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Abstract

During secretion of milk fat globules, triacylglycerol (TAG) droplets are enveloped by a phospholipid (PL) trilayer. Globule
size has been found to be related to polar lipid composition and fat content, and milk fat content and fatty acid
composition have been associated with the diacylglycerol acyltransferase 1 (DGAT1) K232A polymorphism; however, the
association between the DGAT1 polymorphism and fat globule size and polar lipid composition has not been studied. The
ratio between polar and neutral lipids as well as the composition of the polar lipids in milk has industrial as well as
nutritional and health implications. Understanding phenotypic and genotypic factors influencing these parameters could
contribute to improving milk lipid composition for dairy products. The focus of the present study was to determine the
effect of both fat content and DGAT1 polymorphism on PL/TAG ratio, as a marker for milk fat globule size, and detailed PL
composition. Milk samples were selected from 200 cows such that there were equal numbers of samples for the different fat
contents as well as per DGAT1 genotype. Samples were analyzed for neutral and polar lipid concentration and composition.
PL/TAG ratio was significantly associated with both fat content and DGAT1 genotype. Phosphatidylinositol and
phosphatidylserine concentrations were associated with fat content*DGAT1 genotype with a stronger association for the
AA than the KK genotype. Sphingomyelin concentration tended to interact with fat content*DGAT1 genotype.
Phosphatidylethanolamine (PE) concentration showed a biphasic response to fat content, suggesting that multiple
biological processes influence its concentration. These results provide a new direction for controlling polar lipid
concentration and composition in milk through selective breeding of cows.
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Introduction

Dietary fat has been the focus of many health-related studies

due to the connection between its consumption and health

conditions such as obesity, diabetes and atherosclerosis. An

increasing body of evidence indicates that it is not only the fat

content of the diet but also its composition that should be

considered, because of the difference in metabolic and health

impact of different fatty acids and lipid species [1–3]. Fatty acids in

the diet are almost never consumed as free fatty acids. Rather, they

are present in foods as part of larger lipid molecules, primarily

triacylglycerols (TAG) and, to much lesser extent, as polar lipids,

glycerophospholipids and sphingolipids (i.e. phospholipids, PL).

Consumption of diets rich in PL or TAG differ in metabolic

outcome, suggesting a beneficial effect of a PL-rich diet [4–6].

Therefore, understanding the mechanisms determining the ratio

between PL and TAG in food is of great importance.

Milk is one of the major sources of fat in the western diet [7].

The wide range of lipid species in milk is attributed to the unique

fat-secretion pathway employed by the mammary gland [8]. Milk

fat is secreted in a unique structure termed the milk fat globule

(MFG) which consists of a TAG core covered with three layers of

PL and proteins [9]. Milk fat consists of 96 to 97% TAG and 0.5

to 1% structural lipids, mainly PL that envelopes the TAG droplet

during secretion [10], forming the milk fat globule membrane

(MFGM) [11].

MFG are secreted in a wide range of sizes, with a diameter

ranging from the nanometer scale to more than 15 mm [12]. Due

to its unique structure, the MFG’s size determines the ratio

between the lipids in its TAG core and its PL envelope [13,14]

and, thus, may be used to modulate and improve milk fat

composition.

Amount and composition of milk fat depend on several factors,

including animal characteristics such as breed, lactation stage and

genetic polymorphisms (e.g. [16,17]), and characteristics of the

animal’s diet such as energy content and fat composition [8,15]. In

addition, a strong association between milk fat content and MFG

size has been demonstrated in dairy cows [18], by diet-induced

alterations in milk fat content [13], and by interspecies comparison

of milk fat concentrations [19]. Milk fat content has also been

associated with the composition of PL in MFG of dairy goats and
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cows [20,21]. Furthermore, association between TAG and PL

composition [12,13,14,22] and MFG size has been illustrated in

human as well as bovine milk. These data imply that the lipogenic

capacity of the mammary gland, as reflected by milk fat content, is

associated with MFG size, the composition of its PL envelope and

the ratio between PL and TAG.

In the mammary gland, the primary product of the lipogenic

process is TAG. The last stage in TAG synthesis is catalyzed by

the enzyme diacylglycerol acyl transferase 1 (DGAT1) [23]. A

genetic polymorphism (K232A) in the gene encoding the enzyme

DGAT1 has been shown to have an effect on milk fat content [16].

The DGAT1 K allele is associated with increased milk fat content,

which has been attributed to increased Vmax of the K variant of

the enzyme [16]. The increased Vmax of the K variant can result

in a changed composition of the DAG pool [17] which may affect

both neutral and polar lipid composition in the cell. Whether the

DGAT1 polymorphism is associated with the distribution of milk

fat between PL and TAG, and whether this is reflected in the

composition of the MFGM and PL/TAG ratio in milk, has never

been studied.

In this study we determined the effect of both fat content and

DGAT1 K232A polymorphism on PL/TAG ratio and detailed PL

composition. The results should lead to a better understanding of

factors determining MFG size, MFGM composition, and the milk

fat secretion process in mammary epithelial cells.

Materials and Methods

Sample Selection
Phospholipid content and composition was determined in

samples of raw morning milk taken in winter from 204 first-

lactation Dutch Holstein Friesian cows. These samples were a

selected subset of the winter milk samples that were taken from

2,000 cows for the Dutch Milk Genomics Initiative. The 204 cows

were housed on 160 farms throughout the Netherlands and were

between 67 and 263 days in milk at the time of sampling.

For milk samples of all 2,000 cows, fat content was measured by

infrared spectroscopy using a MilkoScan FT6000 (Foss Electric,

Hillerod, Denmark) at the Milk Control Station (nowadays Qlip

NV, Zutphen, the Netherlands). Genomic DNA was isolated from

whole blood samples of all cows and genotyped for the DGAT1

K232A polymorphism with a Taqman allelic discrimination assay,

as described by [17]. Blood samples were collected in accordance

with the guidelines for the care and use of animals as approved by

the ethical committee on animal experiments of Wageningen

University (protocol: 200523.b).

The subset of 204 samples was selected based on DGAT1

genotype and fat content. About half of the samples (100) were

from cows with the DGAT1 AA genotype and half of the samples

(104) were from cows with the DGAT1 KK genotype. Samples

within each genotype represented the variation in fat percentages

that was present in the samples of all 2,000 cows (between 2.5 and

7.5%). In addition, samples that had phenotypic values of more

than 2 standard deviations from the mean for selected traits (milk

yield, protein content, lactose content, somatic cell count, and the

fatty acids C4:0, C6:0, C8:0, C10:0, C12:0, C14:0, C16:0, C18:0,

C18:1cis9, C:18:2cis9,12; determined as described by [17] and

[24]) were not selected.

Lipid Extraction and Analysis
Chemicals and reagents. For lipid extraction, analytical

reagent-grade methanol and chloroform were purchased from

Bio-Lab Ltd. Laboratories (Jerusalem, Israel). For HPLC analysis,

dichloromethane, methanol and ethanol, HPLC-grade and

analytical reagent-grade, were purchased from Bio-Lab. The

triglyceride standard triolein (.99% pure) was purchased from

Supelco (Bellefonte, PA, USA). Cholesterol (.99% pure) and PL

standards were supplied by Sigma Aldrich Israel Ltd. (Rehovot,

Israel), and consisted of phosphatidylethanolamine (PE) (1,2-

dioleoyl-sn-glycero-3-phosphoethanolamine, purity 99%), phos-

phatidyl inositol (PI) (L-a phosphatidylinositol ammonium salt,

from bovine liver, purity 98%), phosphatidylserine (PS) (1,2-

dioleoyl-sn-glycerol-3-phospho-L-serine sodium salt, purity 95%),

phosphatidylcholine (PC) (1,2-dioleoyl-sn-glycero-3-phosphocho-

line, purity 99%), sphingomyelin (SM) (from bovine brain, purity

97%). As an internal standard for free fatty acids, C11:0

(undecanoic acid, purity 99%) from Sigma Aldrich was used.

Extraction of total lipids from milk. A protocol adapted

from the cold extraction procedure developed by Folch et al. [25]

was used for the extraction of total lipids from the milk. Total

lipids were extracted from 0.5 mL milk with 10 mL chloroform-

methanol (2:1, vol/vol) as described previously [21]. For the

HPLC analysis, 100 mL chloroform–ethanol (97:3 vol/vol) was

added to the evaporated tubes containing lipids and stored at -

20uC until injection into the HPLC.

HPLC analysis of PL and TAG. Quantification of PL and

TAG and determination of lipid class were performed by HPLC

(HP 1200, Agilent Technologies) combined with an evaporative

light-scattering detector (ELSD1200, Agilent Technologies). The

separation process was managed by ChemStation software

(Agilent Technologies), which permitted the acquisition of data

from the ELSD detector, with an injection volume of 10 mL. The

separation protocol was conducted as previously described by

Argov-Argaman et al. [20] using normal-phase chromatography

on a silica column (Zorbax, Agilent Technologies). Calibration

and lipid concentration and composition were determined using

external standards (Sigma Aldrich).

HPLC/ELSD calibration. PL were identified and quantified

by normal-phase liquid chromatography (HP 1200, Agilent

Technologies) equipped with ELSD (1200 series ELSD, Agilent

Technologies). The method employed for lipid separation,

consisting of dichloromethane, methanol and double-distilled

water, was as previously described [14]. Briefly, a column (Zorbax

RX-SIL, 4.66250 mm, Agilent Technologies) was heated to

50uC, and flow was set to 1 mL/min. The ELSD was heated to

65uC, nitrogen pressure was 3.9 bar, a no. 5 filter was used, and

gain (sensitivity) was set to 7 for the first 11 min and then changed

to 9 until the end of the run to enable detection of lower-

abundance lipid components. Injection volume was 20 mL. This

protocol induced the separation of TAG, two isomers of

diacylglycerol, monoacylglycerol, cholesterol, free fatty acids, PE,

PI, PS, PC and SM. Quantification was based on areas under the

standard curves of each lipid standard concentration. The power

equations were: triglyceride, y = 0.0014x0.8695 (r2 = 0.995); choles-

terol, y = 0.0245x0.581 (r2 = 0.9925); PE, y = 0.1369x0.437

(r2 = 0.9908); PI, y = 0.0103x0.7918 (r2 = 0.9898); PS = 1.73X0.41

(r2 = 0.99), PC, y = 0.0408x0.5077 (r2 = 0.9986), and SM,

y = 0.0667x0.5287 (r2 = 0.9981).

Statistical Analysis
Data analysis was performed first using SAS 9.2 (SAS Institute

Inc., Cary, USA) to determine fixed effects. Subsequently, data

were analysed using the following animal model in ASReml [26]:

yijklm~ mzb1|dimizb2|e{0:05|dimizseasonjzsirecodek

zfat �DGATlzanimalmzeijklm

DGAT1 and Milk Fat Globule Composition
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where yijklm is an observation of animal m, with fat content*D-

GAT1 genotype interaction (fat*DGAT1) l, sirecode k, season of

calving (season) j, and days in milk (dim) i; m is the general mean;

dimi is a covariate for the effect of days in milk, modelled with a

Wilmink curve [27]; seasonj is a fixed effect with 3 classes for

season of calving, summer (June to August 2004), autumn

(September to November 2004), and winter (December 2004 to

February 2005); sirecodek is a fixed effect accounting for possible

differences in genetic level between the groups of proven bull

daughters and young bull daughters; fat*DGATl is a fixed effect

for the interaction between fat content and DGAT1 polymor-

phism with two classes for DGAT1 genotype (AA and KK);

animalm is a random additive genetic effect for animal, based on a

pedigree of 26,300 animals; and eijklm is a random residual effect.

Including only AA and KK genotypes in the analysis, resulted in

reporting only additive effects of the DGAT1 polymorphism.

The animal model uses heritability estimates that are relatively

unreliable, because estimates are based on only 204 observations.

To test whether this affected the results, all analyses were repeated

with a fixed heritability of 0.1 and with a fixed heritability of 0.4.

These analyses showed that the heritability hardly affected the test-

statistics or the effects of significant associations, thus, that the

relatively unreliable heritability estimates did not have a large

impact on the analyses.

Results

Phospholipid Content and Composition
The composition of the total lipid fraction isolated from the 204

milk samples was determined by HPLC. Table 1 shows data for fat

content, TAG content, PL content and relative concentrations of

individual PL for KK and AA genotypes. Milk fat consisted of

approximately 98% TAG and 1% PL, resulting in an average PL/

TAG ratio of 0.01, with values ranging from 0.0095 to 0.0176 for

the AA groups and from 0.0076 to 0.023 for the KK group. The

individual phospholipids ranged in average concentration from

3.8% for PE in the KK group to 36.7% for PC in the AA group.

Effect of Fat Content and DGAT1 Genotype on TAG
Content and PL Content and Composition

As the DGAT1 genotype is strongly correlated with fat content,

we calculated the significance of the interaction between fat

content and DGAT1 genotype on TAG content and on PL

content and composition, see table 2. This table shows that the fat

content*DGAT1 genotype interaction was significant for the PL/

TAG ratio and for PI, PS and SM (P,0.1). Figure 1 shows the

relation between Pl/TAG ratio and fat content and Figures 2–6

show the relation between the individual phospholipids and fat

content, differentiated by DGAT1 genotype. The decrease in PL/

TAG ratio with increasing fat content (Figure 1) and the increase

in SM with increasing fat content (Figure 6) were both larger for

the DGAT1 KK genotype than for the AA genotype. The

decrease in PI with increasing fat content and the increase in PS

with increasing fat content were both larger for the DGAT1 AA

genotype compared with the KK genotype.

Discussion

Previously, compelling evidence has been provided for the effect

of the K232A polymorphism of the DGAT1 gene on bovine milk

fat content [16] and fatty acid composition [17]. However, no

information regarding the possible effect on PL composition or

MFG size has been reported. The aim of this study was, therefore,

to determine the effect of both fat content and DGAT1 K232A

polymorphism on milk fat composition, with a focus on PL/TAG

ratio and PL composition. The main finding of our study is that

DGAT1 polymorphism plays a significant role in milk fat

macrostructure as reflected by PL/TAG ratio. This association

of a known genetic polymorphism with MFG macrostructure

provides a novel opportunity to understand how milk lipid

composition is determined.

The results of the present study show that PL/TAG ratio

decreases with increasing milk fat content (Table 2; Figure 1), for

both DGAT1 genotypes. As the PL/TAG ratio is negatively

correlated with fat globule size [13,22], our data thus suggest that

the size of fat globules changes with changing fat content. This is in

accordance with literature on the relation between fat content and

fat globule size [13,18]. In the present study, the overall PL/TAG

ratio was lower for the DGAT1 KK genotype (Table 1) suggesting

that the DGAT1 KK genotype is associated with larger fat

globules. This is in accordance with the finding that the DGAT1

KK genotype is also associated with higher fat content (table 1;

[16]).

Table 1. Range, mean and SD of lipid extract composition from 204 milk samples.

DGAT1 KK DGAT1 AA

Min Mean Max SD Min Mean Max SD

Fat content (%) 3.55 4.95 7.42 0.82 2.25 3.99 5.71 0.81

PL (% of TL) 0.63 0.94 1.72 0.21 0.75 1.22 2.24 0.30

TAG (% of TL) 97.60 98.52 99.01 0.27 96.77 98.14 98.81 0.44

TC (% of TL) 0.35 0.57 0.88 0.13 0.41 0.68 1.12 0.17

PL/TAG ratio 0.006 0.009 0.0176 0.002 0.0076 0.0124 0.0231 0.0032

PI (% of TPL) 7.11 17.11 28.56 4.59 8.45 17.64 27.71 4.32

PE (% of TPL) 3.89 8.69 15.88 2.67 3.83 9.10 16.73 2.52

PS (% of TPL) 10.62 19.35 32.00 4.60 11.75 19.73 36.33 5.46

PC (% of TPL) 24.73 30.06 36.20 2.28 23.30 29.99 36.78 2.29

SM (% of TPL) 18.29 24.80 38.34 3.60 9.47 23.54 31.07 3.16

PL: phospholipids; TAG: triacylglycerols; TL: total lipids; TC: total cholesterol; TPL: total phospholipids; PI: phosphatidylinositol; PE: phosphotidylethanolamine; PS:
phosphatidylserine; PC: phosphotidylcholine; SM: sphingomyelin.
doi:10.1371/journal.pone.0068707.t001

DGAT1 and Milk Fat Globule Composition
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The association between DGAT1 genotype and PL/TAG ratio

that was found in the present study may be related to differences in

efficiency between the two genetic variants of the enzyme. The

DGAT1 enzyme catalyzes the last step in TAG syntheses, and the

K variant of the DGAT1 enzyme has been found to cause an

increase in milk fat percentage, which was related to a higher

Vmax compared to the A variant [16]. In addition, a common

diacylglycerol (DAG) pool for both neutral and polar lipid

synthesis has been suggested by a study on permeabilized

hepatocytes [28]. Therefore, higher TAG-synthesis efficiency by

the K variant may lead to decreased availability of DAG for polar

lipid synthesis [29] which may result in sparing membrane

material and, consequently, secreting MFG with lower surface

area-to-volume ratio (lower PL/TAG ratio) [18]. The hypothesis

Figure 1. Fat content (%) versus phospholipid/triacylglycerol (PL/TAG) ratio (2) differentiated by DGAT1 genotype.
doi:10.1371/journal.pone.0068707.g001

Figure 2. Relationship between fat content (%) and phosphatidylinositol (PI) content (% of total phospholipids (PL)) differentiated
by DGAT1 genotype.
doi:10.1371/journal.pone.0068707.g002

DGAT1 and Milk Fat Globule Composition
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that DGAT1 activity and efficiency might change the balance

between PL and TAG in milk is supported by a study in which

overexpression of DGAT1 in lung fibroblasts increased the

utilization of the cellular pool for TAG synthesis and, in turn,

decreased the concentration of all major membrane lipid

constituents [30]. It is difficult to disentangle the effects of both

fat content and DGAT1 genotype on PL/TAG ratio because of

the highly significant interaction between DGAT1 genotype and

fat content (table 2, [16]). However, when calculating the effect of

DGAT1 genotype after correction for fat content, the effect of

DGAT1 genotype remained significant (data not shown), suggest-

ing an independent effect of DGAT1 genotype on PL/TAG ratio.

Figure 3. Relationship between fat content (%) and phosphotidylethanolamine (PE) content (% of total phospholipids (PL))
differentiated by DGAT1 genotype.
doi:10.1371/journal.pone.0068707.g003

Figure 4. Relationship between fat content (%) and phosphatidylserine (PS) content (% of total phospholipids (PL)) differentiated
by DGAT1 genotype.
doi:10.1371/journal.pone.0068707.g004

DGAT1 and Milk Fat Globule Composition
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When the concentrations of specific phospholipids in milk were

analyzed, we found that the PL content and composition (Table 1)

were similar to values found previously for bovine milk [14]. We

found that fat content*DGAT1 genotype interaction only tended

to affect one of the major PL in milk, SM(Table 2; p = 0.086).

Although not significant, the positive correlation between fat

content and SM was 3 times stronger for the KK than the AA

genotype (Table 2). The fact that the correlation between fat

content and SM concentration did not reach significance may be

attributed to the different distribution of SM between the various

cellular membranes of the mammary gland epithelial cells. For

example, the concentration of SM in the ER of the bovine

Figure 5. Relationship between fat content (%) and phosphatidylcholine (PC) content (% of total phospholipids (PL)) differentiated
by DGAT1 genotype.
doi:10.1371/journal.pone.0068707.g005

Figure 6. Relationship between fat content (%) and sphingomyelin (SM) content (% of total phospholipids (PL)) differentiated by
DGAT1 genotype.
doi:10.1371/journal.pone.0068707.g006

DGAT1 and Milk Fat Globule Composition
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mammary gland is four-fold lower compared with that of the

plasma membrane [31]. SM concentration differed between the

genotypic groups with a lower concentration for the DGAT1 AA

genotype (Table 1),with a much weaker correlation between fat

content and SM concentration for the AA genotype (Table 2).

Cows with the DGAT1 A allele produce milk with lower palmitate

and higher unsaturated fatty acids concentration [17]. We

therefore hypothesize that the lower efficiency of DGAT1 A

variant in incorporating palmitate into TAG will result in

accumulation of palmitate in the cytoplasm and allosteric

inhibition of fatty acid synthase (FAS), decreasing synthesis of its

end product, palmitate. This may lead to a lower availability of

palmitate in the intracellular fatty acid pool, which, in turn, may

reduce de novo synthesis of SM that starts with a condensation step

of palmitate-CoA with serine [32].

The concentration of PI was lower at higher milk fat content

(Table 1) and the correlation between PI and fat content was

stronger for the DGAT1 AA genotype than the KK genotype

(Table 2). PS showed a significant fat content*DGAT1 interaction,

with a stronger association between PS and fat content for the

DGAT1 AA genotype than for the DGAT1 KK genotype

(Table 2). The decrease in PI and increase in PS with increasing

fat content is in agreement with our previous study [14].

PE and PC did not show a significant fat content * DGAT1

genotype interaction. The constant PC concentrations in the

present study are in agreement with a previous study that showed

that PC was not affected by fat globule size [14]. The fact that PE

concentration was not associated with fat content was surprising

since PE has previously been shown to be related to milk fat

globule size [14] and since it is an important lipid in relation to

membrane fusion and secretion events [33–35]. The MFG-

secretion pathway consists of two major membrane-fusion events

that potentially affect MFG size: intracellular fusion of microlipid

droplets [11] and MFG secretion into the alveolar lumen. The

intracellular fusion events determine the MFG diameter. A

decrease in PE concentration has previously been shown during

the maturation of VLDL as well as growth of intracellular lipid

droplets [36,37]. This decrease has been linked to a decrease in the

lipid droplet surface curvature that results from increasing lipid

droplet size. This implies a major role for PE membrane

concentration in the process of intracellular fusion, and thereby

possibly MFG diameter. Alternatively, metabolic pathways

involving mitochondrial number and activity level, which is

associated with DGAT1 genotype due to the different milk fat

production levels, also influence PE concentration in the

membrane, as PE is formed in the mitochondria [38]. We

therefore hypothesize that the complexity of pathways regulating

PE concentration, including metabolic status of the cells as well as

structure-function regulation of the MFG during fusion events,

make it difficult to predict the effect of fat content or DGAT1

genotype on PE.

The results of the present study have practical relevance,

because there are multiple industrial implications for MFG size

and lipid composition. For example, the physicochemical charac-

teristics of cheese [28] as well as MFG coalescence and

aggregation [22] have been attributed to the protein and lipid

composition of small vs. large MFG. The importance of the

variation in MFG lipid composition extends beyond physical

properties and includes health and nutritional benefits as well. For

example, the association between MFG size and fatty acid

composition [29] and the relative concentration of PL [14] would

be of interest to consumers’ plasma lipid profiles [4] and

lipoprotein metabolism [2,3].

In sum, there is nutritional, health and industrial interest to

understand the mechanisms underlying MFG size and hence its

composition.

In the present study, genotypically as well as phenotypically

contrasting samples were used to further elucidate the mechanisms

controlling MFGM amount and composition. The results show

that DGAT1 polymorphism plays a role in determining milk total

polar lipid content as well as specific lipid constituents in the polar

lipid envelope of the MFG. The fact that a genetic effect was still

present for some polar lipids after correcting for the effect of fat

content indicates a genuine genotype effect on MFGM compo-

sition. These results provide a new direction for improving polar

lipid concentration and composition in milk through selective

breeding.
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