
Research Article
An Investigation of the Significance of Residual
Confounding Effect

Wenbin Liang,1 Yuejen Zhao,2 and Andy H. Lee3

1 National Drug Research Institute, Curtin University, G.P.O. Box U 1987, Perth, WA 6845, Australia
2 Northern Territory Department of Health, Darwin, NT 0800, Australia
3 School of Public Health, Curtin University, Perth, WA 6845, Australia

Correspondence should be addressed to Wenbin Liang; w.liang@curtin.edu.au

Received 18 December 2013; Accepted 10 January 2014; Published 17 February 2014

Academic Editor: Tanya Chikritzhs

Copyright © 2014 Wenbin Liang et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Background. Observational studies are commonly conducted in health research. However, due to their lack of randomization, the
estimated associations between the outcome and the exposure can be affected by unmeasured confounding factors. It is important
to determine how likely a significant association observed between an outcome variable and a noncausally related exposure may be
introduced by residual confounding factors.Methods. A simulation approach is developed based on the sufficient cause model to
test the likelihood of significant associations observed between a noncausally related exposure and the outcome. Results. Based on
the estimates from all 500 replicates, the association between the exposure and the outcome is found to be significant in 386 (77%)
replicates when all confounders (component causes) are controlled for in the model. However, when a subset of real component
causes and some noncausal factors are controlled for in the model, the association between exposure and the outcome becomes
significant in 487 (97%) replicates.Conclusion. Even when all confounding factors are known and controlled for using conventional
multivariate analysis, the observed association between exposure and outcome can still be dominated by residual confounding
effects. Therefore, an observed significant association apparently provides limited evidence for a causal relationship.

1. Introduction

Ethical and budgetary constraints often limit the application
of experimental study designs in health research, so that
observational studies such as cohort or case-control studies
have been widely undertaken as methodological alterna-
tives [1–5]. However, due to the lack of randomization, the
estimates so obtained can be influenced by uncontrolled
or unmeasured confounders and typically, the confounders
bias estimates from their true values [6–12]. According to
the epidemiological literature, a confounder must meet the
following conditions: (i) being a cause of the disease, or a
proxy of cause(s), in unexposed people; (ii) being correlated
with exposure in the study population; (iii) not being an
intermediate step in the causal pathway between the exposure
and the disease [1, 13–16]. To deal with confounding effects,
known or suspected confounders are measured together with
the exposure and outcome of interest. Multivariate analyses
are then performed to measure the association between

the exposure and the outcomewhile attempting to remove the
effects of such known or suspected confounders [8, 13, 17–19].

Under the sufficient causemodel, a sufficient causemeans
a complete causal mechanism, which can be defined as a
combination ofminimal conditions (necessary elements) and
events that inevitably produce disease, while the necessary
elements that constitute a sufficient cause are component
causes [2]. It is common that component causes and com-
positions of sufficient causes are unknown, with simultane-
ous existence of measurement errors, misclassifications for
exposures, confounders, and outcomes [8, 20–23]. Conse-
quently, the estimated associations between the outcome and
the exposure remain likely to be affected by unmeasured
confounding factors. For example, even in well-designed
studies, significant protective associations occurred between
true nonprotective exposures and outcomes are actually
caused by unmeasured confounding factors [24, 25]. It is thus
important to investigate how likely a significant association
observed between an outcome variable and a noncausally
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related exposure may be introduced by residual confounding
factors. In this study, we develop a simulation approach to test
the likelihood of observing significant associations between a
noncausally related exposure and the outcome variable based
on standard multivariate analysis, given that the composi-
tions of sufficient causes are not recognized, but either all
risk factors/component causes are known and controlled, or
only some of the risk factors/component causes are known
and controlled. There are two objectives: (1) to investigate
the likelihood of false positive observations in observational
studies, (2) to propose a simulation framework for assessing
epidemiologic methods which deal with confounding effects.

2. Methods

2.1. Overview of the Simulation. The simulation process
follows the sufficient cause model [2]. For an event to occur,
at least one sufficient cause has to occur. The components of
a sufficient cause are randomly chosen from a pool of low to
moderate correlated variables, which include the exposure of
interest and 99 other variables. The exposure of interest is set
to be noncausal for the outcome and therefore it will never
be chosen as a component for a sufficient cause. Given the
correlation among the 100 variables, every chosen variable
is a potential confounding factor for the association between
the exposure and the outcome. The association between the
exposure and the outcome is then estimated using a logistic
regression model, while controlling for (i) all component
causes; and (ii) some of the component causes (selected at
random). The simulations contain 500 replicates, with each
replicate being generated through an independent process.
All simulations are performed using the STATA package
release 12. The procedures involved in each replicate are out-
lined below. Details of the simulation procedure, including
the sufficient cause model and the estimation process, are
provided in the Appendix.

(1) Generate a pool of low to moderate correlated ran-
dom variables from the uniform [0,1) distribution:
𝑇
100×50000

= {𝑇
𝑖,𝑛
}, 𝑖 = (1, 2, 3, . . . , 100), 𝑛 =

(1, 2, 3, . . . , 50000).
(2) Determine the composition of sufficient causes and

the threshold values of components.The total number
for the types of sufficient causes for 𝑌 is randomly
chosen from (1, 2, 3, . . . , 9). Components for each
type of sufficient causes are randomly selected from
𝑇
𝑖,𝑛
, 𝑖 = (2, 3, . . . , 100). 𝑇

1
is taken as the exposure,

which is set to be noncausal for 𝑌. For each obser-
vation, a sufficient cause is set to occur, when each
of its components has a value higher than its specific
threshold value. The threshold value is specific for
each component as well as each type of sufficient
cause, and it is randomly chosen from a uniform
[0.5, 0.9) distribution.This allows the threshold values
to vary between components as well as between
different sufficient causes for the same component.
To reflect the fact that exact threshold values are
typically unknown, 𝑇

𝑖,𝑛
are then dichotomized into

binary form denoted by 𝑋
𝑖,𝑛
, 𝑖 = (1, 2, 3, . . . , 100),

𝑛 = (1, 2, 3, . . . , 50000), by applying the following
rule: 𝑋

𝑖,𝑛
is set to 1 if 𝑇

𝑖,𝑛
> 0.7, and 0 otherwise.

Here, the mean 0.7 of a uniform [0.5, 0.9) variable is
used instead of applying the exact threshold values, in
order to account for unavoidable measurement errors
and misclassifications in confounders and exposures.

(3) Generate competing events for 𝑌, 𝐸
𝑛
, 𝑛 =

(1, 2, 3, . . . , 50000). Note that 𝐸 is independent
of 𝑇 and𝑋.

(4) Generate small random errors for 𝑌 to represent
measurement errors of outcome and to smooth the
computing process. 𝑄 is a Bernoulli distributed ran-
dom variable, being independent of𝐸 and𝑋 and only
accounts for a small proportion of variance of 𝑌.

(5) Determine the status (occur or not occur) of 𝑌.
(6) Determine the known (not necessary the fact) causal

factors for 𝑌 through a random process.
Details of steps 1 to 6 can be found in the Appendix.

(7) Estimate the effect of 𝑋
1
on 𝑌 when all component

causes are identified. There is no noncausal factor
being mistaken as causal factor. We have

𝑃 (𝑌
𝑛
= 1 | 𝑋

𝑖,𝑛
, 𝐶) =

exp (𝛽
1
𝑋
1,𝑛
+ ∑
100

𝑖=2
𝛽
𝑖
𝑋
𝑖,𝑛
𝐶
𝑖
)

1 + exp (𝛽
1
𝑋
1,𝑛
+ ∑
100

𝑖=2
𝛽
𝑖
𝑋
𝑖,𝑛
𝐶
𝑖
)

,

(1)

where 𝐶
𝑖
indicates whether 𝑋

𝑖
is involved in at least one

sufficient cause of 𝑌, that is, 𝐶
𝑖
= 1 if true and 𝐶

𝑖
= 0

otherwise. Here, 𝛽
1
and 𝛽

𝑖
are the estimated effects of𝑋

1
and

each of the component causes on 𝑌, respectively. To estimate
the effect of 𝑋

1
on 𝑌 when only some component causes are

known, and there are some noncausal factors being mistaken
as causal factors, we have

𝑃 (𝑌
𝑛
= 1 | 𝑋

𝑖,𝑛
, 𝐾) =

exp (𝛽
1
𝑋
1,𝑛
+ ∑
100

𝑖=2
𝛽


𝑖
𝑋
𝑖,𝑛
𝐾
𝑖
)

1 + exp (𝛽
1
𝑋
1,𝑛
+ ∑
100

𝑖=2
𝛽


𝑖
𝑋
𝑖,𝑛
𝐾
𝑖
)

,

(2)

where𝐾
𝑖
indicates whether𝑋

𝑖
is “known” or suspected to be

involved in at least one sufficient cause of𝑌, 𝛽
1
, and 𝛽

𝑖
are the

estimated effects of 𝑋
1
and each of the “known” risk factors

on 𝑌, respectively.

3. Results

Data obtained from replicate 1 is used as an example. Table 1
shows details of the sufficient causes and their components
for replicate 1. Overall, the incidence rate (per 1000 observa-
tion units) for 𝑌 is 32.4, while it is 20.2 among unexposed
observations (𝑋

1
= 0) and 89.0 among exposed observations

(𝑋
1
= 1). This leads to an observed crude exposed-to-

unexposed risk ratio of 4.4, though the exposure is not causal
for 𝑌. Moreover, as shown in Table 2, the strength of asso-
ciation between exposure and confounders is considerably
low, with low level of misclassifications for confounder status.
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Table 1: Sufficient causes and their components for replicate 1.

Type of sufficient cause Components (cut-off points) Observed frequency for the 50,000 observations
A 𝑋

17
(0.847),𝑋

50
(0.850) 421

B 𝑋
7
(0.521),𝑋

29
(0.881),𝑋

53
(0.619) 515

C 𝑋
18
(0.754),𝑋

20
(0.626),𝑋

21
(0.504),𝑋

38
(0.642),𝑋

91
(0.617) 741

As described in the simulation design and the appendix, the total number of sufficient causes and the components of each possible sufficient cause vary
between replicates and are determined by independent random process (i.e., sufficient cause A has two components:𝑋17 and𝑋50; sufficient cause B has three
components:𝑋7,𝑋29, and𝑋53).

Table 2: Source and magnitude of bias in replicate 1.

Confounder/
Component

Correlation
with exposure1

Percentage of
misclassification2

𝑋
17

0.183 13.4%
𝑋
50

0.160 14.4%
𝑋
7

0.135 26.7%
𝑋
29

0.150 15.5%
𝑋
53

0.181 11.6%
𝑋
18

0.227 5.89%
𝑋
20

0.155 10.8%
𝑋
21

0.292 31.2%
𝑋
38

0.188 7.9%
𝑋
91

0.282 11.4%
1Measured as the correlation coefficient between binary form of component
(occurred or not occurred) and binary from of exposure in the 50,000
observations for replicate 1.
2Measured as 1 minus the proportion of correct classification of con-
founder/component status (occurred or not occurred) in the 50,000 obser-
vations for replicate 1.

Given that all confounding factors (component causes) are
controlled for in the model, the effect of exposure remained
significant (𝑃 < 0.001). Table 3 suggests that the effect of
exposure is further biased away from the null when only a
subset of real component causes and some noncausal factors
are controlled in the model.

Based on the estimates from all replicates, the association
between the exposure and the outcome 𝑌 is found to be
significant in 386 (77%) out of the 500 replicates when
all confounders (component causes) are controlled in the
model. However, when a subset (rather than all) of real
component causes and some noncausal factors are controlled
in the model, the association between the exposure and the
outcome 𝑌 becomes significant in 487 (97%) out of the 500
replicates.

In addition, Figure 1 indicates that when adjusting for
all the real component causes, the significantly estimated
effect of the exposure is on average substantially smaller than
the effects of real component causes. The mean (standard
deviation), 25th, 50th, and 75th percentiles of the significant
coefficients (natural logarithm of the odds ratio) are 0.22
(0.17), 0.14, 0.18, and 0.25, respectively for the noncausal
exposure and are 0.73 (0.79), 0.23, 0.42, and 0.927, respec-
tively, for the real component causes.
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Figure 1: Difference in estimate distributions between the exposure
and the real component causes. The upper and lower adjacent lines
indicate the upper and lower adjacent values, respectively; the upper
and lower edges of the boxes indicate 75th percentiles and 25th
percentiles, respectively; and the white lines in the boxes indicate
the medians. (The upper limit of the graph is set to 2.409, the 95th
percentile for coefficients of the real component causes).

4. Discussion

In observational studies, when a statistical significant asso-
ciation arises between an exposure and the outcome in the
multivariate analysis, it is usually considered as supportive
evidence for causal relationship [8]. We adopt the sufficient
cause model in the simulation process to investigate how
likely a significant association between the exposure and the
outcomemay be observedwhen there is no causal association
between the two in an observational study setting.The results
indicate that significant associations between the exposure
and its noncausal related outcomes are presented in more
than 70% of the situations, even when assuming that all
confounders (causal factors) are known to researchers and
controlled for in the multivariate analysis. In reality, many
component causes of a disease are unknown [8, 20–23].

Moreover, results from the simulation study suggest that
under the conventionalmultivariate analysis approach, resid-
ual confounding effects remain strong enough to influence
the observed associations and an observed significant associ-
ation provides only limited evidence for a causal relationship.
Therefore, new methods are required to handle residual
confounding effects. The simulation design adopted in this
study can also serve as a platform to evaluate the performance
of such methods.
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Table 3: Estimates from multivariate analysis in replicate 1.

Model adjusted for all component causes Model adjusted for randomly selected component causes and
noncausal factors

Odds ratios 95% Confidence interval Odds ratios 95% Confidence interval
(𝑋
1
) Exposure 1.31 1.17 1.48 1.71 1.52 1.92
𝑋
5 — 1.48 1.32 1.65
𝑋
7 1.61 1.44 1.81 —
𝑋
11 — 1.95 1.73 2.20
𝑋
14 — 1.69 1.50 1.89
𝑋
17 2.45 2.18 2.75 —
𝑋
18 4.55 4.03 5.13 —
𝑋
20 2.67 2.38 2.99 —
𝑋
21 1.49 1.32 1.67 1.93 1.71 2.17
𝑋
23 — 1.47 1.31 1.65
𝑋
29 2.68 2.38 3.01
𝑋
32 — 1.40 1.26 1.57
𝑋
37 — 1.41 1.26 1.57
𝑋
38 3.10 2.76 3.48 —
𝑋
50 2.41 2.16 2.70 —
𝑋
53 1.90 1.69 2.13 2.12 1.90 2.37
𝑋
57 — 2.06 1.83 2.32
𝑋
69 — 1.39 1.25 1.56
𝑋
90 — 1.17 1.04 1.31
𝑋
91 2.28 2.03 2.56 —

—: variables not included in the model.

There are several advantages of our simulation design.
Firstly, although all component causes and sufficient causes
are determined through random process, they are all tracked
and measured, unlike collected data where most pieces of
information on component causes and sufficient causes are
unknown and unmeasurable. Secondly, for specific expo-
sures and outcomes, information from existing literature
can be easily adopted into the simulation design. Thirdly,
the simulation design can be adjusted to fit specific prior
assumptions on the distributions and correlations among
component causes and the exposure as well as compositions
of sufficient causes. Hence it is possible to obtain estimates on
the effects of the exposure under different prior assumptions.

5. Conclusion

This study demonstrates that even when all confounding
factors are known and controlled for using conventionalmul-
tivariate analysis, the observed association between exposure
and outcome can still be dominated by residual confounding
effects. An observed significant association apparently pro-
vides limited evidence for a causal relationship.

Appendix

Details of Steps 1 to 6 in Simulation Procedure

(1) Generate a matrix of correlated random variables,
𝑇
100×50000

= {𝑇
𝑖,𝑛
}, its corresponding matrix

𝐺
9×100×50000

= {𝐺
𝑗,𝑖,𝑛
}, and 𝑋

100×50000
= {𝑋

𝑖,𝑛
},

where 𝑗 = (1, 2, 3, . . . , 9), 𝑖 = (1, 2, 3, . . . , 100), and

𝑛 = (1, 2, 3, . . . , 50000). 𝐺
𝑗,𝑖,𝑛

indicates whether 𝑇
𝑖,𝑛

passes its threshold value and becomes active or
occurs in the 𝑗th sufficient cause (if it is a component
of the 𝑗th sufficient cause) of the 𝑛th observation.𝑋

𝑖,𝑛

is a proximate measure of 𝐺
𝑗,𝑖,𝑛

given that the exact
threshold value is usually unknown.

(i) 𝑇
𝑖,𝑛
= 𝑉
𝑖𝑛
𝑃
𝑖
+ 𝑈
𝑛
(1 − 𝑃

𝑖
) is a linear combination

of a variable component (𝑉
𝑖
) and a unique com-

ponent (𝑈) for each 𝑖, with both being uniform
[0,1) distributed random variables, and 𝑃

𝑖
is

a random proportion drawn from a uniform
[0.3, 0.6) distribution. The range [0.3, 0.6) is
chosen in order to set a low to moderate level
of correlation among 𝑇. The mean (standard
deviation), 25th, 50th, and 75th percentiles of
the correlation coefficients for the matrix 𝑇 are
0.35 (0.13), 0.25, 0.33, and 0.45, respectively.

(ii) 𝐺
𝑗,𝑖,𝑛

is set to 1 if 𝑇
𝑖,𝑛
> 𝐴
𝑗,𝑖

and 0 otherwise,
where 𝐴

𝑗,𝑖
takes on a random value drawn

from an uniform [0.5, 0.9) distribution. The
mean (standard deviation), 25th, 50th, and 75th
percentiles of the correlation coefficients for the
matrix 𝐺 are 0.16 (0.07), 0.11, 0.15, and 0.20,
respectively.

(iii) 𝑋
𝑖,𝑛

is set to 1 if 𝑇
𝑖,𝑛
> 0.7 and 0 otherwise,

where 0.7 is the expected value of the uniform
[0.5, 0.9) distribution.Themean (standard devi-
ation), 25th, 50th, and 75th percentiles of the
correlation coefficients for the matrix𝑋 are 0.19
(0.07), 0.13, 0.17, and 0.24, respectively.
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(2) Determine sufficient cause compositions and their
components.

(i) Components for nine possible sufficient causes
for 𝑌 are determined. Let𝐶

𝑗,𝑖
, 𝑗 = (1, 2, 3 . . . , 9),

𝑖 = (1, 2, 3, . . . , 100) indicate whether 𝑇
𝑖
is a

component of the 𝑗th possible sufficient cause:
if 𝑇
𝑖
is component of the 𝑗th possible sufficient

cause, 𝐶
𝑗,𝑖
= 1, and 0 otherwise. 𝐶

𝑗,𝑖
takes on

a random value drawn from the Bernoulli dis-
tribution with probability of success 𝐻

𝑖
, which

is derived (rescaled) from a gamma distribution
with both shape parameter and scale parameter
equal to 1. For each sufficient cause if the
components are less than 2, that is, for a given
𝑗 if ∑

𝑖
𝐶
𝑖
< 2, then all components are redeter-

mined through the same random process.
(ii) Determine whether a possible sufficient cause

occurs. Let 𝑂
𝑗,𝑛
= 1 when all components

for the 𝑗th possible sufficient cause become
active or occur in the 𝑛th observation; that is,
∑
𝑖
𝐺
𝑗,𝑖,𝑛
𝐶
𝑗,𝑖
= ∑
𝑖
𝐶
𝑗,𝑖
; otherwise 𝑂

𝑗,𝑛
= 0,

𝑖 = (2, 3, . . . , 100), 𝑗 = (1, 2, . . . , 9), and 𝑛 =
(1, 2, 3, . . . , 50000).

(iii) Choose real sufficient causes from the nine
possible sufficient causes. Let𝐹

𝑗
, 𝑗 = (1, 2, . . . , 9)

denote whether the 𝑗th possible sufficient cause
is a real sufficient cause for 𝑌. If the 𝑗th possible
sufficient cause is a real sufficient cause, then
𝐹
𝑗
= 1 and 0 otherwise. 𝐹

𝑗
takes on a random

value drawn from the Bernoulli distribution
with probability of success 0.5. If there is no real
sufficient cause assigned, that is,∑

𝑗
𝐹
𝑗
< 1, then

the real sufficient causes for 𝑌 are redetermined
through the same random process.

(3) Determine competing events. Let 𝐸
𝑛
denote the com-

peting events for outcome 𝑌, 𝑛 = (1, 2, 3, . . . , 50000).
𝐸 is a Bernoulli distributed random variable with a
probability of success 0.001, value of success (com-
peting events occurred) being 1, and value of failure
(competing events not occurred) being 0. 𝐸 is inde-
pendent of𝑋.

(4) Determine small random errors for 𝑌. Let 𝑄
𝑛
denote

a small random error of 𝑌, 𝑛 = (1, 2, 3, . . . , 50000).
𝑄 is a Bernoulli distributed random variable with a
probability of success 0.001, value of success being 1,
and value of failure being 0.𝑄 is independent of both
𝐸 and𝑋.

(5) Determine the status of outcome 𝑌. Let 𝑌
𝑛
= {0, 1},

𝑛 = (1, 2, 3, . . . , 50000) denote the outcome not
occurred or occurred, respectively. Value of each 𝑌

𝑛

is determined as follows. For each observation 𝑛,
𝑌
𝑛
= 1 (outcome occurred) if 𝑄

𝑛
= 1, or for

𝑗 = (1, 2, 3 . . . , 9), ∑
𝑗
𝑂
𝑗,𝑛
𝐹
𝑗,𝑛
≥ 1 when 𝐸

𝑗,𝑛
= 0;

otherwise 𝑌
𝑗,𝑛
= 0 (outcome not occurred).

(6) Determine the known/suspected causal factors,
in other words, potential confounding factors.

Let 𝐾
𝑖
, 𝑖 = (2, 3, 4 . . . , 100) denote the researcher’s

knowledge (not necessary the fact) on 𝑋
𝑖
in relation

to its confounding effect on the association between
𝑋
1
and 𝑌. 𝐾

𝑖
is a random value drawn from the

Bernoulli distribution with a probability of success
0.1 + ∑

𝑗
𝐶
𝑗,𝑖
𝐹
𝑗
/10, value of success being 1, and value

of failure being 0.∑
𝑗
𝐶
𝑗,𝑖
𝐹
𝑗
is the total number of real

sufficient causes that included𝑋
𝑖
as a component.
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