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17β-Estradiol (E2) is the major estrogen secreted by the premenopausal ovary and shows

dual effects on cell apoptosis under pathological conditions. E2 was previously shown

to increase CD38 mRNA and protein expression in myometrial smooth muscle, but

its function and mechanism remain largely unknown. Here we investigated the role of

E2 in hypoxia-induced apoptosis in mouse airway smooth muscle cells (ASMCs) and

explored the underlying mechanisms. Results showed that E2 significantly increased

CD38 expression at both mRNA and protein levels, accompanied with decreased SIRT1

levels in ASMCs. By using primary ASMCs from the wild type (WT) and the smooth

muscle-specific CD38 knockout (CD38 KO) mice, we found that the down-regulation of

SIRT1 induced by E2 was abolished in CD38 KO AMSCs. E2 promoted the acetylation of

p53 in WT cells, and this effect was also diminished in the absence of CD38. In addition,

E2 further activated CD38/SIRT1/p53 signal pathway and promoted cell apoptosis

during hypoxia. However, these effects were reversed in CD38 KO ASMCs and by the

specific SIRT1 activator Resveratrol. We also found that E2 enhanced CD38 expression

through estrogen receptor. The data suggested that CD38 is a direct target for E2 which

promotes hypoxia-induced AMSC apoptosis through SIRT1/p53 signal pathway.

Keywords: 17β-estradiol, CD38, SIRT1, hypoxia, apoptosis

INTRODUCTION

Hypoxia is recognized as a critical contributor to pulmonary diseases including asthma, airway
obstruction and pulmonary hypertension (1–3). Hypoxia stimulates airway inflammation and
remodeling, and subsequently induces apoptosis in airway smooth muscle cells (ASMCs) during
airway remodeling (4). There is emerging evidence for sex differences in the incidence and
progression of lung diseases, and sex hormones play crucial roles in these pathological processes (5).
Especially, estrogen regulates ASMCs in various manners. Estrogens reduce [Ca2+]i and promote
human ASM relaxation via activation of cAMP and PKA, thereby facilitating bronchodilation (6).
In addition, testosterone and E2 exhibit mitogenic effects in ASMCs, probably through estrogen
receptors and the MAPK and PI3K signaling pathways, thus promote ASMC proliferation and
airway remodeling (7). Estrogen signaling is also involved in allergic inflammation and contributes
to sex differences in asthma and allergy (8). However, the effect of estrogen on ASMCs apoptosis
during hypoxia remains largely unknown.

CD38 is a type II membrane-bound glycoprotein and functions as the major NADase
responsible for the regulation of NAD-dependent deacetylase such as SIRT1 (9). In addition, CD38
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is an NAADP synthase required for NAADP-mediated Ca2+

release from lysosomal stores (10). CD38/cyclic ADP-ribose
(cADPR)-mediated calcium signaling plays critical roles in the
regulation of intracellular calcium in a variety of smooth muscle
cells, including that of the airway smooth muscle (11–13).
Estrogens were shown to increase CD38 gene expression and
leads to increased calcium mobilization and contractility of
the myometrium (14, 15). It has also been recently reported
that E2 downregulated SIRT1 expression in vascular smooth
muscle cells, with increased apoptosis, reduced proliferation
and migration, which were reversed by the SIRT1 activator
Resveratrol (16). SIRT1 regulates p53-dependent apoptosis by
deacetylating the Lys382 residue of p53, thus enhancing the
transcriptional activity of p53 and inhibiting p53-induced
apoptosis (17). However, whether E2 modulates the expression
of CD38 and SIRT1 in ASMCs and the detailed mechanisms of
E2 in the regulation of hypoxia-induced apoptosis have not been
addressed.

In this study, we investigated the role of E2 in apoptosis
during hypoxia by using primary ASMCs from the wild type
(WT) and the smooth muscle-specific knockout of CD38 (CD38
KO) mice. CD38-mediated SIRT1/p53 signal pathway was also
detected, with the purpose to elucidate the mechanism by which
E2 promotes apoptosis in ASMCs.

MATERIALS AND METHODS

Materials
E2 and Resveratrol were purchased from Sigma-Aldrich (St.
Louis, MO). ICI182,780 was from Abcam (Cambridge, MA).
The anti-CD38 antibody was obtained from R&D Systems,
Inc. (Minneapolis, MN); the anti-SIRT1 antibody was from
EMDMillipore Corp. (Temecula, CA); the anti-p53, anti-Acetyl-
p53 (K379), anti-Bax and anti-Bcl-2 antibodies were from
Cell Signaling Technology, Inc., (Danvers, MA), and the anti-
glyceraldehyde phosphate dehydrogenase (GAPDH) antibody
was obtained from KangChen Bio-tech Inc., (Shanghai, China).

Preparation of Smooth Muscle-Specific
CD38 Knockout Mice
Mice with LoxP flanking of exon 2 and exon 3 of the CD38
gene (CD38-fl/fl, produced by Cyagen Inc., Suzhou, China)
were bred with mice expressing Cre recombinase under the
control of a smooth muscle-specific promoter (SMA-Cre, from
Collaborative Innovation Center of Model Animal, Wuhan
University). The progeny with the genotype SMA-Cre-CD38-fl/fl
is the homozygote used in the experiment.

Isolation, Culture, and Characterization of
ASMCs
Primary mouse ASMCs were prepared as previously described
(18), with some modifications. Male, 8–10 weeks old WT
or CD38 KO mice were anesthetized and the tracheas were
aseptically excised and placed in Ca2+, Mg2+-free Hanks’
balanced salt solution (HBSS). The isolated tracheas were cleaned
of connective tissues, cut longitudinally through the cartilage,
and enzymatically dissociated with HBSS containing elastase

type I (2 mg/ml) and BSA (2.5 mg/ml) for 1 h in a water bath
at 37◦C. Dissociated cells in suspension were centrifuged and
resuspended in Dulbecco’s modified Eagle’s medium (DMEM)
supplemented with 10% fetal bovine serum (FBS), 100 U/ml
penicillin, 100µg/ml streptomycin, and 2.5µg/ml amphotericin
β. Cells were plated on culture flasks and grew until confluence at
37◦C in humidified air containing 5% CO2. The confluent cells
were passaged with 0.25% trypsin-0.02% EDTA solution. The
cultures typically contained more than 98% ASMCs as assessed
by immunocytochemical staining for the smooth muscle-specific
marker α-actin. Cells at passages 3–5 were used for the
experiments.

Cell Culture Treatment and Hypoxia
Exposure
For the concentration response assay, ASMCs were pre-treated
with various concentrations of E2 (0.1, 1, 10, and 100 nM) for
24 h. For the time course assay, 10 or 100 nM of E2 were added
to the cultures for 24 or 48 h incubation. In the subsequent
experiments, WT and CD38 KO ASMCs were pre-treated with
10 nM of E2 for 48 h respectively, followed by the exposure
of sustained hypoxia. Cells were maintained in a hypoxia
chamber (1% O2, 5% CO2; balance N2 and water vapor) for
6 h to induce sustained hypoxia as described previously (19).
A normoxic control experiment was performed in parallel by
maintaining the cells under normoxia (21% O2, 5% CO2; 37

◦C).
The specific SIRT1 activator Resveratrol (RSV, 10µM) or the
estrogen receptor antagonist ICI182,780 (ICI, 10 nM) was added
to the cultures 2 h before E2 incubation.

Real-Time PCR
Total RNA was isolated from ASMCs using the TRIzolTM reagent
(Life Technologies, CA, USA) according to the manufacturer’s
instructions. One microgram of total RNA was reverse-
transcribed using a One Step PrimeScriptTM RT-PCR Kit
(Takara, Dalian, China) with a thermocycler. Real-time PCR
was performed using the ABI ViiATM 7 system with a reaction
mixture that consisted of SYBR Green 2×PCR Master Mix
(Applied Biosystems, CA, USA), cDNA template (0.5 µg),
forward primer and reverse primer. Primer sequences were as
follows: 5′-GAGCCTACCACGAAGCACTTTT-3′ and 5′-GGC
CGGAGGATCTGAGTGTA-3′ (CD38), 5′-GCCAAACTTTGT
TGTAACCCTGTA-3

′

and 5′-TGGTGGCAACTCTGATAAATG
AA-3

′

(SIRT1), and 5′-ACATGGCCTCCAAGGAGTAAGAA-3′

and 5′-GGGATAGGGCCTCTCTTGCT-3′ (GAPDH). The PCR
protocol consisted of 40 cycles of denaturation at 95◦C for 15 s
followed by 60◦C for 1min to allow extension and amplification
of the target sequence. Data were analyzed using ABI 7500
sequence detection system software. The amount of mRNA
was normalized to GAPDH using the 2−11CT method. The
results were from three independent experiments performed in
triplicate.

Western Blot
The cells were collected and lysed in RIPA lysis buffer. Equal
amounts of protein per sample were loaded in each lane,
separated by SDS-PAGE, and transferred to PVDF membranes.
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FIGURE 1 | Expression of CD38 and SIRT1 in ASMCs after E2 treatment. ASMCs were pre-treated with the indicated concentrations of E2 for 24 h. (A) CD38 and (B)

SIRT1 mRNA levels were detected by real-time PCR. (C) CD38 and SIRT1 protein levels were determined by western blot and quantitative analysis of (D) CD38 and

(E) SIRT1 levels was normalized to GAPDH levels. *P < 0.05, **P < 0.01 vs. the control group. N = 3.

Themembranes were blocked with skimmedmilk for 1 h, washed
in Tris buffered saline containing 0.1% Tween-20 (TBST) and
incubated overnight with the primary antibodies. After washing
three times with TBST, the membranes were incubated for 1 h
at room temperature with horseradish peroxidase-conjugated
goat anti-rabbit or anti-mouse IgG and donkey anti-sheep
IgG. Bands were visualized using the SuperSignalWest Pico
Chemiluminescent Substrate Trial Kit (Pierce, Rockford, IL,
USA). Images were taken using the ChemiDoc XRS system with
Quantity One software (Bio-Rad, Richmond, CA, USA).

Hoechst 33258 Staining
Cell apoptosis was detected with DNA staining by Hoechst
33258. At the end of the treatment, cells were rinsed with
phosphate-buffered saline (PBS, pH 7.4) and fixed with 4%
paraformaldehyde for 30min at room temperature, followed
by incubation with Hoechst 33258 (5µM, final concentration)
at room temperature for 20min. Fluorescence images were
examined under the fluorescence microscope (Olympus IX71,
Tokyo, Japan).

Caspase-3 Activity Assay
Caspase-3 activity was measured in lysates of AMSCs using the
CaspACETM Assay System, Colorimetric (Promega, Madison,
WI) following the instructions of the manufacturer. Briefly, cells

were lysed by freeze-thaw, and then incubated on ice for 20min
to ensure complete cell lysis. Cell lysates were centrifuged at 12
000 rpm for 10min at 4◦C, and the supernatant fraction was
collected for the determination. An aliquot of culture supernatant
was incubated with 200mM of DEVDpNA substrate at 37◦C for
4 h. The absorbance was measured at 405 nm. The luminescence
was measured in a microplate reader and the protein levels in the
lysates were determined by the method of Bradford. Results were
expressed as a percentage of the control cells.

Statistical Analysis
All values are expressed as the mean ± SD of at least three
independent preparations. Differences among the groups were
compared using one-way ANOVA analysis followed by a Tukey
post-hoc test. A difference with P < 0.05 was considered
statistically significant.

RESULTS

E2 Increases CD38 Expression and
Decreases SIRT1 Levels in ASMCs
The expression of CD38 and SIRT1 at mRNA and protein levels
were detected by real-time PCR and western blot, respectively.
Non-normalized Ct values and non-cropped non contrasted
western-blot images were provided in Supplementary Material.
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FIGURE 2 | Time course of CD38 and SIRT1 expression in ASMCs with E2 treatment. ASMCs were pre-treated with 10 or 100 nM of E2 for 24 h and 48 h

respectively. (A) CD38 and (B) SIRT1 mRNA levels were detected by real-time PCR. (C) CD38 and SIRT1 protein levels were determined by western blot and

quantitative analysis of (D) CD38 and (E) SIRT1 levels was normalized to GAPDH levels. *P < 0.05, **P < 0.01 vs. the control group. N = 3.

Firstly, ASMCs were pre-treated with various concentrations
(0.1, 1, 10, and 100 nM) of E2 for 24 h. The mRNA levels
of CD38 raised with the increase of E2 concentration, and
the expression achieved maximum at 10 nM. There were no
significant differences in CD38 expression between the 10
and 100 nM group (Figure 1A). By contrast, SIRT1 mRNA
levels significantly decreased by the treatment of E2 at 10
and 100 nM (Figure 1B). In accordance with the PCR results,
CD38 protein levels elevated whereas SIRT1 levels dropped
in the presence of E2 in a concentration-dependent manner
(Figures 1C–E).

In time course experiments, E2 at 10 and 100 nM were added
to ASMCs for 24 and 48 h incubation, respectively. Results
showed that CD38 mRNA continued to increase within 48 h
and the effect was stronger in the 10 nM E2-treated group
(Figure 2A). SIRT1 mRNA levels decreased at 24 h but partly
restored at 48 h time point (Figure 2B). The protein levels of
CD38 and SIRT1 showed a significant negative correction at 24
and 48 h, and there were no statistical differences between the
10 and 100 nM groups (Figures 2C–E). Therefore, pre-treatment
with 10 nM of E2 for 48 h were selected for the subsequent
experiments.

E2 Acts on SIRT1/p53 Signaling Through
CD38 in ASMCs
We used the WT and CD38 KO ASMCs to confirm whether
E2 affects SIRT1 expression through CD38. E2 promoted CD38
expression in WT ASMCs as expected (Figures 3A,B). The
levels of SIRT1 were down-regulated by E2 in WT group
compared with the vehicle treated cells. CD38 deficiency induced
a marked increase in SIRT1 protein levels compared with the
WT group, but this increase was not reversed by E2 treatment
(Figures 3A,C).The acetylation of p53, one of the downstream
targets of SIRT1, was assayed. In WT ASMCs, E2 increased the
Ac-p53 levels, which were not changed in CD38 KO cells. The
expression of p53 was not significantly altered (Figures 3A,D).
These results indicated that E2 suppressed SIRT1/p53 signaling
directly through CD38.

CD38 Deficiency Reverses the Effect of E2
on SIRT1/p53 Pathway During Hypoxia
We further investigated the role of E2 during hypoxia in WT
and CD38 KO ASMCs. Hypoxia exposure induced an obvious
down-regulation of CD38 mRNA, which was inhibited by E2
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FIGURE 3 | The effects of E2 on SIRT1/p53 signal pathway in WT and CD38

KO ASMCs. (A) CD38, SIRT1, p53, and Ac-p53 levels were determined by

western blot. Quantitative analysis of (B) CD38 and (C) SIRT1 levels was

normalized to GAPDH levels, and (D) Ac-p53 levels were normalized to total

p53 levels. *P < 0.05, **P < 0.01 vs. the WT control group. ##P < 0.01 vs.

the E2-treated WT group. N = 3.

treatment in WT cells (Figure 4A). SIRT1 mRNA reduced after
hypoxia, and E2 further suppressed its expression inWTASMCs.
However, the effect of E2 on SIRT1 expression was abolished
in the absence of CD38 (Figure 4B). At protein levels, hypoxia
resulted in an increase in CD38 and a decrease in SIRT1. E2
further promoted CD38 expression and suppressed SIRT1 levels.
By contrast, the effect of E2 on SIRT1 disappeared in CD38 KO
cells (Figures 4C–E). Hypoxia induced the acetylation of p53,
which was also aggravated by E2 treatment. Accordingly, this
effect was diminished in CD38 KO ASMCs (Figures 4C,F).

CD38/SIRT1 Signaling Attenuates
E2-Mediated ASMC Apoptosis After
Hypoxia
We examined the apoptosis in ASMCs following hypoxia
exposure. Hoechst 33258 staining was employed to evaluate the
nuclear condensation and characteristic features of apoptotic
cells. In WT ASMCs, control cells showed intact, light blue
nuclei whereas cells exposed to hypoxia displayed typical nuclear
apoptotic morphology, as indicated by bright, condensed and
rounded nuclei. The apoptotic cells significantly increased after
E2 treatment. In addition, E2 did not induce ASMC apoptosis
under normoxia. However, CD38 deficiency showed an obvious
protection against hypoxia exposure, with a marked reduction
in apoptosis, and E2 did not further promote apoptosis in
CD38 KO AMSCs (Figure 5A). The percentage of apoptotic
cells was quantified in Figure 5B. Bax and Bcl-2 are the major

members of Bcl-2 family which play a key role in promoting
and inhibiting intrinsic apoptotic pathway. Bax promotes cell
death while Bcl-2 prevents apoptosis by inhibiting the activity
of Bax (20). The Bax/Bcl-2 ratio was significantly increased after
hypoxia and E2 further aggravated the ratio. However, CD38
deficiency showed a lower Bax/Bcl-2 ratio compared with WT
and the pro-apototic effect of E2 was antagonized in CD38 KO
cells (Figures 5C,D). The effects of E2 on caspase-3 activation
was further measured following hypoxia exposure. The activity
of caspase-3 was comparable between the control and E2-treated
cells under normoxia. Hypoxia induced a 2.05-fold increase in
caspase-3 activity, and E2 further promoted caspase-3 activation
in hypoxic WT AMSCs. However, in CD38 KO ASMCs, a lowed
caspase-3 activity was observed after hypoxia exposure both in
the absence and presence of E2 (Figure 5E).

The specific SIRT1 activator Resveratrol (RSV) was employed
to verify whether SIRT1 is essential in E2-induced ASMC
apoptosis. Single treatment with E2 or E2 combined with RSV
did not affect apoptosis under normal conditions. However, E2
induced-Bax/Bcl-2 ratio change and caspase-3 activation were
significantly reversed by RSV following hypoxia (Figure 6). The
above data confirmed that E2 promoted ASMC apoptosis via
CD38/SIRT1 signaling.

E2 Enhanced CD38 Expression Through
Estrogen Receptor
To verify whether estrogen receptors (ER) mediate the action
of E2 on CD38 expression, we used compound ICI 182,780,
an estrogen receptor antagonist with no partial agonist activity
(21).Treatment with ICI182,780 significantly decreased CD38
mRNA and protein levels, and E2-indcued CD38 expression was
completely abolished in the presence of ICI182,780 (Figure 7).
This result suggested that E2 promotes CD38 expression through
ER.

DISCUSSION

Here, we demonstrated that pretreatment with E2 significantly
up-regulated CD38 expression and suppressed SIRT1 activation,
thus increasing the acetylation of p53 in mouse ASMCs. E2
further exaggerated hypoxia-induced AMSC apoptosis while this
effect disappeared in CD38 KO cells and in the presence of SIRT1
activator. By using the ER antagonist we also found that E2
enhanced CD38 expression through ER. These results suggested
that E2 promotes apoptosis through CD38/SIRT1/p53 signaling
pathway.

There is increasing evidence that sex differences exist in a
variety of lung diseases including asthma and COPD, and sex
steroids have complex effects in modulating the processes. For
example, in adult women, the cyclical variations in sex steroid
levels with the menstrual cycle may influence asthma symptoms.
Worsening of symptoms usually occurs when estrogen levels
reduce, suggesting that estrogens may be protective for asthma
(22). However, Use of estrogen by hormone replacement therapy
increases asthma symptoms and the risk of asthma onset
(23). The confounding effects request much more research in
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FIGURE 4 | The effects of E2 on SIRT1/p53 signal pathway in WT and CD38 KO ASMCs after hypoxia exposure. (A) CD38 and (B) SIRT1 mRNA levels were

detected by real-time PCR. (C) CD38, SIRT1, p53, and Ac-p53 levels were determined by western blot. Quantitative analysis of (D) CD38 and (E) SIRT1 levels was

normalized to GAPDH levels and (F) Ac-p53 levels were normalized to total p53 levels. *P < 0.05, **P < 0.01 vs. the WT control group; #P < 0.05, ##P < 0.01 vs.

the corresponding WT group. N = 3.

modulation of asthma and other lung diseases to elucidate the
mechanisms underlying sex differences.

Sex steroids modulate airway smooth muscle contractility
in a variety of manners. Estrogens potentiate bronchodilation
through prostaglandin synthesis and cGMP modulation, and
further influence Ca2+ influx channels (24). The mechanism by

which estrogens decrease Ca2+ responses probably involve ERα

(25), inhibition of L-type channels and store-operated calcium
channels (26). CD38 is a critical regulator for intracellular Ca2+

homeostasis. CD38 is capable of cleaving nicotinamide adenine
dinucleotide (NAD) to cyclic ADP ribose (cADPR) which is a
trigger for intracellular Ca2+ release and hydrolyzing cADPR
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FIGURE 5 | The effects of E2 on apoptosis in WT and CD38 KO ASMCs after hypoxia exposure. (A) Representative images of Hoechst 33258 staining in ASMCs.

Scale bar, 50µm. (B) Quantitative analysis of apoptosis expressed as the percentage of total cell count. (C) Bax and Bcl-2 levels were determined by western blot

and (D) the Bax/Bcl-2 ratio were quantitatively analyzed. (E) The activity of caspase-3 was measured by colorimetry. **P < 0.01 vs. the WT control group; #P < 0.05,
##P < 0.01 vs. the WT hypoxia group. N = 3.

FIGURE 6 | The effects of combined treatment with E2 and SIRT1 activator Resveratrol (RSV) on apoptosis after hypoxia exposure. RSV (10µM) was added to

ASMCs for 2 h incubation followed by 24 h of E2 treatment. (A) Bax and Bcl-2 levels were determined by western blot and (B) the Bax/Bcl-2 ratio were quantitatively

analyzed. (C) The activity of caspase-3 was measured by colorimetry. *P < 0.05, **P < 0.01 vs. the control group; #P < 0.05, ##P < 0.01 vs. the E2-treated group

under hypoxia. N = 3.

to ADPR (27). In addition, CD38 is an NAADP synthase
required for NAADP-mediated Ca2+ release from lysosomal
stores (10). CD38 KO mice exhibit very low cADPR levels
in the lungs, attenuated [Ca2+]i responses to spasmogens,
and decreased airway responsiveness (28). Cytokines such
as IL-13 or TNF-α caused significantly lower inflammation
and hyperresponsiveness in the CD38 KO mice compared to

WT controls (29, 30), suggesting the crucial roles of CD38
in the contractility of airway smooth muscle and airway
hyperresponsiveness. Studies showed that E2 increased CD38
mRNA and protein expression, resulting in increased cADPR
synthesis, which may contribute to calcium regulation and
myometrial contractility in rat myometrium (31). However, there
has no data for CD38 expression in airway smooth muscle.
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FIGURE 7 | The effects of estrogen receptor antagonist on CD38 expression. The estrogen receptor antagonist ICI182,780 (ICI, 10 nM) was added to ASMCs for 2 h

incubation followed by 24 h of E2 treatment. (A) CD38 mRNA levels were detected by real-time PCR. (B) CD38 protein levels were determined by western blot and

quantitative analysis of CD38 levels was normalized to GAPDH levels. *P < 0.05, **P < 0.01 vs. the control group; #P < 0.05, ##P < 0.01 vs. the E2-treated group.

N = 3.

Therefore, we investigated the effect of E2 varying from 0.1 to
100 nM on CD38 mRNA and protein expression in ASMCs.
In accordance with the result from myometrium, E2 showed a
concentration-dependent increase in CD38 mRNA and protein
levels. The time course assay revealed that CD38 mRNA and
protein maintained a high level till 48 h with the treatment of
physiological concentration of E2 (10 and 100 nM).

CD38 functions as the primary NAD+ hydrolase that
maintains low intracellular NAD+ levels with a consequent low
sirtuin activity (32) There is an increased NAD+ levels as well
as SIRT1 enzymatic activity in CD38 knockout mice, which is
responsible for the deacetylation of the SIRT1 substrate p53 (9).
This non-genomic regulation may explain our current results
that CD38 gene deletion markedly increases SIRT1 protein levels
without significant effect on its mRNA expression. Several studies
demonstrated the down-regulation of SIRT1 protein levels by
E2 treatment in vascular smooth muscle cells (16, 33), but
there was no data showing that E2 had effects on SIRT1 gene
expression. In the present study, E2 induced obvious decrease
in SIRT1 mRNA and protein levels in WT ASMCs but not in
CD38 KO cells, suggesting that other unknown mechanisms
may exist in E2’s actions associated with CD38 and warrants
further investigation in our feature work. Taken together, these
results suggested that CD38 is necessary for the modulation
of SIRT1/p53 signaling pathway by E2. We for the first time
demonstrated that E2 modulates the CD38/SIRT1/p53 signal
pathway in mouse AMSCs.

The SIRT1/p53 pathway mediated cell apoptosis in
many pathological processes. It has been reported that high
concentration of glucose results in neuronal apoptosis through
downregulation of SIRT1 and increased acetylation of p53, which
likely contribute to the development of cognitive impairment in
diabetes (34). In another study, rotenone treatment promotes
p53 transcription and apoptosis through targeting SIRT1 and
H3K9 SH-SY5Y cells, leading to nigrostriatal degeneration in
Parkinson’s disease (35). Here we investigated whether E2 acts

on CD38/SIRT1/p53 signal pathway during hypoxia in ASMCs.
Results showed that hypoxia caused a marked decrease in CD38
mRNA levels, which is consisted with the previous study (36).
However, CD38 protein levels was up-regulated after hypoxia
exposure. Although both in vivo and in vitro studies have
confirmed that CD38 is activated during the process of hypoxia
or ischemia, triggering CD38-mediated NADP(H) depletion
with loss of eNOS-mediated NO generation and increased
eNOS uncoupling (37, 38), no studies showed the changes
of CD38 protein levels under hypoxia. We speculated that
different time course changes may exist in mRNA and protein
expression following hypoxia, or there might be a negative
feedback regulation that inhibits CD38 mRNA expression.
E2 exacerbated hypoxia-induced SIRT1 suppression and p53
acetylation, and these effects were abolished in CD38 KO cells,
suggesting that CD38 is an upstream signaling molecule that
regulates hypoxia-induced SIRT1/p53 activation.

Bcl-2 and Bax are two main proteins of Bcl-2 family, which
is notable for the regulation of cell apoptosis. Bcl-2, an anti-
apoptotic protein, inhibits the accumulation of cytochrome c
in the cytosol, thereby preventing caspase-3 activation and
blocking the apoptotic cascade, whereas Bax was identified as
the proapoptotic member that triggers the release of caspases.
Therefore, the Bax/Bcl-2 ratio is a determining factor in the
regulation of apoptotic cell death (39). The ratio of Bax to
Bcl-2 increased following hypoxia exposure in different models
(40, 41). The expression of Bcl-2 and Bax is regulated by
p53. The activation of p53 induces the expression of bcl-2
while simultaneously stimulates the expression of bax (42). By
measuring the fluorescence of Hoechst 33258, the Bax/Bcl-2 ratio
and the activity of caspase-3, we demonstrated that E2 aggravated
cell apoptosis following hypoxia stimulation. The application of
CD38 KO cells and the SIRT1 activator further confirmed the
direct role of CD38/SIRT1 in E2-mediated AMSC apoptosis.

Finally, we explored the underlying mechanism by which
E2 modulates CD38 expression. It has been widely considered
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that estrogens perform physiological function through receptor-
mediated signaling pathways. The nuclear ERs exist in two main
isoforms termed ERα and ERβ, and the classical mechanism
of estrogen action involves ligand-induced dimerization
of ER which interacts with estrogen responsive elements
(EREs) in target gene promoters and results in transcriptional
activation (43). Here we determined whether E2 mediated CD38
transcription through ER, by using ICI 182,780. ICI 182,780 is
a selective estrogen antagonist that has been used for assessing
ER-mediated actions of estrogens (21). Results showed that ICI
182,780 suppressed CD38 mRNA levels and counteracted the
effect of E2, indicating the involvement of ER in the regulation
of CD38. However, much more work is needed to elucidate
the molecular mechanism, including the identification of the
isoform (ERα or ERβ) which mediates the effect, and exploring
possible ERE on CD38 promoters.

According to our results, the physiological concentration of E2
affects CD38 expression and promotes apoptosis, indicating that
E2 have adverse effects on ASMCs. This may probably explain
why women are more susceptible to respiratory diseases and
the clinical application of estrogens should be more cautious.
Further research into the effects of estrogen on the proliferation
and inflammatory response in ASMCs are necessary, and the
animal models of specific pulmonary diseases such as asthma and
pulmonary hypertension in the smooth muscle-specific CD38
KO mice will also provide essential tools for elucidating the
function of E2 on ASMCs. These studies are now ongoing in our
laboratory.

In summary, the estrogen E2 acts on CD38/SIRT1/p53 signal
pathway, resulting the acetylation of p53 and pro-apoptotic
effects in mouse ASMCS following hypoxia. The findings may
provide novel evidence for the prevention and treatment of
respiratory disease through CD38 inhibition.
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