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Introduction
Essential tremor (ET) is a common movement disorder, 
which is mainly characterized by bilateral tremor (postural 
and/or kinetic) in the upper limbs, but can also spread to 
other parts of the body (e.g. jaw, head) [1, 2]. Phenotypically, 
ET is a tremor manifesting during voluntary movements, 
with a frequency of 4–12-Hz, and usually manifests as 
mildly asymmetric [3]. Alongside the motor manifestations, 

non-motor symptoms (e.g. REM-sleep behavior disorder, 
cognitive dysfunction, sensory abnormalities, dysautonomic 
symptoms, depression) may also be present [4–8].

ET compromises the commonest movement disorder of 
adulthood, while its onset may span from childhood to late 
ages [9]. Few environmental factors have been implicated 
as possible risk factors for ET [10–13]. Thus, the consump-
tion of b-carboline alkaloid, caffeine and ethanol, harmane, 
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exposure to pesticides, lead and other heavy metals, are all 
considered as potential risk factors for ET [10, 11, 13]. On the 
other hand, antioxidants and smoking may protect against 
ET [10, 11, 13]. However, the most widely established risk 
factors for ET are considered the family history of ET and 
aging [3, 12].

The exact pathophysiological processes that lead to ET are 
still poorly understood [14]. Despite the possible contribu-
tion of specific environmental factors in ET development, 
also genetic factors probably contribute to ET risk. The sig-
nificance of genes to ET risk has been demonstrated via the 
identification of genetic variants from familial studies [15, 
16], studies in twins [17], and the emerged variants derived 
from candidate gene association studies (CGASs) [18] and 
genome wide association studies (GWASs) [19–21].

In this review article we discuss the available scientific 
data regarding the role of genetics in ET, by giving emphasis 
to the results from CGASs. Moreover, we discuss the main 
findings from GWASs. We also performed meta-analyses 
for the most examined genetic variants. Our aim is to shed 
some light on which variants may predispose to ET.

Methods -Study identification and selection
PubMed was searched for eligible studies written in 
English. We searched for articles from the inception of 
PubMed up to July 2019, for studies in humans, regard-
ing ET and genetic variants. The terms used were “essen-
tial tremor” and “polymorphisms” as free words. The com-
plete search algorithm can be accessed in the Supporting 
File 1. PubMed was searched for the last time on July 20th, 
2019. Additionally, reference lists of retrieved articles were 
scanned for supplementary eligible articles. The flowchart 
with the selection process of the included studies is depic-
ted in Figure 1. We included published articles between 
1997 and 2019.

From each study, we extracted the following data when 
possible: 1) author, 2) year of publication, 3) ethnicity of 
the population, 4) numbers of cases and controls, 5) age 
at  disease onset, 6) mean age of examination, 7) sex dis-
tribution, 8) genotyped variants, 9) family history of 
the participants, 10) diagnosis assessment, 11) correc-
tion for multiple comparisons, and 12) assessment of 
 Hardy-Weinberg Equilibrium (HWE).

Figure 1: Flow chart presenting the selection of the studies included in the current review.
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For the LINGO1 rs9652490, LINGO1 rs11856808, 
SLC1A2 rs3794087, STK32B rs10937625 and PPARGC1A 
rs17590046 we performed meta-analyses. We included 
data from CGASs. Data from GWASs (neither from discovery 
nor from follow-up phases) were not included. The hetero-
geneity was calculated using the Cochran’s Q and I2 index. 
In case of high heterogeneity (PQ < 0.10 and/or I2 > 75%), 
the random-effects model [22–24] was applied. Otherwise, 
the fixed-effects model [25] was used. Publication bias was 
estimated with Egger’s test [26] when possible, with a p < 
0.10 as suggestive of publication bias. The magnitude of 
association was calculated for the allelic model using the 
Review Manager (RevMan) Version 5.3 software (http://
tech.cochrane.org/revman), with p < 0.05 as the statistically 
significant threshold. Allele counts were recalculated from 
data given as percentages, if necessary. For the analysis for 
LINGO1 rs9652490 and the studies of Vilarino-Guel et al. 
[27, 28], we included data only from the larger study [28], in 
order to avoid possible overlap. We also conducted a sensit-
ivity analysis for LINGO1 rs9652490 by omitting one study 
at a time to examine the effect of each individual study.

Results and Discussion
Literature Review
Seventy four studies published between 1997 and 2019 were 
included in the current review. Baseline characteristics from 
the studies regarding LINGO1, LINGO2, LINGO4, SLC1A2, 
STK32B, PPARGC1A, CTNNA3, DRD3, ALAD, VDR, HMOX1, 
HMOX2, LRRK1, LRRK2, GBA, SNCA, MAPT, FUS, CYPs, 
IL17A, IL1B, NOS1, ADH1B, TREM2, RIT2, HNMT, MTHFR, 
PPP2R2B, GSTP1, PON1, GABA receptors and GABA trans-
porter, HS1BP3, ADH2, hSKCa3 and CACNL1A4 genes, and  
ETM genetic loci, are accessible in Supporting File 2. Gene, 
chromosome position, possible mechanism of function, 
total number of studies (with comparison between ET cases 
and Controls), number of studies with association, number 
of studies without association and sample characteristics for 
the most examined genes (LINGO1, DRD3, SLC1A2, LRRK2, 
FUS/TLS, SNCA, MAPT, HMOX1, HMOX2) for association 
with ET, are presented at Table 1.

1. LINGO (LINGO 1, LINGO 2 and LINGO 4) genes
1.1. LINGO 1 (Leucine rich repeat and Immunoglobulin-like 
domain-containing protein 1)
LINGO1 is thought to be implicated in neurite outgrowth, 
axonal regeneration, regulation of the myelination and 
neuronal survival [19], while its inactivation seems to protect 
from degeneration and enhance the survival of the neurons 
[3, 29, 30]. Published data indicate that defective function 
of LINGO1 may lead to Purkinje cell loss and axonal dysfunc-
tion, and therefore, possibly to ET [19, 31, 32].

The rs9652490 and the rs11856808, located in intron 
3 across the LINGO1 gene, were the two first variants that 
emerged as potential risk factors for ET through the first 
GWAS conducted in patients with ET [19]. In greater detail, 
the G allele of the rs9652490 was associated with ET in the 
initial discovery analysis of an Icelandic population [Odds 

Ratio (OR) = 1.63, p = 3 × 10–7], and in the combined sample 
of follow-up, which consisted of Austrian, German, American 
and Icelandic datasets. Most importantly, it reached the gen-
ome-wide significant association threshold in both of the 
analyses, in the discovery and the follow-up data-sets. The 
association of the rs9652490 and ET was further replicated 
in a few CGASs, in North American Caucasians [27, 28] [for 
the major allele (p = 0.014, OR = 2.2) [27] and (p = 0.026, 
OR = 0.63 for recessive model) [28]], North Americans (Non-
Hispanic whites) (in patients with ‘definite’ or ‘probable’ ET 
(p = 0.03, OR = 1.41) [31], Asian (p = 0.00036, OR = 2.59) 
[33], German (p = 0.009, OR = 1.61) [20] and French (p = 
0.046, OR = 1.70) [20] samples. However, the positive results 
were not reproduced in Spanish [34], Chinese [35, 36], Asian 
[37], Latvian [38] and French-Canadian [39] populations.

The other variant that emerged as a possible risk factor 
for ET through the GWAS from Stefansson et al., was the T 
allele of the rs11856808. It was associated with ET in the ini-
tial discovery analysis of the Icelandic population (OR = 1.51, 
p = 3 × 10–6), but in the follow-up sample this association 
with ET was not revealed after adjustment for the rs965249 
[19]. Overall, the results from the CGASs, following this 
GWAS, failed to replicate these results suggesting that 
rs11856808 is not a major genetic risk factor for ET [31, 34, 
35, 38, 39], as it was found to confer susceptibility to ET only 
in German and French populations [20].

Apart from rs9652490 and rs11856808, some other 
LINGO1 variants have also been associated with ET. 
Rs2271397 (p = 0.017, OR = 2.139), ss491228439 (p = 0.038, 
OR = 1.812) and the A465-C474-C714 haplotype (p = 0.041, 
OR = 1.8) were associated with increased ET risk in females of 
a Chinese Han population [36]. Rs7177008, rs13313467 and 
rs8028808, were associated with early-onset ET (p = 0.028, 
OR = 1.52; p = 0.0238, OR = 1.54; and p = 0.0391, OR = 1.55, 
respectively) in North Americans (Non-Hispanic whites) [31], 
while rs4886887 (OR = 1.83, p = 0.018 for recessive model), 
rs3144 (OR = 1.48, p = 0.03 for recessive model), rs8028808 
(OR = 0.49, p = 0.008 for recessive model), and rs12905478 
(OR = 0.36 p = 0.02) were associated with ET, with rs907396 
influencing age at onset of ET (p = 0.019), in North America 
Caucasians [28]. Finally, rs8030859 was associated with ET 
in Germans (OR = 1.72, p = 0.00105) [40].

1.2. LINGO 2 (Leucine rich repeat and Immunoglobulin-like 
domain-containing protein 2)
The LINGO2 protein presents high homology (over 50%) 
to LINGO1, but constitutes a much less characterized para-
log [28, 41]. Despite the unknown function of LINGO2, it is 
considered to share some functions with LINGO1 and was 
therefore a target in ET CGASs. However, based on studies 
in mice, LINGO2 appears to be restricted to neuronal tissue 
[42], a feature that may differentiate it from the LINGO3 and 
the LINGO4 paralogs [28].

Two studies so far have examined the effect of LINGO2 in 
ET, concerning a few variants [28, 41]. Of these, rs10812774 
and rs7033345 have been shown to influence the age at 
onset of ET, as carriers of these variants appear to have an 
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earlier age at onset by 4 to 5 years in a study on Caucasians 
from North America [28], while they were also associated 
with ET (OR = 1.50, p = 0.04 for rs7033345 and OR = 1.56, 
p = 0.01 for rs10812774 in recessive model) in Asians from 
Singapore [41]. Moreover, the rs1412229 has been associ-
ated with ET (OR = 0.72, p = 0.015 in recessive model) [28].

1.3. LINGO 4 (Leucine rich repeat and Immunoglobulin-like 
domain-containing protein 4)
The LINGO4 protein is another paralog of the LINGO1 pro-
tein, with an amino acid resemblance to LINGO of almost 
50% [43]. One study has so far examined the role of two 
variants [the T>A transition (rs61746299), driving the amino 
acid change Thr444Ser, and the C>T transition (rs1521179), 
located 12 bp downstream to the end of coding region) 
across LINGO4 gene variants in Chinese Han patients from 
Mainland China, failing to reach statistical significance, 
though [44].

2. SLC1A2 (Solute carrier family 1 – glial affinity 
glutamate transporter-member 2)
The solute carrier family 1 – glial affinity glutamate trans-
porter-member 2 (SLC1A2) gene, [also known as Excitatory 
amino acid transporter 2 (EATT2) or glutamate transporter 1 
(GLT-1)], encodes SLC1A2, a member of the group of solute 
transporter proteins [45]. Elevated levels of glutamate in 
the synaptic cleft and extracellularly are neurotoxic and 
have been associated with neurodegeneration. Defective 
function of SLC1A2 can lead to increased glutamate levels, 
and consequently to neurotoxicity [46]. A relation between 
SLC1A2 and ET can be found when one examines the patho-
physiology of other factors in ET; the fact that ethanol 
relieves ET, while it increases the SLC1A2 expression, high-
lights the protein’s importance, as well the elevated expres-
sion of SLC1A2 in the inferior olive where are produced the 
oscillations responsible for the tremor [6, 20, 47–49].

The second GWAS exploring the genetics of ET in parti-
cipants from Germany, Austria, and Denmark, reported that 
the rs3794087 across the SLC1A2 was associated with ET 
(OR = 1.46, p = 6.95 × 10–5) [20]. The statistical significance 
was evident in both stages of the GWAS, as well in the sub-
group analysis in ET patients with a ‘definite’ diagnosis [20], 
revealing the robustness of the results.

Since then, 5 further GCASs attempted to replicate the find-
ing of this GWAS, in China, North America, Taiwan and Spain 
[50–54]. Based on these results, the SLC1A2 rs3794087 A 
allele was more frequent in ET patients compared to controls 
in Taiwanese [53] and Chinese groups [51]. Based on the pre-
vious reports, it is however rather unlikely that the SLC1A2 
rs3794087 consists a major risk factor for ET.

3. STK32B (serine/threonine kinase 32B), PPARGC1A 
(PPARG Coactivator 1 Alpha), CTNNA3 (Catenin Alpha 3)
The third GWAS (two-stage) conducted so far, exploring the 
genetic susceptibility of ET included 2807 patients with 
ET and 6441 controls of European ancestry. Two markers, 
rs10937625 (OR = 0.77, p = 7.36 × 10–4), located in the 

serine/threonine kinase STK32B gene, and rs17590046 (OR 
= 0.75, p = 6.81 × 10–4) in the transcriptional coactivator 
PPARGC1A gene, were associated with ET [21]. Moreover, 
three markers, namely rs12764057 (OR = 1.17, p = 1.19 × 
10–8), rs10822974 (OR = 1.16, p = 1.65 × 10–7) and rs7903491 
(OR = 1.10, p = 2.49 × 10–7), in the cell-adhesion molecule 
CTNNA3 gene were found to be statistically significant in 
the combined analysis of both stages [21]. The C allele of 
rs10937625 of the STK32B gene was named a protective 
factor and the G allele of rs7903491 of the CTNNA3 gene 
a risk factor for ET in Chinese [55], while the PPARGC1A 
gene was also associated with ET in Asians [56]. However, 
other studies failed to replicate the results for STK32B 
(rs10937625), PPARGC1A (rs17590046) and CTNNA3 
(rs12764057 and rs10822974) [55, 56].

4. DRD3 (Dopamine D3 receptor), ETM1, ETM2 and 
ETM3 loci
The rs6280, (also known as 312G>A and Ser9Gly) represents 
a non-synonymous point mutation, where serine is replaced 
by glycine (Ser9Gly), in position 9 of the N terminal part of 
the receptor. The Ser9Gly mutation affects the extracellular 
N-terminus of the DRD3, which does not appear to parti-
cipate in receptor ligand binding [57], a possible explana-
tion for the lack of reproducibility of positive associations 
between the Ser9Gly DRD3 variant and ET.

Thers6280, was considered a candidate genetic risk factor 
for ET because it is mapped in chromosome 3q13, in the 
ETM1 locus [58], a locus that emerged through a genome 
wide linkage scan in Icelandic families (ETM1; OMIM: 
190300) [59]. Indeed, the linkage peak markers of the ETM1 
locus, namely D3S1278 and D3S1267, are located 1 and 
10 Mb far from the DRD3 gene, respectively [59]. Another 
reason for the DRD3 appropriateness as a candidate genetic 
risk factor for ET, was the fact that DRD3 has been previously 
associated with tardive dyskinesia, phenotypic appearance 
of Parkinson’s Disease (PD), and with its expression reported 
decreased in patients with PD [60–63].

Following this train of thought, in 2006, Jeanneteau et 
al., reported that rs6280 was associated with risk and age 
at onset of ET in a Caucasian population [63] while posit-
ive associations were also found in a French sample [57]. 
The latest case-control study involved a Spanish population, 
where rs6280 was associated with risk and age at onset of 
ET, as well as with the risk for voice tremor [58]. Despite the 
robustness of the results even after a pooled meta-analysis, 
the magnitude of the association remained weak, suggesting 
that the association between rs6280 and ET may represent 
a false positive observation [58], and that rs6280 does not 
represent a strong risk factor for ET. The latter could partly 
explain the lack of replication of the association between this 
marker and ET in Latvian, Russian, Belarusians, Ukrainians, 
Polish, Lithuanians [64], Asians [65], Italians [66], Germans, 
Danish, French [67], and overall Caucasians [68].

Apart from the ETM1 locus, ETM2 (OMIM: 602134) [69] 
and ETM3 (OMIM: 611456) [70] have also been considered 
as causal genetic factors for ET in a genome wide linkage 
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scan, without though, as in case of ETM1 locus, the genes 
and the causal mutations for both, ETM2 and ETM3, loci 
being identified [3]. Inashkina et al. performed CGAS gen-
otyping short tandem repeat (STR) markers located within 
ETM1 and ETM2 loci in Latvian patients with ET, and the 
biggest differentiation of frequencies was found for allele 
171 of the marker D2S220 (OR 0.13, 95% CI 0.02–1.03, 
P = 0.05) [64]. Zahorakova et al. performed a genetic ana-
lysis of three polymorphic loci (etm1231, etm1234, and 
etm1240) located within the ETM2 candidate region in 61 
Czech patients with a family history of ET and 68 healthy 
controls, but the allele frequencies did not significantly dif-
fer between cases and controls [71]. Therefore, the import-
ance of these polymorphisms is still hard to assess, as they 
have yet to make an appearance in other studies.

5. ALAD (d-aminolevulinic acid dehydratase), VDR 
(Vitamin D Receptor), HMOX1 (heme oxygenase 1) and 
HMOX2 (heme oxygenase 2)
The d-aminolevulinic acid dehydratase (ALAD) catalyzes the 
second step in heme synthesis, leading to the production of 
cobalamin-monopyrrole-porphobilinogen [72, 73], and the 
ALAD gene has been shown to influence the toxicokinetics 
of lead [74]. ALAD gene has one polymorphism, giving way 
to two codominant alleles, ALAD-1 and ALAD-2 [74]. The 
non-synonymous coding variant rs1800435 (also known 
as K59N and G177C), creates the ALAD-2 variant allele [72] 
and carriers of the ALAD-2 variant may be more susceptible 
to lead toxicity [74]. To sum up, the ALAD gene may influ-
ence heme synthesis and lead toxicity. This is of interest in 
the context of ET, because lead intoxication produces a syn-
drome involving tremor and lead has been named an envir-
onmental susceptibility factor for ET [75].

The vitamin D receptor (VDR) gene, encodes the vitamin 
D receptor, and it seems that genetic variability of VDR 
may also affect lead toxicity [73]. On the other hand, the 
heme oxygenase (HMOX) enzyme is also involved in heme 
catabolism. There are two isozymes, the inducible heme 
oxygenase-1 (HMOX1) and the constitutive heme oxy-
genase-2 (HMOX2), encoded by the HMOX1 and HMOX2 
genes respectively [76]. As ET and PD share many features, 
and variants across VDR, HMOX1, and HMOX2 genes have 
been reported to confer susceptibility to PD [77, 78], and 
as lead exposure has been associated with PD [79], it was 
reasonable that variants across these genes could be targets 
for CGASs regarding ET.

Regarding the ALAD gene, the odds of ET were increased 
in individuals who carried an ALAD-2 allele and had an 
elevated blood lead concentration, when compared to indi-
viduals with only elevated blood lead concentration [74]. In 
a study in Caucasian Spanish, the ALAD rs1800435 poly-
morphism was not associated with familial essential tremor 
(FET) risk, but its interaction with the HMOX2 rs1051308 
polymorphism could be weakly associated with the FET [80]. 
HMOX1 (rs2071746) and HMOX2 (rs4786504, rs1051308) 
did not associate with ET in the Chinese [18], while the 

allelic frequencies of rs2071746T (OR = 0.76, p = 0.015) and 
rs1051308G (OR = 0.71, p = 0.004) were lower in Spanish 
white ET patients [76].

Regarding the VDR gene, the TT genotype of the 
rs2228570 was associated with sporadic essential tremor 
(SET) (p = 0.033; OR = 0.453 and similarly, the C allele 
was associated with an increased risk of SET (p = 0.033; 
OR = 2.207) [81], while the rs731236 did not associate with 
ET in Chinese [18].

6. LRRK2 (Leucine-rich repeat kinase 2), LRRK1 
(Leucine-rich repeat kinase 1), SNCA (non 
A4 component of amyloid precursor/Alpha-
synuclein), GBA (Glucocerebrosidase) and MAPT 
(microtubule-associated protein tau)
A number of PD/parkinsonism related genes [Leucine-rich 
repeat kinase 2 (LRRK2), Alpha-synuclein (SNCA), Gluco-
cerebrosidase (GBA), microtubule-associated protein tau 
(MAPT)] have been examined for possible association with 
ET. LRRK2 is a large multi-domain protein kinase, mainly loc-
alized in the cytoplasm [82]. Pathogenic variants of LRRK2, 
may lead to elevated LRRK2 kinase activity, which appears 
to mediate neuronal toxicity [82] and mutations across the 
LRRK2 gene have also been incriminated for familial PD 
[83]. Moreover, the phenotypic appearance of PD patients 
with mutations on LRRK2 could be initially resembled to ET 
phenotype [84]. Due to all these, LRRK2 has been included as 
a target in ET CGASs. The leucine-rich repeat kinase 1 (LRRK1) 
gene is a paralog of LRRK2, while many variants have been 
linked to PD as well [85]. The LRRK2 R1628P variant has 
previously been associated with ET. More precisely, carriers 
of R1628P appeared to have a two-fold increased risk of ET 
(p = 0.0035, OR = 2.20) in a cohort consisting mainly of Asi-
ans (90%) [86]. However, other examined variants of LRRK1 
and LRRK2 genes, in Asian and Non-Hispanic whites cohorts 
[84, 87–89], failed to present any association with ET.

SNCA constitutes the main component of Lewy bodies, 
neurites and glial cytoplasmic inclusions, which are con-
sidered as the key pathological feature in PD and multiple 
system atrophy (MSA) [90]. The NACP-Rep1 polymorphism 
is located in the promoter region of the SNCA gene [90–92]. 
Variants in this locus of SNCA have been shown to be implic-
ated in the regulation of the SNCA gene expression [90] 
and the 263bp allele of the NACP-Rep1 was encountered 
more frequently in ET patients than healthy controls [90]. 
However, two additional studies regarding SNCA variability 
association and ET failed to provide any association [91, 92].

The GBA gene encodes the enzyme glucocerebrosidase, 
which is the causative gene for Gaucher disease, a lysosomal 
storage disease with an autosomal recessive mode of inher-
itance [93]. The L444P mutation of the GBA gene represents 
the commonest pathogenic mutation for Gaucher disease in 
China [94]. While the N370S, R496H, E326K and the R44C 
mutations have been identified in ET cases [89], studies so 
far, regarding ET and GBA, have not provided evidence that 
the GBA gene is a major risk factor for ET [89, 95].
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Mutations in the MAPT gene cause frontotemporal 
dementia with parkinsonism linked to chromosome 17 
(FTDP- 17), and additionally, the H1 haplotype of MAPT gene 
has been associated with increased risk for disorders with 
a-synuclein pathology [96–98]. Three studies have been so 
far conducted concerning ET and variants across the MAPT 
gene [99–101], but only MAPT H1 was associated with ET, 
among North American Caucasians [99].

7. FUS/TLS (Fused in sarcoma/Translated in 
liposarcoma)
Pathogenic mutations in Fused in sarcoma/Translated in 
liposarcoma (FUS/TLS) are causing factors for amyotrophic 
lateral sclerosis (ALS) (4% of familial cases and <1% of 
sporadic ALS cases) [73, 102] and frontotemporal lobar 
degeneration (FTLD) [103].

Merner et al. detected the p.Arg216Cys variant in two ET 
cases (one familial and one sporadic), and the p.Pro431Leu 
in a case with familial ET [104]. The non-pathogenic muta-
tion p.G174_G175del in one ET patient and two healthy 
controls, and a novel p.R377W in one patient that had pos-
itive family history of disease, were also identified [105]. 
Moreover, the Met392Ile in the FUS gene has been repor-
ted to increase susceptibility to ET among a Chinese sample 
[106]. Ortega-Cubero et al., detected a few FUS gene variants 
in a Spanish cohort, none of them found associated with 
ET, however, when compared to controls from the 1000 
Genomes project [107]. Finally, three other studies repor-
ted negative results [108–110]. Therefore, the bibliographic 
data lead us to believe that rare variants across the FUS gene 
may compromise a rare cause of monogenic ET [111].

8. CYPs (Cytochromes P450) genes
Cytochromes P450 (CYPs) consist a large family of enzymes 
that oxidize steroids, fatty acids, xenobiotics, drugs, pesti-
cides, and heavy metals, mainly aiming to the clear the 
organism from various compounds, while also particip-
ating in hormone synthesis and breakdown [112]. The 
human CYP superfamily contains over 100 functional genes 
and pseudogenes, while CYP genetic variability appears 
to have an effect to the risk of various diseases and to 
pharmacogenetics [113, 114].

Primidone is a drug that appears to be effective, to some 
degree, in the management of ET [115]. Primidone is partly 
metabolized by CYP2C19 [113]. Homozygotes for the defect-
ive alleles are considered as poor metabolizers, while car-
riers of more functional alleles as extensive metabolizers 
[114]. Heterozygosis for CYP2C19*1/CYP2C19*2 has been 
associated with the risk for ET in Caucasians [114] and 
genetic alternations in CYP2C8 and CYP2C9 genes (which 
are in high genetic linkage with the CYP2C19 gene, espe-
cially among Caucasians) [116], have further been associated 
with the risk for ET [114, 116].

The CYP2D6 (Cytochrome P450 2D6) gene appears to 
have the largest phenotypical variability among the CYP 
genes [117]. Genetic status regarding CYP2D6 gene affects 

the metabolism of the debrisoquine, as carriers of defect 
alleles poorly metabolize debrisoquine, in contrast to the 
effective metabolizers, who carry functional alleles [117]. As 
the CYP2D6 gene has been associated with PD, Agunez et 
al. genotyped 91 ET patients and 258 controls for 8 CYP2D6 
variants, but failed to detect any association [118].

9. Other genes
Polymorphisms in genes associated with Restless legs syn-
drome (RLS) [rs8193036 of interleukin-17A gene (IL17A), 
rs1143643, rs1143634, and rs1143633 of interleukin-1B 
(IL1B) gene, rs693534 and rs7977109 of nitric oxide syn-
thase 1 (NOS1) gene and rs6413413 and rs1229984 of 
alcohol dehydrogenase (ADH1B) gene] have been examined 
for possible association with ET [18]. Solely rs1143633 of 
IL1B was associated with the risk of ET after adjusting for 
age and gender (recessive model) and after multiple com-
parisons correction (OR = 2.63, p = 0.002) [18].

The Triggering Receptor Expressed on Myeloid cells 2 
(TREM2), coded by the TREM2 gene [119], is a transmem-
brane signaling protein, pairing up with Tyrosine Kinase-
binding protein (TYROBP/DP12), and is involved in innate 
immune system functions such as inflammation, prolifera-
tion and phagocytosis [120]. The R47H (rs75392628) is the 
most extensively studied genetic variant across the TREM2 
gene, which results in reduced signaling, lipoprotein uptake 
and binding, and surface uptake [120, 121]. The rs75392628 
has been associated with Alzheimer’s disease, sporadic ALS, 
the logopenic variant of primary progressive aphasia, and 
frontotemporal dementia- behavioral variant [121]. In 2015, 
based on the neurodegenerative hypothesis, Ortega-Cubero 
et al. found an association between rs75392628 and ET in a 
Spanish population (OR = 5.97, p = 0.042), without replica-
tion though [122].

Another variant that has been associated with ET is 
rs12456492 of another PD related gene, the Ras-like without 
CAAX 2 (RIT2) [123]. Additionally, the homozygosity for 
the missense variant (rs11558538) 105Thr genotype of the 
Histamine N-Methyltransferase (HNMT) gene was found to 
be more frequent in Caucasian Spanish ET patients [124], 
but not in Caucasian ET patients from North America [125]. 
The 677T, 1298C alleles, the T677T and T677T/A1298A 
genotypes, and the C677C/C1298C compound genotypes 
of methylenetetrahydrofolate reductase (MTHFR) gene [126], 
were also associated with ET [127]. Finally, the proportion of 
subjects carrying rare short (CAG)5–7 alleles of the Protein 
Phosphatase 2 Regulatory Subunit Bbeta (PPP2R2B) gene was 
higher in an ET patient cohort [4/132 (3.0%), p < 0.001] 
when compared to controls [1/625 [(0.2%)] [128].

Moving on, the rs1695 of the Glutathione S-Transferase 
Pi 1 (GSTP1) gene was significantly more frequently 
encountered in individuals with ET exposed to pesti-
cides when compared to non-exposed patients [129]. The 
non-synonymous functional coding variants rs662 (Q192R) 
and the rs854560 (L55M) of paraoxonase-1 (PON1) gene 
[130], [which encode the homonymous serum calcium 
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dependent esterase enzyme which mainly hydrolyze the 
active metabolites (oxons) of some organophosphate 
pesticides such as diazinon, parathion and chlorpyrifos)] 
[131], have not been associated with ET. Negative associ-
ation studies between ET and gamma-aminobutyric acid 
A receptors (GABRA) [132–134], gamma-aminobutyric acid 
receptor rho genes [GABRR1, GABRR2, and GABRR3] [135], 
and GABA transporter genes [133], and the a A265G vari-
ant in the HS1 binding protein 3 (HS1BP3) gene [136], (a 
gene that had been previously found in families with ET 
[137]). Finally, there is no indication that the alcohol dehyd-
rogenase 2 (ADH2) [138], the human small conductance cal-
cium-activated potassium channel (hSKCa3) and the calcium 
voltage-gated channel subunit alpha1 A (CACNL1A4) genes 
rank among the ET genetic risk factors [139].

Meta-analyses
There was no indication of publication bias (p > 0.10 for 
Egger’s test). A marginal association was observed for the 
STK32B rs10937625 (fixed model OR: 0.80; 95%CI: 0.65–
0.99, pz = 0.04) [27, 28]. The results of the meta-analyses 
(number of included studies, I2, PQ, applied model, OR, 
95% CI, p-value) regarding LINGO1 rs9652490, LINGO1 
rs11856808, SLC1A2 rs3794087, STK32B rs10937625 and 
PPARGC1A rs17590046 are summarized in Table 2. Forest 
plots for the overall analysis are depicted in Figure 2. In 
the sensitivity analysis the pooled ORs (95% CIs) ranged 
from 1.04 (95% CI: 0.95–1.14) to 1.16 (95% CI: 0.99–1.36). 
After omitting each study one at a time for the LINGO1 
rs9652490, a marginal trend for association was revealed 
when either the study of Lorenzo-Betancor [34] (random 
model OR: 1.16; 95%CI: 0.99-1.35, pz = 0.06) or the one 
of Vilarino-Guell [28] (random model OR: 1.16; 95%CI: 
0.99–1.36, pz = 0.06) was omitted. Results from sensitivity 
analyses are presented at Table 3, while the forest plots are 
accessible at Supporting File 3.

A few meta-analyses concerning the role of genetic variants 
at ET have been conducted [34, 50, 58, 140–143]. Regarding 
LINGO1 rs9652490 and LINGO1 rs11856808, previous 
meta-analyses have reported association with ET [34, 141, 
142]. The lack of the association in our meta-analysis it may 
be due the fact that we did not include data (neither from 
the discovery phase nor from the follow-up) from the GWAS 
from Stefansson et al. [19]. It also could be attributed to the 
high heterogeneity (I2 = 58%, PQ = 0.01) that was observed 
in the current meta-analysis. For the SLC1A2 rs3794087 our 
results are in accordance with previous meta-analyses [50, 
140, 142], that failed to report any association, despite the 
fact that we did not used the GWAS from Their et al., [20] 
and we also include data from Ross et al. [54]. Finally, the 
marginal association between STK32B rs10937625 and ET 
should be interpreted with caution as the analysis based on 
only two studies in Asian populations.

Conclusions
In the current review, we thoroughly reviewed 74 articles 
regarding genes and genetic loci that confer susceptibility 
to ET. Based on our results, over 50 genes/genetic loci have 
been examined for possible association with ET. Results 
from our meta-analyses suggest that LINGO1 rs9652490 
and STK32B rs10937625 may influence, to some extent, ET 
susceptibility. However, despite the considerable number of 
studies that have been conducted and the significant effort 
made in order to identify genes of ET, consistently repeated 
results have yet to appear.. These could be attributed, to 
some extent, to diagnostic difficulties (as the diagnosis 
is based on clinical evaluation) [144–150], heterogeneity 
among ancestry in studies, ethnicity, variability of the power 
of the sample sizes, different statistical and methodological 
approaches among studies, and other confounding factors.

Our study has some limitations. Firstly, we included stud-
ies without performing any quality assessment, in order 

Table 2: Results from meta-analyses of the LINGO1 rs9652490, LINGO1 rs11856808, SLC1A2 rs3794087, STK32B 
rs10937625and PPARGC1A rs17590046 for association with ET.

Gene Polymorphism Number of 
studiesRef.

Population Heterogeneity Meta-analysis 
model

Test for overall effect

I2 PQ OR (95% CI) P-value

LINGO1 rs9652490 10 [28, 31, 
33–35, 37–40]

Mixed 58% 0.01 Random 1.12 (0.97–1.30) 0.11

LINGO1 rs11856808 7 [31, 34, 35, 
38–40]

Mixed 53% 0.05 Random 1.06 (0.91–1.24) 0.43

SLC1A2 rs3794087 6 [50–54] Mixed 67% 0.01 Random 0.95 (0.77–1.16) 0.60

STK32B rs10937625 2 [55, 56] Asian 61% 0.11 Fixed 0.80 (0.65–0.99) 0.04

PPARGC1A rs17590046 2 [55, 56] Asian 59% 0.12 Fixed 0.79 (0.61–1.03) 0.09

ET, essential tremor; LINGO1, leucine-rich repeat and lg domain containing nogo receptor-interacting protein 1; SLC1A2, solute carrier 
family 1 member 2; PPARGC1A, Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-Alpha; RIT2, Ras like without CAAX 
2; STK32B, serine/threonine kinase 32B; OR, odds ratio; CI, confidence interval.
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to present the most accurate data possible. Moreover, the 
possibility that some eligible studies failed to be obtained 
through our search strategy is unlikely but cannot com-
pletely be excluded. Finally, the current review would have 
more robustness if more family, twin and whole exome 
studies regarding ET had included.

In view of the former considerations, collaborative stud-
ies with adjustment for other possible ET confounders (e.g. 
consumption of b-carboline alkaloid, caffeine and ethanol, 
 harmane, exposure to pesticides, lead and other heavy 
metals, antioxidants, smoking and aging among others) are 
needed. In this way, the pathophysiological mechanisms of 

Figure 2: Forest Plots presenting the results from meta-analyses.
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ET and the net effect of the genetic and environmental con-
tribution to this entity could be revealed.
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