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Abstract Phase separation is an important mechanism that mediates the compartmentalization of

proteins in cells. Proteins that can undergo phase separation in cells share certain typical sequence

features, like intrinsically disordered regions (IDRs) and multiple modular domains. Sequence-

based analysis tools are commonly used in the screening of these proteins. However, current phase

separation predictors are mostly designed for IDR-containing proteins, thus inevitably overlook the

phase-separating proteins with relatively low IDR content. Features other than amino acid

sequence could provide crucial information for identifying possible phase-separating proteins: pro-

tein–protein interaction (PPI) networks show multivalent interactions that underlie phase separation

process; post-translational modifications (PTMs) are crucial in the regulation of phase separation

behavior; spherical structures revealed in immunofluorescence (IF) images indicate condensed dro-

plets formed by phase-separating proteins, distinguishing these proteins from non-phase-

separating proteins. Here, we summarize the sequence-based tools for predicting phase-

separating proteins and highlight the importance of incorporating PPIs, PTMs, and IF images into

phase separation prediction in future studies.
Introduction

Cellular organelles can be categorized into two classes,
membrane-bound organelles and membraneless organelles.
Membrane-bound organelles include classic organelles such
as the Golgi apparatus, mitochondrion, and lysosome. These
ciences /
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cellular compartments enclosed by lipid bilayers have been well
studied in the last century. However, in living cells, many bio-
chemical reactions take place in membraneless organelles [1,2].

The formation mechanisms and functions of membraneless
organelles had remained perplexing until ten years ago. In
2009, Brangwynne et al. reported liquid-like behaviors of P

granules, which are protein-rich membraneless organelles in
the cytoplasm of cells from Caenorhabditis elegans [3]. These
granules can flow, deform, and undergo fission freely, just like

liquid droplets. Proteins within P granules are also highly
mobile and can exchange rapidly with the surrounding cyto-
plasm. These findings suggest that liquid–liquid phase separa-
tion (LLPS, also called liquid–liquid demixing) could be one of

the mechanisms underlying membraneless organelle
formation.

In a phase separation process, a set of macromolecules such

as proteins and nucleic acids are separated from their sur-
rounding environments and form an independent phase. The
separated phase shares a similar molecular composition with

the surrounding environment, yet at different concentrations
[4]. In cells, proteins or nucleic acids form separated phases
via intra- or intermolecular interactions [1,4,5], thereby allow-

ing the formation of phase-separated compartments, which are
also named membraneless organelles or biomolecular conden-
sates. Besides P granules [3], the nucleoli [1,2], centrosomes [6],
stress granules [7,8], and processing bodies (P-bodies) [8,9] are

also membraneless organelles formed through phase separa-
tion. In addition, phase separation underlies many biological
processes such as translation regulation [10,11], mRNA dead-

enylation [10,12], heterochromatin formation [13,14], and the
control of signal transduction [15–17].

Phase separation is a complex biophysical process. Changes

to any property of the system, e.g., molecular composition,
temperature, electrostatic property, and viscoelasticity of the
solution, may affect the phase separation process [1,5,18].

Being able to undergo phase separation under specific condi-
tions may be a universal property of proteins. However, only
a few proteins with specific sequence-dependent features have
the potential to undergo phase separation in living cells [19].

In this review, we name these proteins phase-separating pro-
teins. Scientists have found that certain sequence features
may correlate with phase separation behaviors, which brings

out a range of useful bioinformatics tools to predict phase-
separating proteins. Herein, we summarize the sequence-
based predicting tools for phase-separating proteins and inte-

grate the available phase-separating protein data to evaluate
their performances. Furthermore, we propose protein–protein
interaction (PPI) networks, post-translational modifications
(PTMs), and immunofluorescence (IF) images as three promis-

ing features to be incorporated into phase separation predic-
tion in future studies.

Driving force of phase separation

Phase separation is a conditional process. Proteins indispens-

able to the formation of one condensate can be alternative in
another or do not participate in phase separation under some
conditions [19]. Multivalent interactions between condensate
components are the driving force of phase separation

[17,20,21].
Proteins able to form multivalent interactions that promote
phase separation can be classified into two types: one charac-
terized by multiple modular domains and the other character-

ized by intrinsically disordered regions (IDRs). The first type
of proteins often carry several folded interaction domains.
The driving force of phase separation of these proteins is the

multivalent interactions between their interaction domains
[4]. An example is the interaction between small ubiquitin-
like modifier (SUMO) and SUMO-interacting motif (SIM),

which plays an essential role in the overall architecture of
promyelocytic leukemia (PML) body. The PML protein con-
tains a SUMO-interacting motif and multiple SUMOylation
sites [22]. As the scaffold protein of the PML body, PML

can not only self-assemble via interactions between its tripar-
tite motifs (TRIMs) but also interact with itself and other pro-
teins via SUMO–SIM interactions [23,24] (Figure 1A).

Another example is the multivalent interactions of the
nephrin–non-catalytic region of tyrosine kinase (NCK)–neu-
ronal Wiskott–Aldrich syndrome protein (N-WASP) system

in the actin regulatory signaling pathway. Nephrin is a trans-
membrane protein, the cytoplasmic tail of which harbors three
tyrosine phosphorylation (pTyr) sites. Each of these three pTyr

sites can bind to a Src homology 2 (SH2) domain on NCK. N-
WASP contains six proline-rich motifs (PRMs), which can also
bind to three of the SH3 domains on NCK. These interactions
further stimulate actin assembly and phase separation [17]

(Figure 1B).
The other type of phase-separating proteins are character-

ized by the presence of IDRs [25,26]. Instead of having a fixed

three-dimensional structure, IDRs can interconvert between a
range of slightly different low-energy states with discrepant
conformations [27–29]. Proteins with high proportions of

IDRs are hot targets in phase separation studies, e.g., the neu-
rodegenerative disorder-related protein fused in sarcoma
(FUS) [30–33] (Figure 1C), the BUB3-interacting and GLEBS

motif-containing protein BuGZ [34,35] (Figure 1D), and the
microtubule-associated protein Tau [36–38]. However, not all
IDRs facilitate phase separation. Phase-separating IDRs often
share some sequence features. One type of IDRs that often

undergo phase separation is the IDRs encompassing low-
complexity regions (LCRs), which are regions with biased
amino acid composition, often containing repeated segments.

Moreover, phase-separating IDRs are often enriched with
specific amino acid residues, e.g., arginine and glycine for the
RGG/RG domains [39,40] or polar amino acid residues like

serine, tyrosine, glutamine, and asparagine for the prion-like
domains [41]. These amino acids do not appear randomly,
but are often found as functional sites like short/eukaryotic
linear motifs and alternating charge blocks [25,42].

IDR content analysis in the prediction of phase-

separating proteins

IDR-containing proteins account for a large proportion of
phase-separating proteins, although our understanding of

how IDRs are involved in the phase separation process and
what features these IDRs share is still limited [43]. Therefore,
IDR content analysis is often utilized in bioinformatics screen-

ing of potential phase-separating proteins (Table 1). DisProt is
one of the earliest and most influential disorder databases
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Table 1 IDR content analysis tools

IDRs within proteins

IDRs within proteins

Note: IDR, intrinsically disordered region.
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[44,45]. Two long-tested IDR predictors, ESpritz [46] and
IUPred [47,48], are frequently used in the IDR content analysis

of potential phase-separating proteins. In recent years, meta-
IDR predictors like D2P2 [49] and MobiDB [50,51], which
integrate predictions from several predictors currently avail-

able and provide comprehensive results, are widely used as
well. For example, in a previous study on how intrinsically dis-
ordered linkers influence the interplay between phase separa-

tion and gelation, researchers used the meta-IDR predictor
D2P2 to identify proteins containing disordered regions from
the human proteome [52].
Phase separation predictors

Although multivalent, transient interactions that drive phase

separation are often facilitated by IDRs [21], only proteins
with certain types of IDRs facilitate phase separation. Non-
IDR interacting elements like the coiled-coil domain can also

promote these interactions [6]. Bioinformaticians thus aim to
develop prediction tools that are based explicitly on phase
separation-specific sequence features.

By studying the sequences of several well-known phase-

separating proteins, e.g., FUS, DEAD box protein 4
(DDX4), TATA-binding protein-associated factor 15
(TAF15), Ewing sarcoma protein (EWS), TAR DNA-

binding protein 43 (TDP43), and heterogeneous nuclear
ribonucleoprotein A1 (HNRNPA1), two common types of
LCRs, prion-like domains (PLDs) and RGG domains, were

found to promote weak interactions and thereby promote
phase separation [33,39,53,54]. Furthermore, low-complexity
3

Figure 1 Schematic view of multivalent interactions that promote pha

A. PML protein can not only self-assemble via interactions between i

other proteins, such as DAXX and SP100. B. Schematic view of nephrin

three pTyr sites, each of which can bind to an SH2 domain on NCK. T

WASP. C. Residue-wise plot of scaffold protein FUS. Information of

scores were predicted by IUPred for long disorder; the prion-like do

contact was identified with PScore greater than four, as indicated by d

promyelocytic leukemia; TRIM, tripartite motif; SIM, SUMO-intera

domain-associated protein; SP100, nuclear autoantigen Sp-100; NC

Wiskott–Aldrich syndrome protein; pTyr, tyrosine phosphorylation; SH

PTM, post-translational modification; IDR, intrinsically disordered

protein ZNF207; Phos, phosphorylation; Ub, ubiquitination; Ac, acet
aromatic-rich kinked segments (LARKSs) and steric zipper
motifs have been found to promote the transition between dif-

ferent physical properties of biomolecular condensates [55,56].
Such features have inspired bioinformaticians to design algo-
rithms to predict the phase separation propensities of proteins

[57]. These include PScore [58], prion-like amino acid compo-
sition (PLAAC) [59], PSPer [60], catGRANULE [61], R+Y
[41], LARKS [55], and ZipperDB [56] (Table 2).

PScore

Pi–pi interactions can occur between protein sequences
enriched in pi-orbital-containing residues. In contrast to the
conventional view, pi–pi interaction involves not only amino

acids with an aromatic ring (tyrosine, phenylalanine, trypto-
phan, and histidine) [62], but also non-aromatic amino acids
with pi bonds on their side chains (glutamine, asparagine, glu-
tamic acid, aspartic acid, and arginine) and small amino acids

with exposed backbone peptide bonds (glycine, serine, thre-
onine, and proline). Face-to-face interactions formed by these
pi-containing groups are called planar pi–pi contacts. In 2018,

the Forman-Kay group reported that planar pi–pi contact rep-
resents a predominant interaction type and is highly relevant
to self-association and phase separation of proteins [58]. Then

a planar pi–pi contact predictor named PScore was developed
for screening potential phase-separating proteins.

PLAAC

PLAAC is an application initially designed to screen PLDs

[59], which utilizes a hidden Markov model (HMM) for the
se separation

ts TRIMs but also interact via its SIM with SUMOs of itself and

–NCK–N-WASP system. The cytoplasmic tail of nephrin contains

he three SH3 domains on NCK can also bind to PRMs within N-

PTM sites was collected from the PhosphoSitePlus database; IDR

main was identified with PLAAC score greater than zero; the pi-

ashed line. D. Residue-wise plot of scaffold protein BuGZ. PML,

cting motif; SUMO, small ubiquitin-like modifier; DAXX, death

K, non-catalytic region of tyrosine kinase; N-WASP, neuronal

, Src homology; PRM, proline-rich motif; FUS, fused in sarcoma;

region; BuGZ, BUB3-interacting and GLEBS motif-containing

ylation; Me, methylation; AA, amino acid.



Table 2 Phase separation analysis tools

–

 PLDs of proteins

LARKSs within proteins

LARKSs

Note: PLD, prion-like domain; FUS, fused in sarcoma; R, arginine; G, glycine; F, phenylalanine; Y, tyrosine; LARKS, low-complexity

aromatic-rich kinked segment.
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discrimination of PLDs and non-PLDs based on amino acid
composition. PLAAC was originally trained on yeast pro-

teome but later extended to screen human proteins [63,64]. It
supports both single-protein and proteome scanning.

PSPer

PSPer is a rule-based model developed for screening prion-like

RNA-binding phase-separating proteins. Expected properties
of the FUS-like phase-separating regions are used to build
an HMM-like model [41], which identifies PLDs, RNA-

recognition motifs, and disordered, arginine-rich regions
within a protein [60].

catGRANULE

catGRANULE is a phase separation prediction algorithm

with good performance for predicting dosage-sensitive pro-
teins [61]. This tool is based on the discovery that cellular tox-
icity mechanisms of some dosage-sensitive proteins in yeast are

well-explained by LLPS theory, as these proteins take part in
the formation of cytoplasmic foci in a concentration-related
manner. Further studies reveal that these proteins have an

increased nucleic acid binding propensity. catGRANULE
was therefore developed to screen these proteins by combining
nucleic acid binding propensities, structural disorder, sequence
length, and content of arginine, glycine, and phenylalanine.

Although initially trained against the yeast proteome, cat-
GRANULE has been successfully applied to mammalian
and even human proteomes [37].

R + Y

R + Y is a predictor built upon the analysis of the molecular
grammar of FET family proteins, including FUS, EWS, and
TAF15 [65]. In 2018, the Hyman, Alberti, and Pappu groups

reported that phase separationbehaviors ofFET family proteins
are determined by interactions between the tyrosine-rich PLDs
and the arginine-rich RNA-binding domains [41]. Further anal-
yses indicate that the numbers of tyrosine and arginine residues
are inversely correlatedwith themeasured saturation concentra-

tions for phase separation. Extrapolating these findings to the
prediction of non-FET proteins, researchers developed the
R+Ypredictor andutilized it for ahumanproteome-wide anal-

ysis,whichhasremarkablepredictionperformanceonDNA-and
RNA-binding proteins (RBPs).

ZipperDB

ZipperDB is a database that includes predicted fibril-forming
segments from more than 20,000 putative amyloid-forming
protein sequences [56]. Fibrils are highly ordered aggregates
characterized by a ‘‘steric zipper” structure, whose formation

is an essential step in amyloidosis. Amyloid deposition is occa-
sionally observed in cells. Recent evidence indicates that the
formation of such deposits could be attributed to a liquid-to-

solid phase transition or an atypical phase separation process
that forms solid-state compartments. ZipperDB utilizes an
algorithm named 3D profiling to analyze the probability of

forming a steric zipper structure for every hexapeptide
segment.

LARKS

LARKSs share similar structural characteristics with steric

zippers yet have lower binding energy, as aromatic residues
predominate the kinks and affect LARKS stability through
weak interactions. LARKSs are characterized by the stacking

kinked b sheet pairs, which promote the formation of amyloid
fibrils and hydrogels during phase transition. Similar to Zip-
perDB, 3D profiling was utilized to identify potential LARKSs

from inquiry protein sequences. After querying the human
proteome of 20,120 proteins, a list of 400 proteins with the
most enriched LARKS was provided [55].

In summary, all current phase separation prediction tools
are developed based on sequence-dependent features. PScore
calculates the pi-contact propensities of each residue in a given
protein sequence. PLAAC and PSPer identify specific domains
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like PLDs based on HMM. catGRANULE calculates the
granule propensity of each residue in a given sequence.
R + Y calculates the number of tyrosine and arginine residues

within disordered regions of a given sequence. LARKS and
ZipperDB adopt an algorithm named 3D profiling to measure
the probability of a given sequence to fold into a LARKS or a

steric zipper.

Performance evaluation of phase separation predic-

tors

Vernon et al. have recently reviewed several phase separation

predictors and compared their prediction performance com-
prehensively [57]. They find that since each algorithm predicts
different kinds of interactions and sequence features, very dif-
ferent protein categories are covered by these predictors. The

only exceptions are RBPs, as high prediction confidence is
obtained from all predictors for RBPs. However, due to the
insufficient phase-separating protein data available, evalua-

tions could only be made on a set of 30 human proteins [57].
At least four LLPS protein databases were released until

2020, including LLPSDB [66], PhaSePro [67], PhaSepDB

[68], and DrLLPS [69] (Table 3). LLPSDB collects in vitro data
on LLPS-related proteins. The current version of LLPSDB
includes 295 independent proteins, which are integrated into

1192 entries with corresponding experimental phase separation
conditions. PhaSePro provides the experimental data on 121
proteins driving phase separation in living cells, which is less
focused on in vitro phase separation conditions and contains

a broader array of information than LLPSDB. PhaSepDB
contains less detailed information than either LLPSDB or Pha-
SePro, but provides a larger set of data with 2914 non-

redundant proteins localized in more than 30 different orga-
nelles, which comprise PubMed-reviewed data, UniProt-
reviewed data, and high-throughput data. DrLLPS contains

9285 curated proteins that are known to be associated with
LLPS, including 150 scaffold proteins, 987 regulator proteins,
and 8148 potential client proteins. All four databases exten-

sively reference the original literature, allowing the user to ver-
ify information or conduct further scrutinization.

With the availability of high-quality data provided by the
four databases mentioned above, a more comprehensive com-

parison of phase separation predictors is possible. We con-
structed a non-redundant positive set (set P) of 278 human
proteins involving 90, 59, 233, and 86 proteins from LLPSDB,
Table 3 Information of four LLPS databases

Note: LLPS, liquid–liquid phase separation.
PhaSePro, the PubMed-reviewed part of PhaSepDB, and the
scaffold part of DrLLPS, respectively (Table S1). The remain-
ing majority of human proteome was collected from UniProt

and defined as the negative set (set N), which includes 20,227
proteins (Table S1).

To compare the prediction performance of available phase

separation predictors, we scored the proteins in both set P and
set N using PScore, PLAAC, catGRANULE, and PSPer,
which provide online/offline batch prediction (Table S2). For

R + Y and LARKS without prediction tools, R + Y scores
of 2657 human proteins and 400 human proteins enriched with
LARKSs were downloaded from the resepctive websites
(Table S2). ZipperDB provides neither batch prediction tools

nor bulk download. As a result, we collected prediction scores
from six phase separation predictors (Table S2).

Firstly, we adopted a comparison between those six tools

on human proteome by plotting the receiver operating charac-
teristic curve (ROC). As shown in Figure 2A, catGRANULE,
PScore, PLAAC, and PSPer have nearly the same values for

area under the curve (AUC), which are > 0.7, while the per-
formance of R + Y and LARKS is not as good as that of
the other four tools.

To test the influence of IDR contents on the scores of these
phase separation predictors, we scored the proteins in set P by
IUPred with default setting (Table S3). As shown in the scatter
plots, phase separation scores of the first five predictors are sig-

nificantly correlated with IDR scores (Figure 2B). In R + Y, a
lower score means a higher phase separation potential, and
therefore its prediction scores are significantly negatively-

correlated with IDR scores. For LARKS that did not provide
prediction scores, proteins in set P were divided into LARKS
High and LARKS Low groups, according to whether the pro-

tein is in the list of LARKS enriched proteins. The IDR scores
of proteins in the LARKS High group were significantly
higher than those in the LARKS Low group (Figure 2C).

The aforementioned comparison processes were also per-
formed for all human proteins, scores of all phase separation
predictors are significantly correlated with IDR scores (Fig-
ure S1). These results demonstrate that all phase separation

predictors prefer proteins with high IDR contents.
Discriminating the scaffold proteins from the client pro-

teins remains challenging. Therefore, it is possible that some

low IDR proteins in set P are client proteins. However, taking
the 12 phase-separating proteins for example, heterochromatin
protein 1 homolog alpha (HP1A), nucleophosmin 1 (NPM1),

PML, and NCK1, which are all scaffold proteins, were ranked
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outside of the top 10% of the human proteome by all the six
predictors, while PML was ranked outside of the top 20%
(Figure 2D).

In summary, a range of useful bioinformatics tools have
been developed to predict phase-separating proteins, however,
most of which are designed for screening IDR-containing pro-

teins. Proteins with modular domains account for a consider-
able part of phase-separating proteins as well, yet a
corresponding computational tool to identify such proteins is

not available. It may not be so challenging to identify proteins
with multiple modular interaction domains. However, some
proteins with few modular domains can also participate in
phase separation via assembly, like HP1A [13]. More compre-

hensive features besides sequence composition might be
required for phase separation predictors.
Other features potentially used to predict phase-

separating proteins

Features other than sequence composition could provide cru-
cial information for identifying possible phase-separating pro-
teins. This section will discuss three new features that could be

utilized in phase separation prediction: PPI networks, PTMs,
and IF images.

PPI networks

As described in the preceding section, the driving force of
phase separation is the multivalent interactions between mole-
cules. In some cases, especially for those with low IDR con-

tents, proteins cannot undergo phase separation alone. Take
the nephrin–NCK–N-WASP system in Figure 1B for example.
The pTyr–SH2 and SH3–PRM interactions among cooperated

proteins are the driving force of the phase separation process,
and NCK cannot phase separate under the conditions with
nephrin or N-WASP abscent [17]. Another example is the clus-

tering of T cell receptor (TCR) signaling pathway molecules.
Upon TCR activation, the tyrosine kinase ZAP70 phosphory-
lates the transmembrane protein LAT, and phospho-tyrosines

on LAT can bind to the SH2 domain on Grb2. Two SH3
domains within Grb2 further interact with Sos1, and the phos-
phorylated LAT, Grb2, and Sos1 together form the LAT com-
plex, which can coalesce into T cell microclusters that show

phase separation behaviors [15]. Similar to the aforementioned
example, components in this TCR pathway cannot phase sep-
arate without interactions among cooperated proteins.

One issue of the available phase separation predictors is
that they are based on sequence-dependent features of individ-
3

Figure 2 Comparison of phase separation predictors on human proteo

A. ROC curve for each predictor. Since PScore, PLAAC, and PS

catGRANULE returned scores for all human proteins. Except for catG

on the subsets of P and N sets. Prediction of LARKS was shown as a p

of predicted values for proteins in set P, with one axis being the IDR sc

correlation coefficient with P < 0.05 indicates significant correlation.

Low groups, according to whether the protein is in the list of LARK

Mann–Whitney U test. D. Ranking scores of 12 specific LLPS prot

characteristic; AUC, area under the curve; LARKS, low-complexity ar
ual proteins. These features may not be sufficient, as phase sep-
aration driven by complex modular interaction domains or
motifs and other multivalent interactions might be missed. A

more comprehensive approach that also considers PPI net-
work information could be helpful. It is hard to integrate
PPI networks into phase separation predictors directly. One

possible approach is network embedding method such as
node2vec [70]. Taking the adjacency matrix of the PPI network
as input, node2vec encodes each node in the network as a vec-

tor, which can be used for various downstream machine learn-
ing tasks. The distance between vectors reflects the similarity of
interaction networks of corresponding proteins. However, it
should be noted that PPI networks based on experimental evi-

dence usually bias to well-studied proteins. BioPlex database
that provides an unbiased mapping of the human PPIs by
affinity-purification mass spectrometry might be more appro-

priate to be incorporated into phase separation prediction
[71,72].

PTMs

The interactions required for phase separation can be weak
interactions or strong interactions reversible on a short time-

scale [21]. The reversibility can often be regulated by PTMs,
like the interaction between the SH2 domain and the pTyr resi-
due in nephrin–NCK–N-WASP and TCR pathways [15,17]. In
these examples, PTMs can regulate the reversibility of a bind-

ing event by generating/degenerating a modular interaction
domain recognition site [21].

PTMs can also regulate phase separation processes by

changing protein physical properties, like the charge state,
bulkiness, solubility, hydrophobicity, or binding affinity
[10,73–75]. Citrullination of RG/RGG motifs has been

reported to increase the solubility of proteins like FUS,
EWS, and TAF15, inhibiting the arginine methylation, aggre-
gation, and stress granule formation of these proteins [76].

Another example is the PTMs of fragile X mental retardation
protein (FMRP) and cytoplasmic activation- and
proliferation-associated protein 1 (CAPRIN1). The two pro-
teins do not co-phase separate without phosphorylation. How-

ever, co-phase separation occurs when Tyr of CAPRIN1
aromatic-rich regions is phosphorylated, or the C-terminal
LCR of FMRP is phosphorylated [10,74].

Given the widespread regulatory roles of PTMs in phase
separation, we tested whether PTM levels could be used as fea-
tures to discriminate phase-separating proteins. We collected

PTM datasets from the PhosphoSitePlus database [77], includ-
ing phosphorylation, ubiquitination, acetylation, and methyla-
tion (Table S4). As shown in Figure 3A, the Venn diagram
me

Per have restrictions on the length of protein sequence, only

RANULE, the AUC scores of the remaining tools were calculated

oint since it did not provide scores for each protein. B. Scatter plots

ore and the other axis being the phase separation score. Spearman

C. Proteins in set P were divided into LARKS High and LARKS

S-enriched proteins. P value is calculated through the two-sided

eins by six phase separation predictors. ROC, receiver operating

omatic-rich kinked segment; LLPS, liquid–liquid phase separation.
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Figure 3 Comparison of PTM frequencies between different groups on human proteome

A. Venn diagram displaying the overlap of phase-separating proteins with different PTM types. The PTM datasets were collected from the

PhosphoSitePlus database. B. For all PTM types, frequencies for proteins in set P are significantly higher than those for set N. P values are

calculated through the two-sided Mann–Whitney U test. C. Distribution of IDR contents of proteins in set P and set N. Most proteins in

set N have low proportions of IDRs. D. Set N was resampled into a subset according to IDR content distribution of set P. P value

indicates that IDR contents of proteins in sampled set N have a similar distribution with that in set P. E. PTM frequencies of proteins in

set P are still higher than those in resampled set N.
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displays the overlap of phase-separating proteins with different

PTM types. For 278 phase-separating proteins in set P, 221 of
them contain more than three types of PTMs, and 158 of them
possess all four types of PTMs considered. The overlap

demonstrates that most phase-separating proteins are modified
by multiple types of PTMs. Then we defined the PTM fre-
quency of a protein as the number of modification sites on a

sequence divided by the length of the sequence, and calculated
PTM frequencies of proteins in set P and set N. For each pro-
tein, frequency of all PTM types and frequencies of each speci-
fic PTM types with more than 10,000 recorded sites in the
database were calculated (Table S5). For all PTM types, fre-

quencies for proteins in set P were significantly higher than
those in set N (Figure 3B). However, it is well established that
PTM sites are enriched in IDRs, and proteins with high

proportions of IDRs tend to have higher PTM frequencies
(Figure 3C), which might cause bias. To control the impact
of different IDR contents, the set N was resampled into a

subset, whose distribution of IDR contents was similar to that
of the set P (Figure 3D; see details of the resampling process in
Table S6). The PTM frequencies of the set P were still signifi-
cantly higher than those of the resampled set N (Figure 3E),
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which indicates that PTM frequency can be regarded as a fea-
ture to discriminate phase-separating proteins. Previous stud-
ies reported that an increased number of PTMs was

correlated with an increased LLPS propensity in predicted
phase-separating proteins [10,58], and our results show the
similar observations using the actual LLPS proteins from more

datasets.
It should be noted that although a considerable number of

PTM sites have been collected into the database, most of them

are phosphorylation sites. Poor data quality and low coverage
of the PTM dataset might affect the performance of incorpo-
rating PTM frequency as a feature. A high-confidence dataset,
including 119,809 phosphorylation sites, has been reported

recently [78], which could provide a high-quality PTM feature
for identifying possible phase-separating proteins.

IF images

Identification of spherical droplet structures through IF
images represents the most common approach for validation

of phase-separating proteins. Phase-separating proteins usu-
ally appear as spherical droplet-like structures in IF images,
which allows them to be distinguished from non-phase-

separating proteins. Thus phase-separating proteins can be
identified if we screen out the proteins which appear as spher-
ical structures in IF images. The Cell Atlas (part of the Human
Protein Atlas) database provides antibody-based profiling by

IF confocal microscopy for 12,073 proteins [79], allowing the
screening of phase-separating proteins based on IF images.

It should be noted that the formation of phase separation is

condition-dependent. Phase separation proteins that do not
appear as droplets in the inquiry IF images cannot be identi-
fied. In addition, some phase-separated condensates are too

small to be detected in IF images, such as the ‘‘transcription
hubs” in transcriptional activation [80], and some
membrane-bound organelles like vesicles have similar spherical

appearance in IF images. Therefore, IF images alone are insuf-
ficient to determine whether a specific protein can undergo
phase separation or not. However, IF images with droplet-
like structures could provide evidence that the labeled proteins

aggregate in cells, which allows us to screen out the potential
phase-separating proteins. In a previous study, we built a con-
volutional neural network (CNN) classifier to identify IF

images with droplet-like structures and found that the aggrega-
tion evidence extracted from IF images is useful in screening
phase-separating proteins with low IDR contents [81]. Besides

deep learning methods, CellProfiler [82] that can segment dro-
plets and cells in the IF images should also be useful in extract-
ing aggregation evidence from IF images. The outputs of both
the CNN classifier and the CellProfiler can measure the aggre-

gation state of the labeled proteins in IF images, and these out-
puts can be used as features for various downstream machine
learning tasks.

Conclusion and perspectives

Experimental studies have enabled significant progress in
improving our understanding of phase separation. Researchers
have also noticed that some sequence features are closely
related to the phase separation behavior, and several
sequence-based computational tools have been developed
accordingly. These computational methods facilitate studies
on the phase separation phenomenon by providing predictions

and proteome-scale screening of phase separation candidates.
Furthermore, to examine the roles of different domains of
specific proteins in phase separation, truncation mutants are

usually constructed to detect segments crucial in forming
liquid-like droplets. Computational methods that provide
residue-specific predictions also assist phase separation studies

in screening critical fragments. However, a meta-predictor that
integrates predictions from existing phase separation predic-
tors is in need to reduce the complexity of sequence analysis,
like D2P2 and MobiDB in IDR analysis.

Furthermore, current phase separation predictors are
mostly designed for IDR-containing proteins and are based
on sequence-dependent features of individual proteins. More

comprehensive features should be incorporated into phase sep-
aration predictors. As multivalent interactions are critical to
phase separation, PPI networks can be useful in phase separa-

tion computational analysis. PTMs and IF images are also
available features that can be utilized in the prediction of
phase-separating proteins. PTMs are predominant regulators

of phase separation behavior. Accordingly, in this review, we
also find that phase-separating proteins tend to have high
PTM frequencies. Components of phase-separating conden-
sates usually appear as spherical droplets in IF images, allow-

ing the screening of phase-separating proteins. We expect that
incorporating PPI networks, PTMs, and IF images into predic-
tion algorithms will lead to more effective and unbiased phase

separation analytic tools.
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