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ABSTRACT Here, we report the complete nucleotide sequence of Chrysosporum
ovalisporum UAM-MAO, a filamentous, cylindrospermopsin-producing cyanobac-
terium involved in bloom forming in freshwater systems worldwide. It was isolated
from an artificial pond in Madrid, Spain. The genome sequence contains 336 contigs,
consisting of 7,478,035 bp and 2,851 putative protein-coding genes.

The development of toxic harmful algal blooms is frequently correlated with climate
change and eutrophication, in which cyanobacteria are significant, since a high

concentration of nitrogen and phosphorous contribute to the massive proliferation of
toxic cyanobacteria in water reservoirs (1). Cyanobacteria are organisms producing a
great number of secondary metabolites with biological activity, including toxic prod-
ucts denominated cyanotoxins, which are common pollutants in freshwater systems.
Among them, cylindrospermopsin (CYN), a potent alkaloid and protein synthesis in-
hibitor, is of increasing concern due to the growing number of detections reported
worldwide in the last few years (2). Various cyanobacterium species have been identi-
fied as CYN producers, and Chrysosporum ovalisporum is one of them. This bacterium
has an invasive behavior and is becoming an important health hazard because most
strains are toxic (3). The gene clusters (cyr and aoa) involved in CYN synthesis have
been completely described in several cyanobacteria (4, 5), showing several rearrange-
ments in gene order and different flanking regions.

Chrysosporum ovalisporum (formerly Aphanizomenon ovalisporum) strain UAM-MAO
was isolated from an artificial pond in Juan Carlos Park, Madrid, Spain, during a bloom
formation. The production of CYN has been detected, and the aoaA, aoaB, and aoaC
gene sequences and expression have been characterized (6, 7). DNA was extracted
following mechanical disruption in cetyltrimethylammonium bromide (CTAB) buffer
and treatment with proteinase K and lysozyme. A MiSeq paired-end genomic library
was prepared and sequenced on an Illumina MiSeq platform (Parque Científico de
Madrid, Spain). The reads were processed by Prinseq, and a de novo assembly was
performed using SPAdes (8). Complementary metrics were examined by applying
QUAST (9) to complete the annotation of the full genome using the BG7 system (10).
Bioinformatic analysis revealed that the genome of UAM-MAO is approximately 7.47
Mbp in size, distributed in 336 contigs (�1,000 bp), with a GC content of 50.39%. The
annotation identified 2,851 coding sequences. Furthermore, studies of the UAM-MAO
cyr gene cluster have been done, bearing a nucleotide sequence (up to 96% identity)
similar to those of to Aphanizomenon sp. strain 10E6 (4) and Rhaphidiopsis curvata (5),
but their genes are arranged in a different manner. In addition, secondary metabolites
and other toxin biosynthesis genes were predicted by antiSMASH (11) using nonri-
bosomal peptide synthetase (NRPS) and/or polyketide synthase (PKS) gene identi-
fication.

The availability of this genome may allow for a greater understanding of gene
diversity and evolution within cyanobacterium organisms; also, it will improve our
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knowledge of the cyr cluster gene organization, as well as help to predict the regulation
of cyanotoxins and secondary metabolite biosynthesis.

Data availability. This whole-genome shotgun project has been deposited at
DDBJ/ENA/GenBank under the accession no. CDHJ00000000. The version described in
this paper is the first version, CDHJ01000000.
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