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Abstract: During viral evolution and adaptation, many viruses have utilized host cellular factors and
machinery as their partners. HBx, as a multifunctional viral protein encoded by the hepatitis B virus
(HBV), promotes HBV replication and greatly contributes to the development of HBV-associated
hepatocellular carcinoma (HCC). HBx interacts with several host factors in order to regulate HBV
replication and evolve carcinogenesis. The cellular FADD-like IL-1β-converting enzyme (FLICE)-like
inhibitory protein (c-FLIP) is a major factor that functions in a variety of cellular pathways and
specifically in apoptosis. It has been shown that the interaction between HBx and c-FLIP determines
HBV fate. In this review, we provide a comprehensive and detailed overview of the interplay between
c-FLIP and HBV in various environmental circumstances. We describe strategies adapted by HBV to
establish its chronic infection. We also summarize the conventional roles of c-FLIP and highlight the
functional outcome of the interaction between c-FLIP and HBV or other viruses in viral replication
and the innate immune system.

Keywords: hepatitis B virus; cellular FLIP (c-FLIP); viral FLIP (v-FLIP); HBx; innate immune system

1. Introduction

Hepatitis B virus (HBV) infection remains a global health issue, affecting approximately
300 million individuals worldwide [1]. Chronic hepatitis B (CHB) leads to serious liver-
related diseases, including cirrhosis and hepatocellular carcinoma (HCC).

Viruses are essentially unable to survive on their own without the help of their host.
Thus, many viruses have developed distinctive strategies that utilize host cellular machin-
ery for their survival and reproduction [2–5]. By interplaying with several host factors,
viruses exploit the cellular functions for their sake. However, some interactions may con-
versely suppress viruses [6,7]. Viral pathogens rely on their host in nearly all steps of their
life cycle such as entry, uncoating, gene expression, genome replication, exit, survival, and
persistent infection.

As a result of viral encounter, the host’s innate immune cells are activated and produce
interferons (IFNs) and pro-inflammatory cytokines against viral infection [8,9]. To coun-
teract the host immune response, viruses trigger immunosuppressive pathways or adopt
different strategies to escape from pathogen-sensing mechanisms [6,10–12]. As a typical
non-cytopathic and stealth virus, HBV has evolved to evade the host immune system [13].
Therefore, HBV-induced liver damage is instead considered as the outcome of dysregulated
host immune response and may not be due to the direct catastrophic effect of a virus on
infected host cells [14].

Herein, we aim to recapitulate the current knowledge on the relationship between HBV
and host proteins by specifically focusing on the interplay between HBV X protein (HBx)
and the cellular FADD-like IL-1β-converting enzyme (FLICE)-like inhibitory protein (c-
FLIP). HBx is best known to play an important role in HBV replication and the pathogenesis
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of HCC [15,16]. c-FLIP has also been reported to regulate several proteins involved in cell
survival, proliferation, and carcinogenesis in a variety of cells through diverse signaling
pathways [17,18]. These regulatory effects are often mediated by both direct interactions
with cellular factors as well as indirect activation of signaling pathway components.

2. FLICE-like Inhibitory Proteins (FLIPs)
2.1. FLIP Variants

Since FLIP was first found in Kaposi’s sarcoma-associated herpesvirus (KSHV), which
is also referred to as human herpesvirus (HHV-8), it was named viral FLIP (v-FLIP) [19].
Tight regulation of cell death and proliferation is critical for the maintenance of cellu-
lar homeostasis in living organisms. v-FLIP is able to inhibit apoptosis and induce cell
growth by interrupting the host cell death machinery [19,20]. It binds to procaspase-8, a
key molecule of apoptosis initiation, and blocks its maturation, thereby inactivating the
downstream apoptosis cascade [21].

c-FLIP, the homolog of v-FLIP, is mainly expressed as three isoforms: c-FLIPL (long
form), c-FLIPS (short form), and c-FLIPR (Raji form) (Figure 1). c-FLIPL is cleaved by
caspase-8, generating two N-terminal fragments (p43-FLIP and p22-FLIP). All three c-FLIP
isoforms share structural homologies with caspase-8, as c-FLIP isoforms and caspase-8 both
contain N-terminal tandem death-effector domains (DEDs), allowing their recruitment to
the death-inducing signaling complex (DISC). In addition, c-FLIPL contains a catalytically
inactive pseudo-caspase domain, which consists of a large (p20) and a small (p12) domain
that shares the most homology with caspase-8. The pseudo-caspase domain contains a
nuclear localization signal (NLS) and nuclear export signal (NES), which enable shuttling
between the nucleus and the cytoplasm. The subcellular localization of c-FLIP has been
shown to correlate with functional and pathological outcomes such as patient survival rate
and malignant progression in diverse diseases [22–24]. Other isoforms lack the pseudo-
caspase domain and their C-terminus differ from each other.

Figure 1. Schematic representation of procaspase-8 and FLIP variants. Structures of v-FLIP,
procaspase-8 (a), c-FLIP isoforms and cleaved products (b) are depicted. All proteins commonly share
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DED1 and DED2 domains. Several post-translational modification sites (phosphorylation and
ubiquitination) or caspase-8 cleavage sites on c-FLIP are indicated. c-FLIP: cellular FLIP; v-FLIP: viral
FLIP; DED: death-effector domain; NLS: nuclear localization signal; NES: nuclear export signal. This
illustration was created with BioRender.com.

2.2. Cellular Functions of FLIP Variants

c-FLIP is known to have multiple functions in various signaling pathways that regulate
cell fate. In death receptor-mediated apoptosis signaling, c-FLIP is a master anti-apoptotic
modulator. c-FLIPS and c-FLIPR isoforms have been observed to block procaspase-8 activa-
tion and apoptosis [25,26]. In a similar way, c-FLIPL, which has a structural similarity with
caspase-8, plays a central role in interfering with extrinsic apoptotic signaling by binding
to FAS-associated death domain (FADD), caspase-8 or caspase-10, and tumor necrosis
factor-related apoptosis-inducing ligand (TRAIL) receptor 5 (DR5), forming an apoptotic
inhibitory complex (AIC) [27,28]. Thus, the interaction between c-FLIP and apoptosis-
associated mediators inhibits subsequent activation of the caspase cascade, resulting in the
prevention of cell death.

Furthermore, c-FLIP has been shown to stimulate cytoprotection and proliferation
through activation of extracellular signal-regulated kinase (ERK) and nuclear factor kappa-
light-chain-enhancer of activated B cells (NF-κB) signaling pathways [29,30]. In addition
to c-FLIPL, p43-FLIP was also reported to have a role in the activation of the ERK and
NF-κB pathways [31,32]. c-FLIP is similarly important for protecting T lymphocytes
from apoptosis [33] by promoting the survival of immunosuppressive immune cells (e.g.,
myeloid-derived suppressor cells, MDSCs) and maintaining regulatory T cells (Tregs) [34,35].
In addition, c-FLIPR transgenic mice infected with bacteria showed less liver necrosis and
better bacterial clearance compared to wild-type mice, indicating that c-FLIPR expression
supports an efficient T cell activation [36]. Conversely, c-FLIPS inhibits activation of caspase-
8 in T cells, resulting in the reduced activity of NF-κB and T cell survival [37].

c-FLIP has also been reported to play a key role in regulating another type of cell
death called ‘necroptosis (necrosis)’ as well as modulating ‘autophagy’ as an essential
cellular process [18,38,39]. Necroptosis was understood as passive cell death induced
under extreme conditions, but recently, many reports have demonstrated that necroptosis
is also programmed and regulated by intracellular molecules. This form of cell death is
caspase independent and utilizes the receptor-interacting protein (RIP)1 and RIP3 kinases
when caspases are inhibited [40]. Ripoptosome, which is the necrotic signaling platform, is
composed of RIP-1, FADD, and caspase-8 [40]. c-FLIPL, a caspase-8 paralogue, is able to
intervene with the formation of this complex. However, depending on the expression level
or type of c-FLIP isoforms, different effects on the necrotic complex have been observed.
For instance, unlike the c-FLIPL that negatively regulates the necroptosis, c-FLIPS promotes
RIP3-mediated necroptosis [38]. Therefore, c-FLIP isoforms determine whether cell death
occurs by caspase-dependent apoptosis or through the RIP3-mediated necroptosis. In
addition, c-FLIP or v-FLIP suppresses autophagy by prohibiting autophagy-related 3 (Atg3)
from binding and processing the microtubule-associated protein 1 light chain 3 (LC3),
which is an essential component for autophagosome formation [39].

Dysregulation of c-FLIP is involved in several diseases, including some types of
cancer [24,41–45], Alzheimer’s disease [46], and chronic obstructive pulmonary disease
(COPD) [47]. Notably, the elevated expression of c-FLIP is highly associated with cancer
malignancy, poor prognosis, and resistance to chemotherapy [24,41,44,45,48–50]. Silencing
of c-FLIP sensitizes cancer cells to death signals and chemotherapeutic agents, implying
that c-FLIP can be considered as a promising therapeutic target for cancer [51,52]. Mod-
ulation of c-FLIP by TNF-α/NF-κB axis was also suggested as a strategy to treat mutant
melanomas [50].
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Collectively, c-FLIP functions as a central mediator in the complex interplay between
apoptosis, autophagy, and necroptosis, which are essential processes for maintaining
cellular homeostasis.

3. HBV Life Cycle

HBV is a small, enveloped virus with a partially double-stranded, relaxed circular
(RC) DNA genome of approximately 3.2 kb. HBV enters hepatocytes via interaction with
host membrane proteins, heparan sulfate proteoglycan (HSPG) [53–55], and its specific
receptor, sodium taurocholate co-transporting polypeptide (NTCP/SLC10A1) [56]. Re-
cently, epidermal growth factor receptor (EGFR) has also been identified as a host cofactor
in the internalization of HBV-NTCP [57]. The binding of HBV to its receptor on the cell
surface facilitates virus internalization via receptor-mediated endocytosis [58–60]. The in-
coming nucleocapsids are disassembled and the HBV genome is delivered into the nucleus,
where it is repaired to form covalently closed circular DNA (cccDNA), the viral persistence
reservoir [61]. cccDNA serves as a template for transcription of all viral mRNAs that are
translated into four proteins: polymerase, core, surface, and HBx. Various cellular factors
are involved in the conversion of relaxed circular DNA (rcDNA) into cccDNA, including the
removal of polymerase, RNA redundancy, and RNA primer, completion of viral (+) strand,
and ligation of DNA ends. Lei Wei et al. have recently reported that five core components
of DNA lagging-strand synthesis are essential for cccDNA formation: proliferating cell
nuclear antigen (PCNA), the replication factor C (RFC) complex, DNA polymerase delta
(POLδ), flap endonuclease 1 (FEN-1), and DNA ligase 1 (LIG1) [62]. Other host-derived
factors related to DNA repair machinery had also been presumably considered as cofactors
for cccDNA establishment [63–68]. Furthermore, cccDNA stably exists in the nucleus of
HBV-infected cells in the form of minichromosome and is associated with cellular histones
as well as host and viral proteins, which maintain its organization and regulate the epige-
netic modification of cccDNA [69–71]. Among viral proteins, HBx and core are associated
with cccDNA and have an essential role in cccDNA transcription [70,72]. Various cellular
transcription factors are recruited to viral promoter/enhancer regions of cccDNA to control
its transcriptional activity [73–75].

These findings indicate that HBV takes advantage of host cellular factors in cccDNA
biosynthesis, maintenance, and activation.

4. HBV and Innate Immune System

In the early stages of viral infection, host cells recognize the viral components through
pattern-recognition receptors (PRRs) and activate the innate immune system [9]. In response
to HBV infection, hepatocytes and hepatic non-parenchymal cells such as liver sinusoidal
endothelial cells (LSECs) and kupffer cells, along with HBV-specific T cells and B cells
sense HBV components [76]. Previous studies have reported that HBV pgRNA and DNA,
which are exposed during viral replication, are recognized by retinoic acid-inducible gene I
(RIG-I) and cyclic GMP-AMP synthase (cGAS)-stimulator of interferon (IFN) genes (STING)
signaling pathway, respectively [77,78]. More specifically, a report has shown that the
naked HBV genome is sensed by cGAS but the encapsidated genome can evade viral
sensing by the innate immune system [79]. In addition, toll-like receptors (TLRs) as well
as melanoma differentiation-associated protein 5 (MDA5) are functionally expressed in
HepaRG cells [80]. These cytosolic PRRs activate certain adaptor molecules such as TANK-
binding kinase 1 (TBK1), IFN regulatory factors (IRFs), and MyD88, which subsequently
leads to the induction of IFNs and pro-inflammatory cytokines [9].

However, in the late stages of infection, HBV dysregulates the host immune function
as a contradictory strategy to escape from viral recognition which leads to the establishment
of viral persistence [81].
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4.1. Interferons

During acute HBV infection, it is well known that type I/II and III IFNs are induced
in the liver. Type I IFN (IFN-α/β) exerts the antiviral activity in different steps of the
HBV life cycle. Previously, it was reported that the unidentified soluble factors released by
IFN-α-treated HepaRG cells restrict HBV entry by competing with binding to HSPG [82]. In
addition, IFN-α/β inhibit HBV replication by destabilization of the pgRNA-containing nu-
cleocapsids in transgenic mice and murine hepatocytes [83,84]. Moreover, IFN-α suppresses
HBV replication at the transcriptional level by epigenetic modification of cccDNA. Mecha-
nistically, IFN-α attenuates the binding of signal transducer and activator of transcription
(STAT) 1 and STAT2 to cccDNA, and also induces hypo-acetylation of H3K9 and H3K27,
which further repress recruitment of histone deacetylase (HDAC) 1 to cccDNA [85,86].
These epigenetic modifications regulate the stability of cccDNA and eventually decrease
the transcription of HBV RNA. Importantly, IFN-α and lymphotoxin-β are capable of
inducing deamination of cccDNA via APOBEC3A and APOBEC3B, respectively, leading
to its degradation by base excision repair enzymes [87]. Lastly, it has been indicated that
the IFN-α-inducible tetherin, a host restrict factor of virus egress, inhibits HBV release.
Tetherin physically interacts with HBV’s large surface protein and entraps the HBV virion
in the intracellular multivesicular body [88].

IFN-γ, as another major promoter of innate immunity and inflammatory responses, is
mainly produced by hepatic immune cells during HBV infection and functions in harmony
with other antiviral cytokines. IFN-γ and TNF-α, produced by cytotoxic T cells, reduce in-
tracellular HBV DNA and RNA in HBV transgenic mice via non-cytopathic mechanism [89].
This additionally induces the destabilization of cccDNA by APOBEC3A or APOBEC3B
and consequently reduces the accumulation of cccDNA in primary human hepatocytes
(PHHs) and HepaRG cells [90]. Reportedly, similar to type I IFN, IFN-γ reduces HBV
replication by inhibiting the formation and/or accelerating decay of replication-competent
nucleocapsid [83,84]. Of note, the inhibitory effect of type I IFNs requires proteasome
activity as it has been shown that blocking proteasomal degradation pathway could limit
the IFN function [91]. Finally, IFN-γ produced by hepatic natural killer (NK) cells solely
participates in DEAD box polypeptide 60 (DDX60)-mediated degradation of cytoplasmic
HBV RNA [92].

Regarding type III IFN, it has been revealed that the IFN-λ is induced by RIG-I
pathway following recognition of the HBV pgRNA [77]. Similar to type I and II IFN,
IFN-λ exhibits anti-HBV activity through the induction of nucleocapsid dysfunction [93].
Furthermore, IFN-β, IFN-λ1, and IFN-λ2 induce deamination and degradation of cccDNA
by APOBEC3A [94]. Interestingly, the core-binding factor beta (CBFβ) induced by IFN-λ
inhibits HBV replication through interaction with HBx [95], which leads to the interruption
of HBx-DDB1-Structural maintenance of chromosome 5/6 (SMC5/6) complex, which is
important for HBx-mediated cccDNA transcription [96].

Collectively, IFNs directly control HBV replication by regulation of viral parameters in
different steps of the HBV life cycle. The indirect antiviral effect of IFNs via Janus tyrosine
kinase (JAK)/STAT-interferon stimulated genes (ISG) signaling pathway is summarized in
the following Section 4.3.

4.2. Pro-Inflammatory Cytokines

Former studies have stated that the pro-inflammatory cytokines control HBV in the
early steps of its life cycle. Interleukin-6 (IL-6) blocks HBV entry by down-regulation
of NTCP expression, which results in the inhibition of cccDNA formation. This further
suppresses HBV gene expression and transcription through the reduction of the hepato-
cyte nuclear factor (HNF) 1α and HNF4α expression levels by the MAPK family [97,98].
Transforming growth factor (TGF) β1 accelerates cccDNA deamination and degradation
through activation-induced cytidine deaminase (AID) and inhibits HBV replication by
HNF4α suppression and attenuating core promoter activity [99,100]. Similarly, IL-4 weak-
ens the activity of both surface promoter II (preS2) and core promoter through decreasing
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the level of CAAT-enhancer-binding protein (C/EBP) α [101]. Furthermore, TNF-α- and
IFN-γ-inducible p22-FLIP, hepatocystin, and IL-32 suppress HBV transcription by dysregu-
lating HNF3β and HNF4α via ERK1/2 activation in HepG2 and PHHs [102–104]. Among
IFNs and cytokines, IL-1β exhibits the strongest inhibitory effect on HBV DNA and RNA
in HepaRG cells and PHHs [105]. It has been suggested that the monocyte chemotactic
protein-induced protein 1 (MCPIP1) is involved in the HBV inhibitory effect of IL-1β [106].

Collectively, these studies indicate that the pro-inflammatory cytokines that are se-
creted by hepatic immune cells (mainly kupffer cells) upon viral encounter [98] may be re-
sponsible for the prevention of HBV propagation in hepatocytes prior to the IFN production.

4.3. Interferon Stimulated Genes (ISGs)

IFN-JAK/STAT signaling pathway induces hundreds of IFN-stimulated genes (ISGs),
which participate in the control of the HBV life cycle [107]. Myxovirus resistance protein
A (MxA), 2′-5′-oligoadenylate synthetase (OAS) and RNA-activated protein kinase (PKR)
induced by type I IFN are the most well-known ISGs. MxA interferes with capsid assembly
and pgRNA encapsidation through interaction with core protein [108]. 2′-5′-OAS binds to
the ribonuclease L (RNase L), resulting in the decay of HBV RNAs [109]. PKR increases
the eukaryotic initiation factor 2α (elF2α) phosphorylation and down-regulates intracel-
lular capsid but not pgRNA levels, suggesting that PRK inhibits HBV replication at the
translational level [110]. ISG20 induced by type I IFN also suppresses HBV replication
by directly binding to the epsilon stem-loop structure of pgRNA and core promoter re-
gion [111,112]. A recent study identified that ISG20 is responsible for APOBEC-mediated
cccDNA degradation [113]. Several studies have demonstrated that the tripartite motif
(TRIM) proteins are part of ISGs and are capable of working as transcriptional repressors;
for example, TRIM22, which is induced by IFN-α, inhibits HBV replication by reducing
viral transcription by binding to the HBV core promoter region [114]. According to our
previous study, to conquer host immunity, HBx represses IFN-α or IFN-γ-induced tran-
scription of TRIM22 via a single CpG methylation in its 5′ untranslated region (UTR) [115].
Likewise, several other TRIM proteins, including TRIM41, have been shown to inhibit HBV
enhancer and core promoter activity [116]. Recently, it has been observed that TRIM21
inhibits HBV replication via ubiquitination of HBV polymerase [117] or HBx [118] through
its E3 ubiquitin ligase activity.

Taken together, type I IFNs both directly and indirectly regulate host proteins that
participate in anti-viral activities in multiple steps of the HBV life cycle.

5. Interaction between Virus and FLIP Variants
5.1. HBV
5.1.1. Apoptosis

HBx is a multifunctional regulator that is involved in signaling pathways, transcrip-
tional activation, epigenetic modification, cell growth, pro/anti-apoptosis, and progression
of cancer, which strongly indicates its implication in the pathogenesis of HBV-related
diseases. Regarding pro-apoptotic function, extensive studies have suggested that HBx
expression in hepatocytes is associated with apoptotic pathways [119–121]. In line with
these results, we previously reported that the pro-apoptotic function of HBx is mediated
through interaction with c-FLIP variants [122] (Figure 2). Upon TNF-α activation, HBx
forms a complex with c-FLIPL or c-FLIPS and abrogates its recruitment to DISC, thereby en-
hancing the activation of the apoptosis pathway [122]. Although c-FLIP generally protects
hepatocytes from death-inducing signals, HBx renders infected hepatocytes susceptible to
apoptotic stimuli, suggesting that intervention of HBx/c-FLIP may be a therapeutic target
for HBV-associated diseases.
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Figure 2. Proviral and antiviral roles of FLIP variants and corresponding signaling pathways induced
in the presence or absence of inflammatory cytokine. Prior to induction of host innate immunity,
c-FLIP enhances HBV transcription and replication by protecting HBx from proteasomal degrada-
tion. Additionally, c-FLIP up-regulates HNF1α and HNF4α levels that are essential co-factors for
HBV genome expression. The inhibitory transcription factor HNF3β is degraded to facilitate HBV
RNA production (left). Following the moderate induction of TNF-α, HBx-p22-FLIP-NEMO ternary
complex is formed that further enhances canonical NF-κB pathway by proteasomal degradation of
phosphorylated IκB, which amplifies c-FLIP transcription by p50 and p65. This renders antiviral
activity of c-FLIP. When TNF-α is highly secreted, c-FLIP is cleaved by caspase-8 to form p22-FLIP
which consequently phosphorylates ERK1/2. Activated ERK1/2 accelerates and blocks HNF3β and
HNF4α, respectively which impedes HBV transcription from cccDNA. Lastly, high level of TNF-α
activates apoptosis by direct activation of cascades. This event is accelerated following the interaction
between c-FLIP and HBx (right). HNF: hepatocyte nuclear factor; TNF-α: tumor necrosis factor-α;
NF-κB: nuclear factor kappa-light-chain-enhancer of activated B cells; IκB: I-kappa-B; ERK1/2: extra-
cellular signal-regulated kinase 1/2; NEMO: NF-kappa-B essential modulator. This illustration was
created with BioRender.com.

Due to the various experimental conditions and model systems, different effects of HBx
on apoptosis have been reported [123,124]. A report showed that HBx, stably expressed in
Hep3B cells, inhibited TGF-β-induced apoptosis via the activation of PI3K [123]. In PHHs,
mouse erythroleukemia cell line (DP-16), and mouse embryo fibroblasts, HBx protected
the cells against Fas-mediated apoptosis through upregulation of stress-activated protein
kinase/c-JUN N-terminal kinase (SAPK/JNK) pathway [124].

5.1.2. Antiviral Factor

Among the FLIP variants and cleavage forms, only p22-FLIP has been shown to
exert anti-HBV effect. p22-FLIP is involved in TNF-α-mediated inhibition of HBV repli-
cation [102] (Figure 2). Particularly, p22-FLIP is cleaved by procaspase-8 from c-FLIPL
or c-FLIPS following induction of the TNF-α/NF-κB signaling pathway. Moreover, p22-
FLIP strongly impedes HBV DNA, RNA, and protein levels by diminishing the activity of
viral enhancers. Mechanistic studies have also revealed that p22-FLIP enhances HNF3β
expression and conversely reduces HNF4α expression through the activation of ERK1/2,
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which eventually results in the suppression of HBV at the transcriptional level. We have
previously revealed that the N-terminus of DED1 domain (helixes α1–α3) of p22-FLIP is
responsible for the p22-FLIP-mediated inhibition of HBV replication. Interestingly, the
expression of endogenous p22-FLIP is relatively more abundant in PHHs than in cancer
cells, implying a possible role of p22-FLIP as a host restriction factor in inflammatory
condition [102].

According to the evidence stated above and given that no histological damage was
observed in p22-FLIP-overexpressed mouse liver, we identified p22-FLIP as a novel antiviral
molecule involved in noncytopathic viral clearance.

5.1.3. Proviral Factor

As mentioned earlier, HBx modulates the activity of numerous enzymes and compo-
nents involved in intracellular signaling pathways. Of note, HBx role as a transactivator on
the cellular and viral promoters and enhancers was frequently observed [125,126]. HBx
acts as an essential factor in promoting HBV replication [127]. Reportedly, HBx deficiency
had a minor impact on HBV transcription and replication in Huh7 cells; nevertheless, its
absence significantly impaired HBV replication in HepG2 cells, implying that HBx function
may depend on unknown host cell-specific factors [127]. Moreover, several studies have
demonstrated mechanisms by which HBx regulates host proteins to enhance viral replica-
tion [16,128–131]. Recent reports have revealed that HBx induces degradation of SMC5/6
in order to enhance HBV replication [96,132].

Based on the finding that HBx and c-FLIP interacts and the fact that protein–protein
interactions generally regulate mutual stability, we previously investigated the effect of
HBx/c-FLIP interaction on HBV replication [133] (Figure 2). Our previous report showed
that HBx is stabilized by c-FLIPL or c-FLIPs, where DED1/2 are associated with binding
to HBx and DED1 is required for HBx stabilization, thus protecting it from proteasome-
mediated degradation and contributing to robust HBV transcription and replication [133].
Furthermore, in an HBx-independent manner, c-FLIP regulates HNFs, which are crucial for
HBV replication as well as hepatocyte differentiation [133].

Collectively, c-FLIP could serve as either proviral or antiviral factors, depending on
the cellular milieu, such as concentration of TNF-α, implying that the ratio of c-FLIP to
p22-FLIP may determine the fate of HBV. Equally important, the interaction of c-FLIP
variants with HBx may result in different physiological outcomes. These results highlight
the multifunctional role of c-FLIP on HBV propagation in the presence or absence of HBx.

5.1.4. Cell Proliferation

Among c-FLIP variants, c-FLIPL or c-FLIPS can be cleaved to p22-FLIP by TNF-α stim-
uli, and activate NF-κB via its interaction with the IkB kinase (IKK) complex, which consists
of IKK-α, IKK-β, and NEMO (NF-κB essential modulator also known as IKK-γ) [134]
(Figure 2). Another study showed that all c-FLIP isoforms participate in the activation of
the IKK complex by different mechanisms [135]. NF-κB is a well-known transcription factor
involved in immune response, inflammation, cell survival, and proliferation [136]. There
have been many reports that HBx activates NF-κB signaling [137–139]. Several reports fur-
ther suggested the association of host partners in HBx-mediated NF-κB activation [140,141].
Furthermore, HBx-induced NF-κB activation has been shown to have a strong correlation
with the pathogenesis of chronic inflammation and HCC.

We have previously revealed that the p22-FLIP synergistically enhances HBx-induced
NF-κB activation by forming a ternary complex composed of HBx-p22-FLIP-NEMO [142].
In patients chronically infected with HBV, long-term exposure to TNF-α may lead to p22-
FLIP accumulation and HBx-enhanced NF-κB activation, thus placing hepatocytes in a
persistent inflammatory condition. Simultaneously, NF-κB activation enhances the survival
and proliferation of hepatocytes, allowing them to evade the host immune response and
maintain persistent infection [143]. These perspectives may provide a clue to the mechanism
by which p22-FLIP contributes to the development of HCC during chronic HBV infection.
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Of note, human hepatocyte division triggered by NF-κB activation may contribute to
cccDNA dilution without cytolysis [144].

5.2. Other Viruses

Several viruses such as herpesviruses and poxviruses encode v-FLIP, which resembles
c-FLIPS. v-FLIP is able to block extrinsic apoptosis through binding to procaspase-8
and interfering with its maturation and activation, proving that v-FLIP acts as a viral
inhibitor of caspase-8 [19,21]. However, an interesting report showed that HHV-8-encoding
v-FLIP reduced the expression of c-FLIP but alleviated apoptosis induced by loss of c-
FLIP in intestinal epithelial cells (IECs) in a mouse model [145]. HHV-8-derived v-FLIP
has also been reported to potentiate NF-κB signaling by direct interaction with the IKK
complex [146,147]. Furthermore, MC159 and MC160, v-FLIP from molluscum contagiosum
virus (MCV), which belongs to the poxviridae family, inhibits the activation of interferon
regulatory factor (IRF3) by a different mechanism [148]. Noteworthy, the interaction of
MC159 and Fas/FADD disrupts FADD self-association, consequently leading to inhibition
of caspase activation in DISC [149,150]. Unlike v-FLIP of HHV, the anti-apoptotic function
of MC159 is not exerted by the modulation of NF-κB activity. Rather, MC159 hijacks
SH3BP4, a host factor involved in autophagy regulation, and suppresses autophagy, which
enables MCV to evade antiviral host immunity and establish persistent infection [151].
However, another study showed that MC159 enhances innate immunity by promoting NF-
κB induction in a MC159-transgenic mouse model infected with vaccinia virus (VV) [152].

In addition to HBV, associations with other viral proteins and c-FLIP have been
frequently observed. Hepatitis C virus (HCV) core protein sustains the expression of c-FLIP
to block TNF-α-induced apoptosis [153]. In comparison with this, one study showed
that HCV core protein sensitizes cells to TNF-α-induced apoptosis by binding to FADD
and facilitating recruitment to TNF receptor 1 (TNFR1), demonstrating that the effects of
HCV core protein may vary depending on different cell origins [154]. In line with this
observation, another study revealed that HCV core, nonstructural protein (NS) 4B, and
NS5B enhances TNF-α-mediated cell death via NF-κB inactivation, following reduction of
NF-κB-dependent anti-apoptotic proteins, such as B-cell lymphoma-extra large (Bcl-xL),
(X-linked inhibitor of apoptosis (XIAP), and c-FLIP [155]. Meanwhile, HCV NS5A protected
human hepatoma cells from lipopolysaccharide (LPS)-induced apoptosis by increasing the
expression levels of Bcl-2 and c-FLIP [156].

Herpes simplex virus type-1 (HSV-1) is one of the most common viruses that infect
humans. HSV-1 induces proteasome-dependent degradation of c-FLIP in immature den-
dritic cells (iDCs), thereby culminating in cell death and weakening antiviral immune
response [157]. In addition, HSV-1 encodes latency-associated transcript (LAT) sequences,
which is important for viral latency and reactivation, and was identified as a substitute for
c-FLIP [157].

c-FLIP was reported to inhibit human immunodeficiency virus-1 (HIV-1) replication
in jurkat cells, CD4+ T cells, and peripheral blood mononuclear cells (PBMCs) by two
distinct mechanisms [158]. c-FLIP magnified the expression of viral restriction factors
while attenuating HIV-1-induced signaling pathways essential for its survival [158]. c-FLIP-
mediated inactivation of FADD also inhibited HIV-1 replication [158]. Moreover, several
studies have demonstrated that HIV infection regulates the cellular apoptotic pathway. For
instance, TRAIL-mediated apoptosis was enhanced in HIV-1-infected monocyte-derived
macrophages (MDMs) by down-regulating the expression of TRAIL decoy receptors and
c-FLIP [159]. On the other hand, HIV-infected dendritic cells (DCs) can escape from NK cells-
induced TRAIL killing by the up-regulation of c-FLIP and cellular inhibitor of apoptosis
2 (c-IAP2) [160]. Similar observation reported that HIV-1 Tat protein down-regulated
caspase-10 while simultaneously up-regulating c-FLIP, thus rendering cells resistant to
death-inducing signals [161]. HIV-1 Tat protein also protected CD4+ T lymphocytes from
FasL-mediated apoptosis by enhancing the expression of NF-κB-dependent anti-apoptotic
proteins, including Bcl-2, c-FLIP, XIAP, and c-IAP2 [162].



Viruses 2022, 14, 373 10 of 18

Human cytomegalovirus (HCMV) is also a prevalent pathogen in humans. HCMV
viral immediate early 2 (IE2) protein promotes the expression of c-FLIP to protect HCMV-
infected human retinal cells from apoptosis and concomitantly allows HCMV to avoid
Fas-mediated killing by T lymphocytes [163]. Furthermore, HCMV-encoded chemokine
receptor US28 induces apoptosis, which is neutralized by c-FLIP and HCVM antiapoptotic
protein IE1 [164]. HCMV-induced delayed cell death is also mediated by significant
elevation of c-FLIP and reduced pro-apoptotic proteins [165].

Moreover, IL-24 excludes c-FLIP from TLR3-associated signaling complex facilitated by
influenza A virus (IAV), converting it into a death-inducing signaling complex (TLR3 DISC)
that leads to apoptosis [166]. In c-FLIPL-transgenic mice infected with coxsackievirus B3
(CVB3), c-FLIPL expression in T cells augments cell survival pathways and T-cell receptor
(TCR) signaling, thus lowering the severity of CVB3-induced myocarditis [167]. In contrast
to this finding, c-FLIPS-transgenic mice were vulnerable to CVB3 infection, indicating that
c-FLIPL and c-FLIPS exhibit opposite effects [168].

In summary, viral proteins modulate c-FLIP by various mechanisms in order to tackle
the host innate defense system and v-FLIP itself exerts cytoprotective function for virus
survival and persistence (Table 1).

Table 1. Effect of FLIP variants on host and viruses.

Virus Viral Partner FLIP Isoform Effect on Virus Function Reference

vi
ra

lF
LI

P

HHV-
8(KSHV)

v-FLIP Proviral Inhibition of apoptosis by binding to
caspase-8 [19,21,145]

v-FLIP Antiviral Activation of NF-κB via interaction
with IKK complex [146,147]

MCV

v-FLIP (MC159, MC160) Proviral Inactivation of IRF3 by different
mechanisms [148]

v-FLIP (MC159) Proviral Inhibition of apoptosis via interaction
with Fas/FADD [149,150]

v-FLIP (MC159) Proviral Suppression of autophagy by
interacting with SH3BP4 [151]

v-FLIP (MC159) Antiviral Activation of NF-κB in the presence of
Vaccinia virus [152]

ce
llu

la
r

FL
IP

HBV

HBx c-FLIPL/S Antiviral Enhancement of pro-apoptotic
function of HBx [122]

HBx p22-FLIP Tumorigenesis
Activation of NF-κB by forming a

ternary complex
(HBx-p22-FLIP-NEMO)

[142]

- p22-FLIP Antiviral Activation of ERK1/2 and regulation
of HNFs [102]

HBx c-FLIPL/S Proviral HBx stabilization and regulation
of HNFs [133]

HCV

Core c-FLIPL/S Proviral c-FLIP stabilization and blocking
TNF-α-induced apoptosis [153]

Core, NS4B
and NS5B c-FLIPL/S Antiviral Enhancement of TNF-α-mediated cell

death via NF-kB inactivation [155]

NA5A c-FLIPL/S Proviral
increasing the expression levels of

Bcl-2 and c-FLIP to protect cells from
LPS-induced apoptosis

[156]
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Table 1. Cont.

Virus Viral Partner FLIP Isoform Effect on Virus Function Reference

HSV-1 c-FLIPL/S Proviral Proteasome-dependent degradation
of c-FLIP in iDCs [157]

HIV-1

- c-FLIPL/S Antiviral

1© Enhancing the expression levels of
host restriction factors and

inactivating HIV-1-induced signaling
pathway 2© Inactivation of FADD

[158]

- c-FLIPL/S Antiviral
Down-regulating the expression of
TRAIL decoy receptors and c-FLIP

in MDMs
[159]

- c-FLIPL/S Proviral

accelerating the expression levels of
c-FLIP and c-IAP2 in DCs in order to

escape from NK cell-induced
TRAIL-mediated apoptosis

[160]

Tat c-FLIPL/S Proviral Increase the expression levels of
c-FLIP and decrease caspase-10 [161]

Tat c-FLIPL/S Proviral Inhibition of FasL-mediated apoptosis
by NF-κB activation [162]

HCMV

IE2 c-FLIPL/S Proviral
Increasing the expression level of

c-FLIP to avoid Fas-mediated
apoptosis by T cells

[163]

US28 c-FLIPL/S Proviral Attenuation of apoptotic function of
US28 by c-FLIP and IE1 [164]

- c-FLIPL/S Proviral
Delaying cell death by increasing
level of c-FLIP and decreasing the

level of pro-apoptotic proteins
[165]

IAV - c-FLIPL/S Antiviral
Conversion of c-FLIP/TLR3-mediated

signaling complex to atypical
TLR3-associated DISC

[166]

CVB3

- c-FLIPL Antiviral Enhancement of T cell survival
pathways and TCR signaling [167]

- c-FLIPS Proviral

Reduction of the mitochondrial
antiviral signaling protein (MAVS),

escalating caspase-8 activity and type
I IFN production

[168]

HHV-8 (KSHV): Human herpesvirus 8 (Kaposi’s sarcoma-associated herpesvirus); MCV: Molluscum contagiosum
virus; HBV: Hepatitis B virus; HCV: Hepatitis C virus; HSV-1: Herpes simplex virus type-1; HIV-1: Human
immunodeficiency virus 1; HCMV: Human cytomegalovirus; IAV: Influenza A virus; CVB3: Coxsackievirus B3.

6. Conclusions

During evolution, viruses have developed distinct strategies in order to readily exploit
the host machinery and facilitate their propagation. This is accomplished by direct or
indirect interaction with numerous cellular factors. Virus–host interaction is a double-
edged sword, with either exploitive or antagonistic consequences. Therefore, different
cellular responses may occur depending on complex virus–host interplay.

HBV relies on diverse host machinery to establish its genome, and concomitantly
regulates cellular factors to promote its replication, evade the host defense system, and
ultimately achieve persistent infection. c-FLIP, as a multifunctional protein, is engaged in
many cellular pathways that determine cell fate. Thus, its expression is tightly controlled
by sophisticated regulatory mechanisms and is closely coordinated with other signaling
pathways. Dysregulated c-FLIP was proven to be correlated with various diseases as well
as viral pathogenesis. Our comprehensive evaluation of the HBV–c-FLIP relationship and
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the studies reviewed above expanded our knowledge on how HBV hijacks and subverts
cellular functions for its advantage.

The most challenging goal will be to understand the contradictory crosstalk between
HBV or other viruses and major cellular components such as c-FLIP in a variety of biological
conditions in vitro and/or in vivo. The definite molecular mechanisms underlying the as-
sociation between cellular factors and viruses require further clarifications. Understanding
virus–host interplay will shed light on discovery of druggable targets.
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