
the labelled training setS. Therefore, the log-likelihood ratio
test can be rewritten as

log
𝑝 (𝑥)𝑞 (𝑥)

𝑦=+1≷
𝑦=−1

𝜂. (6)

The recently proposedmethod named discriminative tree
estimates the multivariate distributions 𝑝 and 𝑞 jointly from
both the positively and negatively labelled samples in the
training set 𝑆 of Tan et al. [37]. This method is based on the
assumption that the learned distribution 𝑝(𝑥) is Markov with
respect to an undirected graph G = (V,E), where V ={1, . . . , 𝑛} represents the vertex set and E ⊂ (V2 ) represents
the set of all unordered pairs of vertexes. The mentioned
Markov conforms to the local Markov property

𝑝 (𝑥𝑖, 𝑥V\𝑖) = 𝑝 (𝑥𝑖, 𝑥N(𝑖)) , ∀𝑖 ∈ V, (7)

where N(𝑖) fl {𝑗 ∈ V : (𝑖, 𝑗) ∈ E} represents the set of
neighbour nodes of 𝑖 and 𝑥A = {𝑥𝑖 : 𝑖 ∈ A} for any set A ⊂
V.

A tree structured distribution 𝑝 that is Markov with
respect to an undirected graphG = (V,E) can be factorized
as follows [39]:

𝑝 (𝑥) = ∏
𝑖∈V

𝑝𝑖 (𝑥𝑖) ∏
(𝑖,𝑗)∈E

𝑝𝑖,𝑗 (𝑥𝑖, 𝑥𝑗)
𝑝𝑖 (𝑥𝑖) 𝑝𝑗 (𝑥𝑗) , (8)

where 𝑝𝑖(𝑥𝑖) represents the marginal of the random variable𝑥𝑖 and 𝑝𝑖,𝑗(𝑥𝑖, 𝑥𝑗) represents the pairwise marginal of the pair(𝑥𝑖, 𝑥𝑗).

Based on this, for a given distribution 𝑝, the projection
of 𝑝 onto some tree distribution G = (V,E) is defined as
follows:

𝑝 (𝑥) fl ∏
𝑖∈V

𝑝𝑖 (𝑥𝑖) ∏
(𝑖,𝑗)∈E

𝑝𝑖,𝑗 (𝑥𝑖, 𝑥𝑗)
𝑝𝑖 (𝑥𝑖) 𝑝𝑗 (𝑥𝑗) . (9)

We digress here to introduce themethod for constructing
models in generative fashion and then provide the method
for constructing models in discriminative fashion. The gen-
erative methods attempt to construct a model that is the
same as the underling model of the classification target. The
widely researched generative method, namely, the Chow-Liu
algorithm [40], employs the KL-divergence as the measure of
the differences between two probability distributions 𝑝 and𝑝. The optimization in the Chow-Liu algorithm is therefore
defined as

min
𝑝∈T

𝐷(𝑝 ‖ 𝑝) fl min
𝑝∈T

𝐸𝑝 log(𝑝𝑝) , (10)

where 𝑝 ∈ T states that 𝑝 is a tree structured distribution
over the same alphabet asT. It is shown byChow and Liu that
this optimization problem can be solved by using amaximum
weight spanning tree (MWST) algorithm (e.g., Kruskal’s [41])
where the mutual information is used to represent the edge
weights between pairs of variables.

In contrast, the recently proposed discriminative method
employs the 𝐽-divergence as the measure of the separation
between two probability distributions 𝑝 and 𝑞. The 𝐽-
divergence is defined as follows [42]:

𝐽 (𝑝, 𝑞) fl 𝐷(𝑝 ‖ 𝑞) + 𝐷 (𝑞 ‖ 𝑝) . (11)

The optimization problem reduces to two tractable
MWST problems for maximizing the tree approximate 𝐽-
divergence over the two tree structured-distributions 𝑝 and𝑞 for known empirical distributions 𝑝 and 𝑞, which is defined
as

(𝑝, 𝑞) = argmax
𝑝∈T𝑝 ,𝑞∈T𝑞

𝐽 (𝑝, 𝑞; 𝑝, 𝑞) , (12)
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where

𝐽 (𝑝, 𝑞; 𝑝, 𝑞) fl ∑
𝑥∈X𝑛

(𝑝 (𝑥) − 𝑞 (𝑥)) log [𝑝 (𝑥)𝑞 (𝑥) ] . (13)

It is noted that, as described in [37], (13) can be decoupled
into two independent optimization problems:

𝑝 = argmin
𝑝∈T𝑝

𝐷(𝑝 ‖ 𝑝) − 𝐷 (𝑞 ‖ 𝑝)
𝑞 = argmin

𝑞∈T𝑞

𝐷(𝑞 ‖ 𝑞) − 𝐷 (𝑝 ‖ 𝑞) . (14)

These can be solved by the MWST algorithm

𝜓(+)
𝑖,𝑗 fl 𝐸𝑝𝑖,𝑗 [log 𝑝𝑖,𝑗𝑝𝑖𝑝𝑗 ] − 𝐸𝑞𝑖,𝑗 [log

𝑝𝑖,𝑗𝑝𝑖𝑝𝑗] . (15)

Overall, the procedure of the learning of the discrimina-
tive tree is summarized in the following steps [37]:

Given. Training set S.
Step 1. Estimate the pairwise statistics 𝑝𝑖,𝑗(𝑥𝑖, 𝑥𝑗) and𝑞𝑖,𝑗(𝑥𝑖, 𝑥𝑗) for all edges (𝑖, 𝑗).
Step 2. Calculate edge weights {𝜓(+)

𝑖,𝑗 } and {𝜓(−)
𝑖,𝑗 } for all

edges (𝑖, 𝑗).
Step 3. Find the optimal tree structures with the given
edge weights.
Step 4. Set 𝑝 and 𝑞 to be the projection of 𝑝 onto E𝑝

and 𝑞 onto E𝑝, respectively.
Step 5. Classify the test sample 𝑥 using the learned
distributions 𝑝 and 𝑞 in a likelihood ratio test ℎ(𝑥) =
sgn[log(𝑝(𝑥)/𝑞(𝑥))].

Since the classification result is finally determined by the
numerical result of the log-likelihood ratio test, we choose
to employ one fixed threshold 0 for the entire training
process. This is because likelihoods larger than 0 indicate
higher probability of belonging to 𝑝(𝑥). Similarly, likelihoods
smaller than 0 indicate high probability of belonging to 𝑞(𝑥).
4. Recognition Scheme

The main aim of classifier construction in ATR is to con-
vert a wealth of training data into useful knowledge for
classification by learning. However, a classifier learned from
massive amounts of high varying data is not guaranteed to
achieve good performance in classification and may yield
large feature dimensions. Therefore, it is of great importance
to find effective representations for the targets of interest to
be used for constructing the classifiers.

Extracted features might comprise large sets of features
which at a glancemight be worth of exploiting but turn out to
be too “messy” and high in redundancy. In fact, the learning
process of the classifiers could be enormously benefited
from a feature dimensionality reduction process after the
acquisition of the extracted features as previously discussed.

The redundancy-reduced features can be used for learning
classifiers, where efficient classifiers and better classification
accuracy results can be achieved. Therefore, it is suggested
to enlarge the quantity of the potential features but then
eliminate the existing redundancy, reduce the dimensionality
of the enlarged feature set, and finally exploit the preserved
features for classification, which comprise the characteristics
of proper combination of both quality and quantity. In the
proposed recognition scheme, features are extracted with
wavelet decomposition, but then the dimension of the feature
set is reduced to provide a feature set rich in discrimina-
tive information but with limited dimensionality and less
redundancy. To make the most of the extracted features, tree
structured classifiers are learned in discriminative fashion
based on the statistical information provided by the training
data of the target classes. In the learned classifiers, the feature
nodes are connected as a spanning tree, where each node
is connected to another node which has the maximum
relevance.Moreover, the relevance between feature nodes can
be accordingly calculated. Finally, classifiers are combined
using the Real-AdaBoost algorithm to construct the final
classifier that has high classification accuracy and is less prone
to overfitting, where the recently proposed discriminative
trees are involved as the base classifiers. A generic sequence
of steps of the proposed scheme is illustrated in Figure 9.

4.1. Construct a Strong Classifier. Efforts have been constantly
made to construct a classifier with high classification accu-
racy and strong generalization ability (the later meaning that
performance of the classifier learned from a given training
dataset will still be good when the classifier is exposed to
unseen data) [43]. Employing ensemble learning methods is
one of the solutions. Ensemble learning methods construct
and combine a set of base classifiers instead of constructing
and using one single classifier learned from the training
dataset. Base classifiers can be generated from a training
dataset with the use of any learning algorithm (e.g., decision
tree, graphical models, and neural networks).

AdaBoost is one of the ensemble methods that have
achieved great success in diverse domains [27, 43–47]. The
general idea of the AdaBoost is to constantly update the
distribution of the training data such that the learning of the
base classifiers in each iteration focuses more on the wrongly
labelled samples by the previous learned base classifiers.
Real-Adaboost is a variant of the AdaBoost which has been
empirically proved to have better performance than ordinary
AdaBoost (Discrete-AdaBoost) [27, 37, 44]. Specifically, for
a given training dataset S, each sample is assigned with an
initial weight 𝜔(𝑙)0 = 1/𝐿, where 𝐿 is the number of training
samples. A base classifier is learned in each iteration 𝑡 such
that ℎ𝑡 : X𝑛 → R, where a larger absolute value in ℎ𝑡(𝑥) indi-
cates higher confidence. Then, the samples wrongly labelled
by ℎ𝑡(𝑥) are increased in weights such that the constructed
classifiers in the following iterations can focus on themisclas-
sified samples. Finally, the combined classifier resulting after𝑇 iterations is

𝐻𝑇 (𝑥) = sgn[ 𝑇∑
𝑡=1

𝛼𝑡ℎ𝑡 (𝑥)] , (16)
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Figure 9: A generic diagram that depicts the various steps of the proposed SAR ATR scheme.

where sgn is the sign function that sgn(𝑎) = 1 if 𝑎 ≥ 0 and −1
otherwise and 𝛼𝑡 is the coefficient calculated in each iteration
forminimizing the weighted training error. Overall, the Real-
AdaBoost algorithm trains a set of base classifiers sequentially
and combines them to a strong classifier, where the current
learned base classifiers focus more on the wrongly labelled
samples by the previous base classifiers.

The ensemble process of the Real-AdaBoost is iterated
with the rearrangement of the training set distribution while
the learningmethod of the base classifiers is not changed. For
the learning of the base classifier in each iteration 𝑡, the group
of redundancy and dimensionality reduced wavelet features
are employed and fed to learn the discriminative trees for
classifier construction. By employing the learning method
introduced in Section 3.2, a pair of discriminative trees is
constructed to provide an estimation of the classification
result. Specifically, the pair of discriminative trees constitutes
a base classifier for the Real-AdaBoost ℎ𝑡 : X𝑛 → R, whereℎ𝑡(𝑥) = log[𝑝𝑡(𝑥)/𝑞𝑡(𝑥)], and 𝑝𝑡 and 𝑞𝑡 denotes the learned
discriminative tree models at the 𝑡th iteration of the Real-
AdaBoost. After 𝑇 iterations, 𝑇 pairs of discriminative trees
are learned and combined to construct a stronger classifier
with better approximation of the classification result which
can be written as Viola and Jones [45]

𝐻𝑇 (𝑥) = sgn[ 𝑇∑
𝑡=1

𝛼𝑡 log(𝑝𝑡 (𝑥)𝑞𝑡 (𝑥) )]

= sgn[log(∏𝑇
𝑡=1𝑝𝑡 (𝑥)𝛼𝑡∏𝑇
𝑡=1𝑞𝑡 (𝑥)𝛼𝑡 )]

= sgn [(𝑝∗ (𝑥)𝑞∗ (𝑥) )] ,
(17)

where 𝑞∗(𝑥) = ∏𝑇
𝑡=1𝑝𝑡(𝑥)𝛼𝑡 and 𝑞∗(𝑥) = ∏𝑇

𝑡=1𝑞𝑡(𝑥)𝛼𝑡 .
For the iterative updating of the training set distribu-

tion, the misclassified samples are reassigned with larger
weights and the correctly classified samples are reassigned
with smaller weights compared to their previous weights.
Regarding the weight distribution updating problem, simply
reduplicating the samples with higher weights is time and
computation inefficient.This is because as the number of iter-
ations increases, the wrongly labelled samples would bemuch
less in number but have much larger weights. Therefore, the
final training set is fixed in size and constructed in random
sampling fashion, where samples of the original training set
are chosen according to the updated distributionweights.The
entire classifier construction scheme is summarized as below:

Given. Training dataset 𝑆. Number of iterations 𝑇.
Step 1. Wavelet feature extraction from the given
training dataset 𝑆.
Step 2. Redundancy and dimensionality reduction for
the extracted features.
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Step 3. Initialization of the distribution weights,𝑤(𝑙)
0 =1/𝐿 for all 1 ≤ 𝑙 ≤ 𝐿.

Step 4. Classifier construction
(1) for 𝑡 = 1 : 𝑇 do
(2) Learn the pair of discriminative trees 𝑝𝑡, 𝑞𝑡 from
the weighted empirical distributions 𝑝𝑤 and 𝑞𝑤.
(3) Get the base classifier ℎ𝑡(𝑥) := log [𝑝𝑡(𝑥)/𝑞𝑡(𝑥)].
(4) Calculate the coefficient 𝛼𝑡
𝛼𝑡 = 12 log

1 − ∑𝐿
𝑖=1 𝑤(𝑙)

𝑡 𝑦(𝑙)sgn (ℎ𝑡 (𝑥(𝑙)))
∑𝐿
𝑖=1 𝑤(𝑙)

𝑡 𝑦(𝑙)sgn (ℎ𝑡 (𝑥(𝑙))) . (18)

(5) Update the weighted empirical distribution:

𝑤(𝑙)
𝑡+1 (𝑖) = 𝑤(𝑙)

𝑡 exp [−𝛼𝑡𝑦(𝑙)ℎ𝑡 (𝑥(𝑙))]𝜁𝑡 , ∀𝑙 = 1, . . . , 𝐿, (19)

where 𝜁𝑡 is the normalization factor (to ensure that𝑤(𝑙)
𝑡+1 will be a distribution).

(6) end for
Step 5. Output the final classifier ℎ𝑡(𝑥) = log [𝑝𝑡(𝑥)/𝑞𝑡(𝑥)] with coefficients {𝛼𝑡}𝑇𝑡=1.

4.2. Multiclass Classification. The One-vs.-One (OvO) and
One-vs.-All (OvA) are the two most popular strategies for
the extension of a two-class classification (binary classifi-
cation) problem to a multiclass classification (multinomial
classification) [48]. For a 𝐾 class problem, the OvO strategy
trains 𝐾(𝐾 − 1)/2 binary classifiers, each of which classifies
a pair of classes selected from the original training set. For
the classification of the unseen samples, the samples are fed
and tested in all𝐾(𝐾 − 1)/2 classifiers by employing a voting
scheme where the class which achieves the highest number
of positive predictions would be considered as the final
prediction. The OvA strategy trains one classifier for every
class where the samples of the target class are considered as
positive samples and all of the rest of the samples as negative
samples. At predication stage, the unseen sample is assigned
with the label of class 𝑘 if its corresponding classifier produces
the highest likelihood score.

5. Experimental Results

In this section, the performance of the proposed scheme is
evaluated and compared with several established methods.
The widely used SAR ATR experimental validation and com-
parison benchmark moving and stationary target acquisi-
tion and recognition (MSTAR) public release database is
employed for performance evaluation [49–51]. The MSTAR
database consists of 10 vehicle classes, which are collected
by X-band SAR with 1-ft by 1-ft resolution, including BMP2,
BTR70, T72, BTR60, 2S1, BRDM2, D7, T62, ZILI131, ZSU234,
and SLICY. The collection of target images is captured
under various depression angles and aspect angles, which are

Table 1: 10 classes of targets of the MSTAR dataset under SOCs.

Training set
Vehicle Number of images Serial number Depression angle
BMP2 699 9563, 9566, C21 17∘

BTR70 233 C71 17∘

T72 699 132, 812, S7 17∘

BTR60 256 k10yt7532 17∘

2S1 299 B01 17∘

BRDM2 299 E71 17∘

D7 299 92v13015 17∘

T62 299 A51 17∘

ZILI131 299 E12 17∘

ZSU234 299 D08 17∘

Testing set
Vehicle Number of images Serial number Depression angle
BMP2 587 9563, 9566, C21 15∘

BTR70 196 C71 15∘

T72 588 132, 812, S7 15∘

BTR60 196 k10yt7532 15∘

2S1 274 B01 15∘

BRDM2 274 E71 15∘

D7 274 92v13015 15∘

T62 274 A51 15∘

ZILI131 274 E12 15∘

ZSU234 274 D08 15∘

Table 2: 4 classes of targets of the MSTAR dataset under EOC-1.

Training set
Vehicle Number of images Serial number Depression angle
2S1 274 B01 15∘

BRDM2 274 E71 15∘

ZSU234 274 D08 15∘

T72 274 A64 15∘

Testing set
Vehicle Number of images Serial number Depression angle
2S1 288 B01 30∘

BRDM2 288 E71 30∘

ZSU234 288 D08 30∘

T72 288 A64 30∘

suitable for testing the SAR ATRmethods with targets under
various operating conditions.

There are two categories of operating conditions in the
MSTAR database: the standard operating conditions (SOCs)
and the extended operating conditions (EOCs) [50]. The
targets captured under SOCs are listed in Table 1 including
information about vehicle types, number of chip images,
serial numbers, and depression angles. It is worth noting that
the EOCs are much more difficult for SAR ATR than the
SOCs. In EOC-1, the depression angles are larger in variation
where the training images are captured under 15∘ and the
testing images are captured under 30∘, as shown in Table 2.
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Table 3: 5 variants of T72 with different serial numbers of the
MSTAR dataset under EOC-2.

Training set
Vehicle Number of images Serial number Depression angle
BMP2 233 C21 17∘

BRDM2 298 E71 17∘

BTR70 233 C71 17∘

T72 233 132 17∘

Testing set
Vehicle Number of images Serial number Depression angles
T72 419 S7 15∘ and 17∘

T72 572 A32 15∘ and 17∘

T72 573 A62 15∘ and 17∘

T72 573 A63 15∘ and 17∘

T72 573 A64 15∘ and 17∘

In EOC-2, the training and testing set have various versions
of T72 with different serial numbers, as shown in Table 3.

We experiment with both two-level and three-level two-
dimensional wavelet decomposition with respect to the
Reverse biorthogonal wavelet (the selected mother wavelet
as introduced in Section 3.1). In the following, wavelet 768
(256 × 3 = 768) and wavelet 192 (64 × 3 = 192) are used to
denote the two-level and three-level wavelet decomposition,
respectively. The stopping criterion of the Real-AdaBoost is
set to 400 iterations.The segmentation of the target of interest
is implemented with the MRF model based method, where
the potential class number is 2, the expectation is 0.4, and
themaximum iteration number is 50.The segmented target is
dilated with a disk-shaped template with radius 3.The degree
of overlapping rectangle is 0.5 indicating that an appropriate
MBR must have more than 50% long edge overlapping pixels
in terms of the target of interest. Moreover, the proposed
method is implemented using Matlab R2013a and tested on a
computer with 1.8 GHz CPU and 4GB RAM. Regarding the
computation complexity, for a classifier trained for classifying
10 targets in OvO fashion, the processing time for one single
sample takes less than 0.02 s, including the processes of
extraction and compressing of features and recognition of
targets.

Before applying the proposed method to SAR ATR and
comparing with other methods, it is necessary to test the
proposed method in conjunction with several important
processes, including image energy normalization, feature
extraction, extension of two-class to multiclass classification,
and pose rectification. These four tests are conducted in
Sections 5.1 to 5.4, and the comparisons of recognition
accuracy performance with other methods are provided in
Section 5.5.

5.1. Image Energy Normalization. The significance of image
energy normalization in SAR ATR is tested in this section,
where the performance of the proposed scheme is tested
with or without image energy normalization processing. The
dataset includes all 10 classes captured under SOCs as listed
in Table 1. The wavelet 192 is used for feature extraction.

5 10

With image energy normalization
Without image energy normalization

15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95100
Feature dimension

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

Pr
ob

ab
ili

ty
 o

f c
or

re
ct

 cl
as

sifi
ca

tio
n

Figure 10: Performance comparison among the two cases which
refer to the employment or not of image energy normalization.

It is noticed in Figure 10 that the involvement of normal-
ization before feature extraction is beneficial for improving
classification accuracy. In fact, as the dimension of feature
vectors employed for classification grows, the advantage of
image energy normalization diminishes. This is because a
larger training feature set provides more information for
classification, where the classifier is empowered with more
discrimination ability by exploiting the provided informa-
tion. However, the classification with normalization achieves
good classification accuracy (around 96%) even when the
feature vector dimension is much lower, yielding an accuracy
which is almost the same as the accuracy achieved with
higher feature dimensions. Therefore, it is still suggested
to employ image energy normalization for preprocessing,
especially for classifiers constructed from training feature sets
of lower dimensionality. In the following, the image energy
normalization process is employed as a standard default
processing step.

5.2. Extension to Multiclass. We compare the OvO and OvA
strategies on the same training set (all 10 classes under SOCs)
to test their performance on the SAR ATR problem. It is
noted in Figure 11 that the OvO strategy appears to be outper-
forming the OvA strategy marginally in the SAR ATR prob-
lem. The marginal differences in recognition accuracy lie in
the unbalance of the training set, where the OvA strategy
employs the positive sample classes that are much less in
quantity than the negative sample classes. In fact, the advant-
age of the OvA strategy is that it is less in computation and
time complexity, where the OvO constructs 45 classifiers and
the OvA constructs 10 classifiers for a 10-class problem, res-
pectively. Since the aim of this paper is to provide a SAR ATR
scheme with high recognition accuracy, OvO is employed as
the default strategy for solving the multiclass problem.

5.3. Feature Extraction. In this section, we compare the
performance of feature extraction using the wavelet 192
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Figure 11: Performance comparison between OvO and OvA strate-
gies.
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Figure 12: Performance comparison between wavelet 192 and
wavelet 768.

(three-level wavelet decomposition) and the wavelet 768
(two-level wavelet decomposition). All 10 classes captured
under SOCs are employed for both training and testing.
As illustrated in Figure 12, these two curves coupled with
each other. The wavelet 192 outperforms the wavelet 768
when feature vectors possess lower dimensions. However,
this situation changes as the dimension of feature vectors
grows to 40. Moreover, the best classification result (97.46%)
is achieved by the use of wavelet 768 with feature dimension
of 70. This is because the wavelet 768 provides more features
for discrimination and the proposed ATR scheme constructs
and combines several discriminative tree classifiers thatmake
the most of the discriminative information inherent to the
extracted features.
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Figure 13: Performance comparison for all 10 targets at both
depression angles of 17∘ and 15∘.

5.4. Pose Rectification

5.4.1. Pose Estimation. To test the performance of the pro-
posed pose estimation method, the estimation results of
the proposed methods are compared to the ground truth
of target poses (the azimuth information provided in the
MSTAR database). The correctness of the estimation results
is evaluated with the so-called mean absolute difference
(MAD), which is calculated as Err = 1/𝑛∑𝑛

𝑖=1 |𝐸𝑡(𝑖) − 𝐸𝑒(𝑖)|.
The MAD reveals the actual estimation error about the
ground truth in comparison to the mean error (ME), since it
prevents the offset of the positive and negative errors. More-
over, the performance of the proposed method is evaluated
and compared with several widely cited methods, such as
the least square method (LSM) based estimation, the Hough
transform (HT) based method, the MBR based method, and
the Radon transform (RT) based method.

All 10 targets captured with different depression angles
and target poses are involved to test the robustness of the
proposed method over depression angle variations.The eval-
uation results for the 10 targets at depression angles 17∘ and
15∘ are listed in Tables 4 and 5, respectively. All serial number
variants of BMP2 and T72 in MSTAR dataset are involved
to test the robustness over variation in serial numbers. The
evaluation results of the data captured at depression angles 17∘
and 15∘ are listed in Tables 6 and 7, respectively. It is noted that
the MBR based method has achieved much lower estimation
error in comparison to other methods. However, the perfor-
mance of theMBR basedmethod has estimation error higher
than 10∘ in several tests. More specifically, the MBR based
method achieves the highest estimation error 15.32∘ for the
BRDM2 captured at depression angle of 15∘. In comparison
with thesemethods, the proposedmethod achieves the lowest
estimation error in all tests (lower than 10∘).

Furthermore, the average estimation error of the above
tests is illustrated as bar figure in Figures 13 and 14, such that
a muchmore distinct comparison can be observed. Similarly,
the proposedmethod is compared to the least square method
(LSM) based estimation, the HT based method, the MBR
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Table 4: MAD evaluation of the proposed method for all 10 targets at depression angle 17∘ (degrees).

Vehicle BTR60 2S1 BRDM2 D7 T62 ZIL131 ZSU234 BMP2 BTR70 T72
LSM 7.05 11.05 15.48 11.93 10.47 10.79 15.42 9.39 9.33 10.22
HT 9.17 11.26 12.14 18.86 14.69 12.34 15.16 10.72 8.09 12.64
MBR 6.10 7.45 14.66 6.27 7.18 11.87 8.23 6.79 9.38 4.99
RT 7.23 9.55 10.38 19.32 13.32 9.27 18.40 9.54 7.49 13.73
Proposed method 4.85 5.84 8.70 6.27 9.39 8.02 7.83 5.43 6.67 4.51

Table 5: MAD evaluation of the proposed method for all 10 targets at depression angle 15∘ (degrees).

Vehicle BTR60 2S1 BRDM2 D7 T62 ZIL131 ZSU234 BMP2 BTR70 T72
LSM 5.52 10.63 15.21 10.09 9.20 8.67 14.07 7.56 7.00 6.87
HT 7.00 10.16 10.96 16.72 13.49 10.13 14.32 9.02 6.87 10.38
MBR 5.11 6.64 15.32 6.40 6.93 10.23 8.81 5.12 7.01 3.53
RT 4.76 9.63 9.38 17.36 12.34 7.08 17.31 8.27 5.85 10.61
Proposed method 3.81 5.42 9.04 6.32 6.10 5.89 7.67 4.45 5.13 3.38

Table 6: MAD evaluation of the proposed method for all serial
number variants of BMP2 and T72 at depression angle 17∘ (degrees).

Vehicle type BMP2 T72
132 812 s7 9563 9566 c21

LSM 17.15 9.58 13.12 13.53 13.22 12.06
HT 18.87 14.81 16.23 12.96 13.04 13.76
MBR 7.97 5.50 6.40 11.90 9.96 8.71
RT 21.46 15.15 17.62 11.47 13.65 12.25
Proposed method 7.93 5.42 5.79 8.47 7.94 6.96

Table 7: MAD evaluation of the proposed method for all serial
number variants of BMP2 and T72 at depression angle 15∘ (degrees).

Vehicle type BMP2 T72
132 812 s7 9563 9566 c21

LSM 12.58 9.30 10.74 11.26 10.96 9.71
HT 15.98 12.36 13.32 9.44 9.63 11.58
MBR 7.75 4.85 4.53 8.57 6.93 6.57
RT 17.16 11.31 13.62 9.38 10.31 10.61
Proposed method 7.21 4.60 4.34 6.96 5.63 5.71

based method, and the RT based method. It is noted that, for
most of these methods, higher estimation error is achieved
in the serial number variation test. Compared with these
methods, the proposed method achieves robust and accurate
estimation results in both tests. Specifically, the proposed
method achieves the lowest average estimation error in all
tests (lower than 8∘).

5.4.2. Pose Rectification. The various target poses introduce
great variations into the SAR images. It has been experi-
mentally proven in several researches that rotating images
in certain directions or introducing rotationally invariant
features is beneficial for improving classification accuracy
[2, 3]. To this end, we rotate the image according to the target
poses in the SAR images, which is named as pose rectification.
In this section, we test the performance of the proposed
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Figure 14: Performance comparison for serial number variants of
BMP2 and T72 at both depression angles of 17∘ and 15∘.

scheme with or without pose rectification using the same
training and testing set (all 10 classes under SOC). The SAR
images are rotated anticlockwise according to their poses. As
can be seen from Figure 15, the classification with pose rec-
tification universally outperforms the classification without
pose rectification. It is also noted that the best classification
accuracy (99.3%) is achieved by the wavelet 768 with feature
dimension of 75. These results meet our expectation that the
classification can benefit from eliminating the pose variations
in SAR images. Specifically, the rectification of poses provides
target images for classification with fewer variations.

5.4.3. Outlier Rejection Performance. To evaluate the outlier
rejection performance of the proposed method, a varying
threshold for the log-likelihood test, which is introduced in
Section 3.2, was incorporated to provide the ROC curve.
BTR70, BMP2, and T72 listed in Table 1 are involved for
classifier training and the SLICY set is involved as confusers
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Figure 16: The outlier rejection performance of the proposed
method with wavelet 768 compressed with different dimensions.

with 1168 image chips, that is, 210 chips captured at 15∘, 298
chips captured at 16∘, 386 chips captured at 17∘, and 274 chips
captured at 29∘. As shown in Figure 16, at the probability of
detection 𝑃𝑑 = 90%, the probability of false alarm for feature
dimension of 75 is 𝑃fa = 2.34%. It is clear that the proposed
method is robust at rejecting confuser targets.

5.5. ATR Performance Comparisons. The effectiveness of the
proposed ATR scheme is tested in this section. Several widely
cited methods are involved for performance comparison,
for example, the Extended Maximum Average Correlation
Height Filter (EMACH) [53], the Support Vector Machine
(SVM) classifier with Gaussian kernel [52], feature fusion via
AdaBoost with neural networks as the base classifiers [2], and

the Iterative GraphThickening (IGT) approach [24].The best
result obtained from the proposedmethod is used to compare
with other methods.

Table 8 lists the performance comparison of the men-
tioned methods under SOCs. It is noted that the proposed
method has achieved significant improvements in classifica-
tion accuracy in comparison with other methods. A majority
of the classes are correctly classified with 100% accuracy
and the rest have 𝑃cc higher than 98%, which is also much
higher than other methods. Moreover, the superiority of the
proposed method is strengthened by the fact that the average𝑃cc (99.3%) is much higher than the second highest average𝑃cc (84.8%).

Four distinct target classes are involved in the following
test: EOC-1, including 2S1, BRDM2, T72, and ZSU234, as
listed in Table 2. All of these four classes are involved in
training and testing stages. The only difference is that the
training and testing set are captured under depression angles
15∘ and 30∘, respectively. The increase in depression angle
variations introduces a bigger challenge to the classification
problem. It is noted in Table 9 that the classification accuracy
of the most of the mentioned methods is lower than 88%
under EOC-1, where the superiority of the proposed method
(higher than 96%) is obvious. Furthermore, the average
classification accuracy of the proposed method is 97.5%
which is much higher than the other listed methods.

The training dataset under EOC-2 is composed of four
different target classes, BMP2, BRDM2, BTR70, and T72,
as summarized in Table 2. This test aims at testing the
performance of the SAR ATR algorithms with significant
different in serial numbers and configurations. The testing
set has only the T72 family with five different serial numbers
and the training set is composed of all these four mentioned
classes. In addition, the training set was obtained at 17∘ while
the testing set was obtained at depression angles of both 15∘
and 17∘ as shown in Table 3. Table 10 lists the performance
comparison of the mentioned methods under EOC-2. The
improvement in classification accuracy is substantial since
the average 𝑃cc of the proposed method is 96.9% which is
much higher than the second highest 84.8%.

5.6. Performance Comparison of Variations in Target Poses.
As analysed in Section 5.4, the involvement of pose rectifi-
cation is beneficial for improving the classification perfor-
mance. In fact, a single target will exhibit different appear-
ances when it is captured under various poses. In this
section, we conduct an experiment to test the influence of
the appearance differences introduced by the pose variations.
The experimental database is almost the same as the data
listed in Table 1 except that only one single serial number of
each target is involved for training and testing (C21 for BMP2
and S7 for T72). The images for training are selected from
the training database with different sample steps of target
poses (varied from 1∘ to 7∘), where 51 images are selected for
the training of each target. For example, the poses for Step1 are 1∘, 2∘, . . . , 51∘, the poses for Step 2 are 1∘, 3∘, . . . , 101∘,
and the poses for Step 7 are 1∘, 8∘, . . . , 351∘. Additionally, we
have also investigated the possibility of training classifiers
using training databases with different sizes, for example,
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Table 8: Confusionmatrix of EMACH,method proposed in [52], method proposed in [2], IGT, and the proposedmethod tested under SOCs
(𝑃cc (%)).

Confusion matrix of EMACH, the method proposed in [52], and the proposed method
Vehicle BMP2 BTR70 T72 BTR60 2S1 BRDM2 D7 T62 ZILI131 ZSU234
BMP2 90/90/100 2/2/0 4/3/0 1/1/0 1/1/0 0/2/0 0/0/0 1/0/0 0/1/0 1/0/0
BTR70 2/3/0 93/90/100 1/3/0 0/0/0 1/0/0 1/2/0 0/0/0 2/0/0 0/0/0 0/2/0
T72 2/2/0 0/1/0 96/93/100 0/3/0 1/0/0 0/0/0 0/0/0 0/0/0 1/1/0 0/0/0
BTR60 0/2/0 1/2/0 0/1/2 95/92/98 1/0/0 0/0/0 3/3/0 0/0/0 0/0/0 0/0/0
2S1 5/5/0 6/3/0 4/2/1 2/0/0 74/81/99 3/3/0 1/2/0 2/3/0 1/0/0 2/1/0
BRDM2 3/6/1 6/8/0 3/2/0 0/1/0 1/0/0 84/79/99 2/0/0 0/3/0 0/0/0 1/1/0
D7 2/0/1 3/0/0 2/0/0 1/0/0 0/1/0 0/0/0 85/98/99 3/0/0 2/0/0 2/1/0
T62 1/1/0 1/0/0 1/0/0 1/1/0 4/0/1 0/0/0 0/0/0 86/91/99 4/4/0 2/3/0
ZILI131 2/2/0 0/1/0 1/0/0 2/0/0 0/0/0 0/0/0 0/0/0 4/0/0 88/95/100 3/2/0
ZSU234 1/0/0 0/1/0 4/0/1 2/3/0 0/0/0 0/0/0 0/1/0 1/0/0 0/3/0 92/92/99

Confusion matrix of the method proposed in [2], IGT, and the proposed method
Vehicle BMP2 BTR70 T72 BTR60 2S1 BRDM2 D7 T62 ZILI131 ZSU234
BMP2 92/95/100 2/1/0 2/1/0 0/0/0 1/1/0 2/1/0 0/0/0 0/0/0 1/1/0 0/0/0
BTR70 3/2/0 93/94/100 0/0/0 0/0/0 0/00/ 2/2/0 0/0/0 0/0/0 0/0/0 2/2/0
T72 2/2/0 1/1/0 96/96/100 1/1/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0
BTR60 2/1/0 0/0/0 2/1/2 93/97/98 0/0/0 0/0/0 3/1/0 0/0/0 0/0/0 0/0/0
2S1 3/3/0 4/4/0 1/1/1 0/0/0 87/89/99 2/0/0 0/0/0 2/1/0 0/0/0 1/2/0
BRDM2 5/2/1 3/1/0 2/4/0 0/0/0 0/0/0 85/90/99 5/2/0 0/0/0 0/0/0 0/1/0
D7 0/0/1 0/0/0 0/0/0 0/0/0 1/1/0 0/0/0 98/99/99 0/0/0 0/0/0 1/0/0
T62 1/1/0 0/0/0 0/0/0 0/0/0 0/0/1 0/0/0 0/0/0 93/95/99 3/3/0 3/1/0
ZILI131 2/2/0 2/2/0 0/1/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 94/95/100 2/0/0
ZSU234 1/1/0 0/0/0 0/0/1 1/1/0 0/0/0 0/0/0 0/0/0 0/0/0 2/2/0 96/96/99
The average 𝑃cc of these 5 methods are sequentially 88.3%, 90.1%, 92.7%, 94.6%, and 99.3%.

Table 9: Confusion matrix of EMACH, method proposed in [52], method proposed in [2], IGT, and the proposed method tested under
EOC-1 (𝑃cc (%)).

Vehicle 2S1 BRDM2 T72 ZSU234
2S1 67/74/77/78/99 15/8/5/6/0 12/9/11/9/1 6/9/7/7/0
BRDM2 17/12/15/15/2 57/66/73/76/97 19/9/5/6/1 7/13/7/3/0
T72 7/17/11/10/0 9/6/9/9/0 66/73/75/78/96 18/4/5/3/4
ZSU234 10/7/4/5/1 7/5/6/5/0 2/3/2/2/1 81/85/88/88/98
The average 𝑃cc of these 5 methods are sequentially 67.75%, 74.5%, 78.25%, 80.0%, and 97.5%.

Table 10: Confusion matrix of EMACH, method proposed in [52],
methodproposed in [2], IGT, and the proposedmethod tested under
EOC-2 (𝑃cc (%)).

Vehicle BMP2 BRDM2 BTR70 T72
T72 S7 4/5/4/5/0 8/4/6/4/2 6/4/2/3/1 82/87/88/88/97
T72 A32 9/7/5/6/0 5/5/8/3/0 5/2/3/2/0 81/86/84/89/99
T72 A62 8/7/6/5/0 6/5/5/4/1 3/6/4/4/3 83/84/85/87/97
T72 A63 13/15/11/7/0 6/6/9/5/1 11/3/4/7/2 70/76/76/81/97
T72 A64 16/9/10/11/0 4/5/5/4/2 12/13/9/6/3 68/73/76/79/94
The average 𝑃cc of these 5 methods are sequentially 76.8%, 81.2%, 81.8%,
84.8%, and 96.9%.

51 training images, 60 training images, 71 training images,
and 85 training images. Features are extracted with wavelet

768 and reduced to dimensionality of 55. The results are
illustrated in Figure 17.

It is noted in Figure 17 that as the incremental step of poses
increases, the achieved classification accuracy grows too.
More specifically, a much higher 𝑃cc of 90.3% is achieved by
employing 51 training imageswith incremental Step 7 in pose,
in comparison with a 𝑃cc of 42.9% achieved by employing 85
training imageswith incremental Step 1 in pose.Theprinciple
behind this observation is that the training datasets formed
with small pose variation steps can provide less target signal
information and thus, their content is not sufficient enough
to cover the different appearances of the targets captured
under various poses. In contrast, a much more complete
training dataset can be formed when the involved images are
capturedwith larger pose variations.The experimental results
in Figure 17 show that the best classification performance
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Figure 17: Performance comparison of training data selected with
different incremental steps of target poses.

90.3% is achieved when training with 51 images captured
using incremental Step 7 and 93.0% is achievedwhen training
with 85 images captured using incremental Step 4. Moreover,
it is quite straightforward to find that better classification
performance is always achieved when training with relatively
larger number of training images. It is worth pointing out that
only a small number of images are involved in the training
stage rather than several hundreds of them as used in the
previous tests. This is a promising result which implies that
a good classification result can be achieved even with much
less number of training images, as long as they are captured
with appropriate incremental step.

6. Conclusion

In this paper, we presented a systematic scheme for the
SAR ATR task. The proposed scheme involves three main
stages: preprocessing, feature extraction and processing, and
classifier construction. The effectiveness of involving several
preprocessing approaches (e.g., the image energy normal-
ization and the pose rectification processes) is analysed and
empirically verified. The results suggest that the involvement
of these preprocessing steps is beneficial for improving the
classification accuracy. Moreover, we proposed to expand the
feature set to provide more information for discrimination
and then eliminate the redundancy and dimensionality of the
extended feature set to form a more compact and efficient
feature set. Finally, the discriminative trees are learned as
the base classifiers and combined to construct a strong clas-
sifier by using the Real-AdaBoost algorithm. The proposed
method is evaluated with the MSTAR dataset under various
operating conditions. Experimental results demonstrate that
the proposed method outperforms traditional methods, for
example, EMACH, SVM,NN, and IGT.The advantages of the
proposed method give credit to the reduction of variations
in target images, the improvement of feature efficiency, the

elimination of redundancy in feature sets, and the excellent
generalization capability of the combined strong classifier.
Moreover, we have tested the classification performance of
the classifiers trained with different combinations of target
poses. Experimental results show that a classifier trained with
training images covering large variations of target poses can
produce good classification result even with limited number
of training images.
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