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Immunophenotypic Profiles in Polycystic Ovary Syndrome
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Polycystic ovary syndrome (PCOS) a long-known endocrinopathy and one of the most common endocrine-reproductive-
metabolic disorders in women, which can lead to infertility. Although the precise etiology remains unclear, PCOS is considered
as a complex genetic trait, with a high degree of heterogeneity. Besides, hormones and immune cells, including both innate and
adaptive immune cells, are reportedly a cross talk in PCOS. Chronic low-grade inflammation increases autoimmune disease risk.
This proinflammatory condition may, in turn, affect vital physiological processes that ultimately cause infertility, such as
ovulation failure and embryo implantation. Here, we review the accumulating evidence linking PCOS with inflammatory status
providing an overview of the underlying hormone-mediated dysregulation of immune cells. We mainly focus on the
correlational evidence of associations between immune status in women and the increased prevalence of PCOS, along with the
specific changes in immune responses. Further recognition and exploration of these interactions may help elucidate PCOS
pathophysiology and highlight targets for its treatment and prevention.

1. Introduction

Polycystic ovary syndrome (PCOS) is one of the most com-
mon endocrine-reproductive-metabolic disorders in females
since prehistory and remains a major cause of infertility,
affecting approximately 5–15% of women worldwide [1].
The main clinical manifestations of PCOS are obesity and
hyperinsulinemia/insulin resistance [2], irregular menstrua-
tion, and oligo-/anovulation. The primary hormonal abnor-
malities in PCOS are characterized by higher androgen and
estrogen but lower progesterone levels [3]. Several factors
have been associated with PCOS development, which might
ultimately lead to female infertility because of failed follicles
maturation and embryo implantation [4]. PCOS etiology is
not clear and is considered a complex genetic trait, character-
ized by a high degree of heterogeneity [5]. Furthermore,
PCOS can be associated with a series of complications. For
example, the incidence of gestational diabetes, asthma, and
recurrent miscarriage is 3–7-fold, 10-fold, and 3–5-fold

higher in women with PCOS than in the general population,
respectively [6, 7].

A recent study has shown that a higher body mass index
is associated with hypertriglyceridemia [8] in PCOS patients,
which is attributed to the obesity-induced change of adipo-
kines, including tumor necrosis factor-alpha (TNFα), inter-
leukin (IL)-6, and adiponectin [9]. The risk factors of
PCOS are linked to a sedentary lifestyle and western-style
eating habits, which can lead to fat accumulation, in turn,
contributing to the recruitment of immune defense cells
[10]. This situation has been described as a mild yet chronic
proinflammatory condition in obese patients, affecting not
only the adipose tissue but also other target organs, such as
the ovary [11]. The number of peripheral white blood cells
is also significantly increased in PCOS patients, as compared
with that of healthy controls. In addition, the proportion of
immune cell subgroups, such as lymphocytes, macrophages,
and eosinophils, is significantly elevated in PCOS [12].
These alterations may be further exacerbated by the obesity
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condition that is present in a high percentage of PCOS
patients. Besides, inflammatory reactions can influence vital
physiological processes such as ovulation [13] and embryo
implantation [14]. Even childhood obesity (before 12 years
of age) seems to potentially increase the risk of female infer-
tility later in life [15].

Furthermore, it has been proposed that PCOS may be
associated with autoimmune diseases. A correlational analy-
sis has shown that women account for seventy-eight percent
of the population suffering from autoimmune diseases, and
this may be associated with estrogen levels, as the onset of
autoimmune disease occurs at an earlier age in women than
in men [16]. Moreover, the interactions between the ovary,
immune cells, and their products such as steroids, peptide
hormones, prostaglandins, growth factors, and cytokines
play pivotal roles in the regulation of ovarian function [17].
Here, we reviewed the accumulating literature on the rela-
tionship between PCOS and immune cells and their impacts
on metabolic and reproductive disorders, which may provide
a better understanding of PCOS etiology.

2. Innate Immune Cells and PCOS

2.1. Macrophages. Macrophages are the most abundant
immune cells within the adipose tissue and ovary, both in
animals and humans [18, 19], particularly in the thecal,
luteal, and atretic follicles, where they participate in multiple
processes in the ovary, such as folliculogenesis and ovulation
[19, 20]. Macrophages are also crucial for maintaining a
balance between protective and destructive cell-mediated
immunity in the healing phase of inflammation [21]. Both
endogenous and environmental factors seemingly affect mac-
rophage populations in human peripheral tissues. Their dis-
tribution fluctuates throughout the ovarian cycle with the
highest numbers observed at the ovulation and luteal phases,
showing evidence of hormonal regulation [19]. A previous
study has reported that macrophage loss was accompanied
by induction of several proinflammatory genes, which is
reminiscent of the physiological process of luteolysis, and
the luteal phase progesterone deficiency is insufficient to
provide trophic support for the formation of the vascular net-
work, which is critical to corpus luteum function [21]. The
dysfunction of fat cells and accumulation of macrophages
can also result in an influx of a plethora of proinflammatory
cytokines and chemokines (e.g., IL-1, IL-6, IL-10, IL-12,
nitric oxide, and TNFα) into the circulatory system at the
same time, leading to a state of systemic, chronic low-grade
inflammation that can affect ovarian function [22].

Obesity and insulin resistance are clinical manifestations
of PCOS, which is also characterized by a transition in mac-
rophage polarization from an alternative anti-inflammatory
M2 state to a proinflammatory M1 state. At the same time,
M1 macrophages inhibit insulin sensitivity by producing
inflammatory cytokines, such as TNFα and IL-6, whereas
M2 macrophages exert the opposite effect [23, 24]. There
are higher levels of TNFα and IL-6 both in the serum and
particularly in the follicular fluid in PCOS [25], suggesting
that the follicular granulosa cells may be involved in secreting
these cytokines.

TNFα is not only a proinflammatory cytokine and partic-
ipates in obesity-related systemic insulin resistance by inhi-
biting tyrosine kinase of the insulin receptor in muscle and
fat but also known to be indispensable for follicular forma-
tion, oocyte maturation, and androgen synthesis and to
mediate insulin resistance [26]. As it plays a crucial role in
the apoptosis of the granulosa and luteal endothelial cells,
finally leading to follicular atresia and a luteolytic effect, its
concentration determines the quality of the oocyte [27] and
eventually promotes PCOS-independent hyperandrogen-
emia and obesity [28]. When TNFα binds to its receptor
(TNFR1) in macrophages, caspase-8 and caspase-3 are
cleaved and activated, thereby inducing IκB phosphorylation
and its degradation to activate nuclear factor κB (NFκB).
Subsequently, NFκB translocates to the nucleus where it
can activate the transcription of certain genes, particularly
those involved in immune and inflammatory responses
[29]. In addition, IL-6 was shown to attenuate estradiol pro-
duction, partially by inhibiting the expression of aromatase
in rat granulosa cells [30, 31]. Thus, it is plausible that
increased IL-6 expression in PCOS may contribute to the ste-
roidogenic ability to, in turn, decrease the androstenedione
conversion to estradiol in the ovary. A comparison of cul-
tured macrophages from rats showed that the levels of TNFα
and IL-6 secretion increased in the testosterone-treated
PCOS group but slightly declined in response to estrogen
treatment, whereas progesterone treatment had no effect
[32]. As TNFα and IL-6 also potentially induce insulin resis-
tance, stimulate the production of androgen, and cause
hypothalamic-pituitary-ovarian axis secretion disorder, a
concomitant PCOS condition may result in a vicious cycle
[33]. Therefore, we consider that prolonged high androgen
levels experienced by PCOS patients might drive macro-
phages conversion to the M1 phenotype, resulting in the
secretion of more proinflammatory cytokines and thereby
enhancing PCOS clinical manifestations.

Macrophages also secrete migration inhibitor factor
(MIF) [34, 35], which is the first proinflammatory cytokine
discovered. MIF may inhibit insulin secretion by inhibiting
the phosphorylation of tyrosine in the adipose tissue and
the insulin receptor substrate in insulin signal transduction
[36]. Matsuura et al. [37] demonstrated that anti-MIF anti-
body could inhibit follicle growth and ovulation in rats.
Moreover, the MIF level in the circulation fluctuates during
the menstrual cycle and positively correlated with the level
of luteinizing hormone (LH), which can explain why MIF
levels are higher in PCOS patients than in healthy controls
[35]. However, Covington et al. postulated a different conclu-
sion, demonstrating that MIF and IL-6 mRNA levels in the
adipose tissue of PCOS patients were lower than those of
healthy controls, with no difference in TNFα levels between
the groups [38]. These contradictory findings suggest that
macrophages from various sources may release entirely dif-
ferent levels of cytokines.

2.2. Dendritic Cells (DCs). DCs are a heterogeneous group of
antigen-presenting cells, which exist in an immature state in
the circulation and have potent phagocytotic ability; thus,
they can capture and process antigens and present them to
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T cells in the lymph nodes, serving as a bridge between the
innate and adaptive immune responses [39]. After receiving
the activation signal associated with the antigen, DCs pro-
duce cytokines and inflammatory mediators such as TNFα,
IL-6, IL-11, IL-12, and IL-23, which, in turn, induce the pro-
liferation of allogeneic T cells and differentiate them to the
Th17 and Th1 subtypes [40]. However, in visceral adipose
tissue (VAT), DCs suppress inflammation by activating the
β-catenin and PPARγ pathways, which are important reg-
ulatory mechanisms for fat expansion [41]. Subsequently,
β-catenin activation triggers PI3K/Akt that, in turn, induces
IL-10 production and inhibits IL-6 secretion [42]. By con-
trast, accumulating evidence implicates CD11c+HLA-DR+

DCs as important cell components of the follicular fluid,
and mature DCs were positively correlated to the ovary reac-
tion to gonadotrophic, suggesting a function related to the
aseptic inflammation in ovulation [43, 44]. Also, the number
of DCs in the follicular fluid was found to be significantly
decreased in PCOS patients as compared to those in healthy
controls [45]. Therefore, we consider that with more VAT in
PCOS patients, DCs may serve not only to restrain obesity-
induced inflammation but also to promote pathogen persis-
tence. Meanwhile, there might not be a sufficient amount of
DCs in the follicular fluid to induce the recruitment and acti-
vation of T cells (Th17, Th1 cells), resulting in the failure of
follicle development and maturation. Future studies to inves-
tigate these possibilities will be of extreme importance.

2.3. Innate Lymphoid Cells (ILCs). ILCs develop from com-
mon lymphoid progenitor cells whose morphology resembles
that of adaptive lymphocytes. Recently, ILCs are being recog-
nized as critical modulators of tissue homeostasis and inflam-
mation via cytokine release [46]. ILCs can be divided into
three groups based on the expression of transcriptional fac-
tors and cytokines [47]: group 1 ILCs, which include natural
killer (NK) cells and ILC1s; group 2 ILCs, which consist of
ILC2; and group 3 ILCs, which consist of lymphoid tissue
inducer cells and NKp46- and NKp46+ ILC3s [48].

NK cells possess microbicidal activity against a diverse
group of pathogens, which not only kill tumor cells and
microbes but also regulate the activity of other immune cells,
such as macrophages and DCs [49]. NK cells are barely
detectable in both the intra-follicle and peri-follicle cells of
PCOS patients and healthy controls [50]. CD3-/CD56+ gran-
ule lymphocytes are the uterine NK cells (uNK), which lack
CD16 expression and have high expression of CD56
(CD56bright), unlike CD3-/CD56+/CD16+peripheral blood
NK cells (PBNK) [51]. The normal uterine endometrium is
decidualized by the effect of progesterone, which is associated
with the homing and proliferation of PBNK, while the uNK
cells do not express progesterone receptors [52]. Progester-
one can also regulate the expression of CXCL10, IL-15, and
IL-18 in the process of endometrium decidualization [53].
Moreover, androgen receptor suppresses IL12a expression
at the transcriptional level via direct binding to the IL12a
promoter region, thereby repressing the efficacy of NK cell
cytotoxicity; after androgen receptor antagonist treatment,
the IL12A signals are elevated, and NK cell function is
enhanced [54]. With high androgen and reduced progester-

one, PCOS patients have decreased CXCL10, IL-15, IL-18,
and IL-12A levels, which play important roles in maternal-
fetal tolerance and maintenance in pregnancy, suggesting
that impairment in recruiting NK cells in PCOS patients
may lead to a cytokine disorder. The receptivity of the endo-
metrium is a precondition for a successful pregnancy. Thus,
NK cells might explain infertility associated with PCOS,
besides the main manifestations of follicular dysplasia and
ovulation disorder.

Group 3 ILCs (ILC3) produce Th17- and Th22-like cyto-
kines IL-22, IL-17, and RORγt [55]; in PCOS, it directly cor-
relates with serum androgen concentrations and inversely
with estradiol levels [56]. Flow cytometry shows a reduction
of ILC3 (CD45+IL-22+RORγt+) in both intestinal and blood
samples in PCOS individuals and PCOS-like animal models;
furthermore, it also exhibits a therapeutic role in PCOS [57].
It is well-known that the gut microbiota and its metabolites
may contribute to glucose homeostasis through immune sys-
tem modulation [58]. Besides, a remarkable abundance of
gram-negative anaerobic bacteria inhabits the distal human
gut in individuals with PCOS and negative correlated with
ILC3 proportion [59]. If transplant interspecific fecal from
PCOS women to adult mice, female recipient mice would
exhibit the major PCOS cardinal defects: hyperandrogenism,
high LH secretion, impairment of reproductive cycles, ovar-
ian dysfunction, and insulin resistance [57]. Though ILC3
functions as a double-edged sword in some autoimmune dis-
eases [60], it can alleviate PCOS progression. However, the
inability to precisely distinguish ILC3 and Th17 remains
the main paradox in the field; if Th17 is elevated in PCOS,
why ILC3 is reduced?

3. Adaptive Immune Cells in PCOS

The adaptive immune system comprises T cells and B
cells. T cells are involved in cell-mediated immune responses,
whereas B cells mainly mediate the humoral immune
response. Since there are very few B cells in the female genital
tract [61], only minimal research on the relationship between
B cells and PCOS has been conducted. Therefore, in this
section, we focus only on potential relationships and mecha-
nisms concerning T cells and their subpopulations.

In normal circumstances, the selection of dominant folli-
cles and the apoptosis of nondominant follicles is an essential
mechanism to maintain homeostasis of the ovary [62]. Many
factors are related to the survival of follicles during the follicle
decrease stage. Specifically, T cells play a crucial role in
mediating inflammation and insulin resistance by secreting
proinflammatory cytokines in various metabolic organs and
promoting follicles by releasing specific chemokines and
growth factors to promote granular cell development and
selection of the ovarian follicles, along with cytotoxic signals
to induce the apoptosis of granulosa cells [63]. It has been
found that the testosterone level and the number of
CD45RO+ cells negatively correlate in the sinus follicle theca
cells of PCOS patients and controls [64]. In particular, the
PCOS group showed abnormally high androgen levels, as a
characteristic of the condition, along with significantly
decreased CD45RO+ T lymphocytes (activation/memory
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T lymphocytes). Another study [65] has shown that 5–7 days
old mice were injected with estrogen, androgen, or progester-
one; mice in the former two groups had decreased numbers
of thymus cells 12 days later, whereas the thymus cell popu-
lation increased in the progesterone-treated group. More-
over, the CD4+CD8+ double-positive T cells and CD4+ and
CD8+ single-positive T cells of the adult mice were reduced
by 99%. Therefore, inadequate distribution of T cells might
lead to the failure of natural follicular selection and PCOS
development.

3.1. T Helper (Th) Cells. CD4+ Th cells are central orchestra-
tors of proinflammatory and anti-inflammatory immune
responses. Activated CD4+ T cells are triggered to differenti-
ate into Th cells, guided by specific costimulatory signals and
the cytokinemilieu [66]. IL-12 can drive the differentiation of
T cells to Th1 cells, which is an immune-invasive subpopula-
tion [67]. In contrast, IL-13 and IL-4 orchestrated actions
drive the differentiation of T cells to Th2 cells, which mediate
immune tolerance [68]. Circulating androgen and estradiol
highly correlate with circulating inflammation [69], as
IL-13 levels in the follicular fluid of PCOS patients were
found to be significantly lower than those of women with reg-
ular ovulation, whereas the concentration of IL-12 increased
significantly [70], which could induce a shift from Th2 to
Th1 cells [71, 72]. Moreover, estrogen was shown to augment
the secretion of inflammatory cytokines such as TNFα, IL-6,
and interferon-gamma (IFNγ) in Th1 lymphocytes, whereas
the progesterone spike in the luteal phase decreased these
levels [72]. Due to the accumulation of numerous follicles
with no ovulation, patients with PCOS show a high level of
estrogen without progesterone resistance. IL-6 can also stim-
ulate the expression of the key transcription factors of Th17
cells by activating STAT3 and the expression of RORα and
RORγ, thereby promoting the differentiation of Th0 cells to
Th17 cells [43, 73]. Though some information shows Th17
of PCOS is decreasing in animal models [74, 75], in human
PCOS, evidence focuses on the expansion of proinflamma-
tory Th17 subset not only in the blood but also kidneys
[75]; however, the reason is obscure. In this condition,
IL-6 may inhibit TNFα production and also effectively
drive angiogenesis, thus promoting the formation of blood
vessels and increases the concentration of the follicle-
stimulating hormone [76]. It is confirmed that a significant
difference in the Th17/Th2 ratio, with a bias toward Th17,
is common among patients with PCOS [77]. Thus, the accu-
mulation of Th1 and Th17 cells leads to immune overaction,
which implies that PCOS might have an autoimmune origin.

3.2. Cytotoxic T (Tc) Cells. Tc cells are the primary effector
cells of the cellular immune system. They induce cytotoxic
processes to eliminate infected or malignantly transformed
cells. These effects are brought by cytokine secretion, the
release of cytotoxic agents and direct cell-cell contact [78].
It has been reported that changes in lymphocyte subgroups
are associated with hormone levels [43]. In particular,
increased androgen level could affect the endocrine and
immune systems and resulted in a 64% decline of CD8+ T cell
counts in PCOS patients [79].

CD4+CD28null is a subgroup of cytotoxic T cells with
proinflammatory function, producing high levels of IFNγ,
TNFα, IL-2, and cellular enzymes, representing states of
chronic inflammation and persistent infection, which may
lead to the loss of CD28 on the cell surface [73]. These T cells
cannot induce B lymphocyte activation and produce anti-
bodies but have cytotoxic features [80]. Thus, CD4+CD28null

cells are rarely found in healthy individuals and are primarily
associated with various inflammatory diseases [81]. Tc num-
ber is significantly increased in PCOS patients compared
with those of controls [82]. However, recent studies show
that CD4+CD28null cells are not associated with hyperinsuli-
nemia, high-sensitivity C-reactive protein (hsCRP) levels,
obesity, and androgen levels of PCOS but only with the
general PCOS status [25] and exhibit high proinflamma-
tory and tissue-damaging properties [73]. All of these indi-
cate that PCOS may be related to a general decline of the
immune response.

3.3. Regulatory T Cells (Tregs). Tregs can be divided into two
groups: naturally occurring regulatory T cells (nTregs), pro-
duced by the thymus gland, and induced regulatory T cells
(iTregs) that originate from the peripheral lymphoid tissues.
In human peripheral blood, CD4+CD25+CD127-/lowFoxp3+

Tregs account for approximately 1–2% of the total CD4+ T
cells, helping to prevent autoimmune diseases by inhibiting
the proliferation of effective T cells and cytokines production
[83]. Tregs thus play an essential role in immune tolerance in
healthy states, and their dysregulation is strongly associated
with the development of autoimmune diseases.

As progesterone is a crucial regulatory factor for the
development and production of peripheral Tregs [84], which
negatively correlated with IL-6 level, it facilitates the genera-
tion of Foxp3 that subsequently affects Tregs production
[84]. Tregs are decreased in the ovulation phase and are
found at the highest level in the luteal phase [85]. The Tregs
produced during ovulation and in the post-ovulation phase
of the cycle are essential for the immune tolerance of the
embryo after implantation. Indeed, a decrease of Tregs is
related to the occurrence of spontaneous abortion [86], unex-
plained recurrent abortions [87], and preeclampsia [88]. In
addition, the number of Tregs in the peripheral blood of
PCOS patients was shown to be lower than that of controls
[89]. Therefore, the Th17/Tregs ratio would increase, leading
to a chronic inflammatory state in the ovary and throughout
the body.

In mice, estrogen carries out its functions through
estrogen receptors on CD4+CD25- T cells, promoting their
transformation to CD4+CD25+ T cells during the embryonic
period to increase the quantity of Tregs [90]. By contrast,
other researchers [83] have proposed that androgen can
directly combine with AR through complementary sequence
pairing to directly regulate target genes or indirectly,
through its metabolites, to induce higher Foxp3 expression
during ovulation.

In summary, hyperestrogenism, hyperandrogenism, and
hypoprogesterone play an essential role in the dynamic
change of Tregs in PCOS. Since this would increase the Tregs
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counts in females, this mechanism could offer a new thera-
peutic strategy for autoimmune diseases (Figure 1).

4. Other Immunological Mechanisms of PCOS

The white blood cell counts in the peripheral blood of
patients with PCOS and hyperinsulinemia increased along
with hyperandrogen production [91] and mainly increased
in macrophages and neutrophils, which infiltrate this exces-
sive fat to “clean up” dysfunctional and dead cells, resulting
in a state of chronic low-grade inflammation [11]. As PCOS
is usually treated with oral contraceptive and metformin
[92], the number of macrophages and neutrophils may
become even higher under treatment with oral contraceptive
monotherapy and could be improved with metformin [91].
Besides its better-known effects in the improvement of oxida-
tive stress and insulin resistance, metformin is also an effec-
tive treatment for immune-related disorders. However, the
ability of metformin to improve the clinical signs and
symptoms of PCOS by immunological mechanisms requires
further research.

Though B cells in PCOS patients are poorly detected,
there are significant differences in antinuclear antibody,
resistance to histone antibody, and ds-DNA antibody levels
in 109 PCOS patients and controls [93]. Furthermore,
patients with PCOS have a higher incidence of autoimmune
thyroiditis, which was associated with increased thyroperox-
idase or thyroglobulin antibody levels [94]. These further
observations demonstrate that due to the immune microen-
vironment imbalance, PCOS can coexist with or even cause
other autoimmune diseases.

In addition, the role of minerals like calcium and vitamin
D in the development of many diseases has been evaluated,
especially endocrine, inflammation, and oxidative stress,
recently [95, 96]. A plethora of Ca2+-permeable channels in
T cells at various locations, with unique activation mecha-
nisms, have been reported to be necessary for T cell activa-
tion, maturation, and secretion of cytokines [97]. Not only
Ca2+ can activate human monocytes to produce inflamma-
tory cytokines and promote M1 macrophage development
[98], but Ca2+ influx is also vital in the proinflammatory
functions of neutrophils, which promotes autoimmune and
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inflammatory disease progression and exacerbates collateral
damages to the host tissues [99]. The change and function
of Ca2+ in PCOS still need further research. Furthermore,
vitamin D’s anti-inflammatory impact on human patho-
physiology is well-accepted [100]. A current meta-analysis
of randomized controlled trials concluded that vitamin D
supplementation to women with PCOS results in an
improvement in hsCRP, malondialdehyde, and total anti-
oxidant capacity [95, 96]; serum total testosterone and
androstenedione levels were reportedly lowered in vitamin
D-calcium cosupplement group as compared to the control
group [101], in response to upregulated insulin receptor
genes [102]. However, vitamin D does not affect the symp-
toms of hyperandrogenism [103]. Additional studies should
address the function of vitamin D on different subgroups of
immune cells and illustrate the exact underlying mechanism.

Due to the abnormal hormone and irregular ovulation,
miscarriage rate of patients with PCOS is higher than that
of healthy subjects [104]. In addition to the cells mentioned
above, other recently identified immune cells, such as T fol-
licular helper cells (Tfh), Th9, Th22, and myeloid-derived
suppressor cells (MDSCs), also might be involved in PCOS.
Tfh are increased in both recurrent spontaneous abortion
[105] and preeclampsia patients [106] as compared with
healthy pregnant women, whereas MDSCs decreased
[107, 108]; however, the interplay and relative changes that
ultimately redirect and conduct PCOS are still unclear. Fur-
ther research is warranted to elucidate the relationship
between PCOS and immune cells.

5. Conclusions and Prospects

In this review, we highlight recent studies demonstrating
a likely link between immune dysregulation, hormones,
and PCOS. In particular, obesity with a higher level of
estrogen and androgen may cause persistent immune system
stimulation in PCOSpatients, leading to proinflammation cell
increase, such as M1, Th1, and Th17; and anti-inflammation
cells decrease, such as M2 and Tregs; meanwhile, the
antigen-presenting cells change dichotomic. Immune micro-
environment imbalance results in the production of autoanti-
bodies to trigger autoimmune diseases. It is also possible that
the immune tolerance breakdown causes the body to rest
in a chronic inflammatory state, which affects the genera-
tion, development, and follicular ovulation. In recent years,
the clinical symptoms of PCOS have been mainly treated
by exercise, along with an oral insulin sensitizer and
anti-inflammatory molecules, such as metformin, and oral
contraceptives, which have all improved the short-term
prognosis of ovulation. However, more in-depth research
should be conducted to understand the precise etiology
of PCOS and to develop more effective and targeted treat-
ments. Recent evidence summarized in this review points to
the potential of improving the basic immune state to enhance
PCOS treatment. Thus, research efforts on PCOS about the
underlying immunological mechanisms could help us dis-
cover a novel targeted treatment in the near future. In the
next decade, several issues regarding the immune treatment,
outlined in this study, shall be addressed to explore beyond

the experimental framework summarized herein and to
provide novel therapeutic targets for clinical practice.
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