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LETTER TO EDITOR

Inherited GATA3 variant associated with positive minimal
residual disease in childhood B-cell acute lymphoblastic
leukemia via asparaginase resistance

Dear Editor,
Genome-wide association studies have identified that

germline single nucleotide polymorphisms (SNPs) in
GATA3 significantly influence the treatment outcomes of
childhood acute lymphoblastic leukemia (ALL).1–3 How-
ever, the role of inherited GATA3 variants in Han Chinese
patients with B-cell ALL (B-ALL) and themolecularmech-
anisms by which these variants are linked to poor progno-
sis are largely unknown.
We genotyped GATA3 SNPs rs3824662 and rs3781093

in 308 children with B-ALL enrolled in the CCCG-ALL-
2015 study to evaluate their association with ALL treat-
ment outcomes in the Han Chinese population (Figure 1A,
Table S1). Using an additive logistic regression model,
we found that GATA3 rs3824662 A allele and rs3781093
C allele were significantly associated with minimal resid-
ual disease (MRD) positivity on day 46 (p = 0.039, odds
ratio [OR] = 1.54 [95% confidence interval: 1.01–2.36], and
p = 0.036, OR = 1.55 [1.03–2.39] in dichotomous analy-
sis, respectively; p = 0.02 and p = 0.018 in ordinal analy-
sis, respectively) (Figure 1B,C, Figures S1–S3). The A allele
of rs3824662 and C allele of rs3781093 were both >1.5-
fold increased odds ratio for risk of MRD positivity com-
pared with their reference alleles (Figure 1B,C). To validate
the association of GATA3 SNPs with MRD, we genotyped
rs3824662 and rs3781093 in 122 children from another B-
ALL cohort enrolled in the GD-2008-ALL study (Table S2).
In this replication analysis, risk alleles of both SNPs were
consistently over-represented in MRD positive patients
(day 33) compared to that in MRD negative patients:
rs3824662 (p = 0.015, OR = 2.06 [1.18–3.59]) and rs3781093
(p = 0.022, OR = 1.95 [1.11–3.43]) in dichotomous analysis,
and p=0.050 and p=0.078 in ordinal analysis, respectively
(Figure 1B,C, Table S3).
To investigate the biological function of the germline

GATA3 variant, we examined the chromatin state of this
genomic region across different hematopoietic cell types
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by ChromHMM.4 Across 11 hematopoietic cells, we inter-
estingly found that rs3824662 was resided inside regions
with weak enhancer activity in hematopoietic tissues (Fig-
ure 2A), suggesting the cis-transcriptional regulation role.
To further strengthen our findings, we next retrieved
GM12788 ChIA-PET and epigenetic data and identified
that rs38246622 located in RNA Pol II peak anchor regions
with the enrichment of histone marks H3K27ac and
H3K4me1, while lacking H3K27me3 signal (Figure 2B),
consolidating the enhancer role of rs3824662. To confirm
the risk allele on enhancer function, we evaluated the
impact ofGATA3 variants on its transcription activity using
a luciferase reporter assay. Surprisingly, the rs3824662 A
risk allele significantly increased the enhancer activity by
approximately threefold compared to the nonrisk allele in
GM18900, Nalm6, and Reh cells, while the rs3781093 C risk
allele did not affectGATA3 transcription (Figure 2C, Figure
S4). To further confirm the enhancer activity of rs3824662
A allele on GATA3 transcription, we converted the origi-
nal wild-type C allele to A allele at rs3824662 in the lym-
phoblastoid cell lineGM18900 using CRISPR/Cas9 system.
Engineered cells with A/A or A/C genotype exhibited sig-
nificantly higher GATA3 expression (approximately three-
fold) compared with the parental cells with C/C genotype,
independent of the allele frequency (Figure 2D, Figure S5).
Taken together, these results provided a clue to the link
between the biological function of rs3824662 and its asso-
ciation with MRD.
We speculated that active GATA3 expression might lead

to drug resistance, a major contributor to MRD.5 To test
this hypothesis, we retrieved a series of expression pro-
filing array datasets from the NCBI GEO database and
investigated a correlation between GATA3 expression and
the drug sensitivity of primary B-ALL cells.6 High levels
of GATA3 expression were significantly correlated with l-
asparaginase (l-Asp, p < 0.0001) (Figure 3A, Figures S6
and S7). To confirm the correlations, we tested the drug
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F IGURE 1 GATA3 rs3824662 was associated with positive MRD in pediatric Han Chinese B-ALL patients. (A) Flowchart of the
candidate gene association study. Sanger sequencing of GATA3 rs3824662 and rs3781093 in the discovery CCCG-ALL-2015 cohort (466
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F IGURE 3 Correlation between GATA3 expression and l-Asp resistance in B-ALL cells. (A) High GATA3 expression was significantly
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GSE654 datasets. Each box plot shows the distribution of log2 values of GATA3 transcription from the 10th to the 90th percentile. The line
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response in established B-ALL cell lines (697 and SUP-B15)
with ectopic overexpression and knockdown of GATA3
using MTT assay. As shown in Figure 3B, l-Asp resistance
induced byGATA3 overexpression was completely rescued
byGATA3 knockdown inGATA3 overexpression cells (Fig-
ure 3B). The association of GATA3 expression with l-Asp
resistance was also confirmed in nine primary B-ALL sam-
ples (Figure 3C,D).
Several potential l-Asp resistance mechanisms have

been confirmed within different contexts, but none of
them related to GATA3 expression (Figures S8–S10). Taka-
hashi et al. identified that autophagy was essential for
cell survival under l-Asp-induced stress in ALL cells.7
To test the role of autophagy in GATA3-induced l-Asp
resistance, we next evaluated autophagy flux in 697 cells.

By western blotting, LC3B-II levels were observed to be
increased with GATA3 overexpression, and this increase
was more obvious with l-Asp treatment (Figure 4A). To
further determine how the active expression of GATA3
induces autophagy activation, we evaluated the expression
of two key autophagy-related genes (BECN1 and ATG5).
As shown in Figure 4B, overexpression of GATA3 induced
upregulation of these two genes at mRNA levels. Fur-
thermore, the promoter activity of BECN1 and ATG5 was
increased upon the overexpression of GATA3 in HEK293T
(p = 0.0098 and 0.0114, respectively; Figure 4C), indi-
cating that GATA3 can regulate the transcription of key
autophagy-related genes. Finally, we inhibited autophago-
some turnover in 697 cells with chloroquine diphosphate
salt (CQ) and found that GATA3-induced l-Asp resistance
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F IGURE 4 GATA3 induced l-Asp resistance via JAK2-STAT3-mediated autophagy activation. (A) Immunoblotting was performed to
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was almost completely rescued (Figure 4D), suggesting the
potential mechanism of GATA3mediated l-Asp resistance
via activation of autophagy.
To gain more insights into the mechanism of GATA3

mediated l-Asp resistance, we determined whether
GATA3 can regulate the JAK-STAT signaling pathway.8
As shown in Figure 4E, GATA3 overexpression resulted
in increased expression of CRLF2 and phosphorylation of
JAK2 and STAT3. Intriguingly, inhibition of JAK2-STAT3
signaling by ruxolitinib suppressed autophagy activation,
which in turn sensitized B-ALL cells to l-Asp treatment
(Figure 4F,G), indicating another layer of regulation of

autophagy by GATA3 via posttranslation regulation of
JAK2-STAT3 signaling in B-ALL cells.
In this work, we first validated that GATA3 rs3824662

was associated with the risk of MRD after induction
treatment in Han Chinese children with ALL. Mecha-
nistic studies showed that rs3824662 cis-promoted GATA3
expression, which in turn induced l-Asp resistance via
CRLF2-JAK2-STAT3-related autophagy activation. These
findings will be of value in upfront risk stratifica-
tion of childhood B-ALL and enrich our understand-
ing of the role of GATA3 in ALL pathogenesis and
prognosis.
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