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 Abstract 
  Background aims.  Transplantation of synovial mesenchymal stromal cells (MSCs) may induce repair of cartilage defects. 
We transplanted synovial MSCs into cartilage defects using a simple method and investigated its usefulness and repair 
process in a pig model.  Methods . The chondrogenic potential of the porcine MSCs was compared  in vitro . Cartilage defects 
were created in both knees of seven pigs, and divided into MSCs treated and non-treated control knees. Synovial MSCs 
were injected into the defect, and the knee was kept immobilized for 10 min before wound closure. To visualize the actual 
delivery and adhesion of the cells, fl uorescence-labeled synovial MSCs from transgenic green fl uorescent protein (GFP) 
pig were injected into the defect in a subgroup of two pigs. In these two animals, the wounds were closed before MSCs 
were injected and observed for 10 min under arthroscopic control. The defects were analyzed sequentially arthroscopically, 
histologically and by magnetic resonance imaging (MRI) for 3 months.  Results . Synovial MSCs had a higher chondrogenic 
potential  in vitro  than the other MSCs examined. Arthroscopic observations showed adhesion of synovial MSCs and mem-
brane formation on the cartilage defects before cartilage repair. Quantifi cation analyses for arthroscopy, histology and MRI 
revealed a better outcome in the MSC-treated knees than in the non-treated control knees.  Conclusions . Leaving a synovial 
MSC suspension in cartilage defects for 10 min made it possible for cells to adhere in the defect in a porcine cartilage 
defect model. The cartilage defect was fi rst covered with membrane, then the cartilage matrix emerged after transplantation 
of synovial MSCs.  
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  Introduction 

 Cartilage injuries are a common clinical problem 
and if left untreated may cause osteoarthritis, one of 
the leading causes of disability (1). Stem cell ther-
apy for cartilage repair may be one possible strategy 
for improvement of cartilage injury. The candidate 
therapeutic cells are mesenchymal stromal cells 
(MSCs), which can be isolated from various mesen-
chymal  tissues (2,3). We have reported previously 
the superiority of human synovial-derived MSCs for 

cartilage repair (4 – 6) and  in vitro  expansion with 
autologous human serum (7). 

 Various methods have been used to transplant 
MSCs into cartilage defects, such as intra-articular 
injection (8,9) and the use of scaffolds (10). We have 
demonstrated recently that leaving the knee immo-
bilized for 10 min immediately after delivering a 
suspension of synovial MSCs into the defect results 
in approximately 60% of the cells adhering to the 
defect to promote cartilage repair in rabbits (11). 
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This  ‘ local adherent technique ’  can be performed 
less invasively and without scaffolds compared with 
other methods. 

 We hypothesized that this method will also be 
useful in animals that are more closely related to 
humans. The purpose of the present study was to 
examine the usefulness of the local adherent tech-
nique with synovial MSCs in pigs. The knee joints 
of pigs are similar to those of humans in terms of 
size (12) and cartilage-specifi c properties (13). In 
this study, synovial MSCs were transplanted into the 
cartilage defect of pigs using the local adherent tech-
nique, and repaired cartilage was examined sequen-
tially arthroscopically, histologically and by delayed 
gadolinium-enhanced magnetic resonance imaging 
of cartilage (dGEMRIC) (14,15).   

 Methods  

 Animals 

 All experiments were conducted in accordance with 
the institutional guidelines for the care and use of 
experimental animals of the Tokyo Medical and 
Dental University (Tokyo, Japan) and Jichi Medical 
University (Tochigi, Japan). Nine male and six 
female Mexican hairless pigs (National Livestock 
Breeding Center, Ibaraki, Japan) were used. They 
were 13 months old, on average 33.5 kg in weight, 
and skeletally mature, with the growth plates closed. 
All pigs were bred under specifi c pathogen-free 
conditions and had free access during the study 
period to food and water in a post-operative care cage 
(400 mm in width, 1210 mm in length and 1090 mm 
in height). One wild-type pig and one transgenic 
green fl uorescent protein (GFP) pig (16) were used 
as donors for synovial MSC for transplantation. Two 
other pigs were also used as sources for MSCs for 
 in vitro  proliferation and differentiation assays. These 
four pigs were euthanized on the day when the tis-
sues were harvested. Twelve other wild-type pigs 
were used as recipients. For GFP observation, two 
pigs were euthanized on the day MSCs were trans-
planted, and for observation of 1,1 ′ -dioctadecyl-
3,3,3 ′ ,3 ′ -tetramethylindocarbocyanine perchlorate 
(DiI; Molecular Probes, Eugene, OR, USA) two 
pigs were euthanized at 7 days after transplantation. 
For arthroscopic, histological and MRI analyses, 
three pigs were euthanized at 1 month, and fi ve pigs 
were euthanized at 3 months, after transplantation.   

 Cell isolation and culture 

 Synovial tissue was harvested from the suprapatellar 
pouch, which overlays the non-cartilaginous areas of 
the femur, through an arthrotomy of the knee. The 

tissue was digested in 3 mg/mL collagenase D solu-
tion (Roche Diagnostics, Mannheim, Germany) in 
 α -minimal essential medium ( α MEM; Invitrogen, 
Carlsbad, CA, USA) at 37 ° C for 3 h, fi ltered through 
a 70- μ m nylon fi lter (Becton-Dickinson and Co., 
Franklin Lakes, NJ, USA) and the nucleated cells 
plated in a 150-cm 2  culture dish (Nalge Nunc Inter-
national, Rochester, NY, USA) in complete cul-
ture medium [ α MEM containing 10% fetal bovine 
serum (FBS), 100 U/mL penicillin, 100  μ g/mL 
streptomycin and 250 ng/mL amphotericin B (all 
from Invitrogen)] and incubated at 37 ° C with 5% 
humidifi ed CO 2 . The medium was changed to 
remove non-adherent cells every 4 – 5 days and then 
cultured for 14 days as passage 0 without refeeding. 
To cryopreserve the cells, they were resuspended at a 
concentration of 2  �  10 6  cells/mL in  α MEM with 5% 
dimethylsulfoxide (Wako, Osaka, Japan) and 10% 
FBS. Aliquots of 2 mL were frozen slowly in a Cryo 
1 ° C freezing container (Nalge Nunc International) 
and cryopreserved at  – 80 ° C. To expand the cells, a 
frozen vial of the cells was thawed, plated in 60-cm 2  
culture dishes, and incubated for 4 days. Then 
the cells were replated at 5  �  10 5  cells/150-cm 2  
culture dish (passage 2) and cultured for an addi-
tional 14 days. The nucleated cells derived from 
periosteum, muscle and adipose tissue were isolated 
and expanded in the same manner as those from 
synovium. 

 Bone marrow was aspirated from the tibial tuber-
osity. Periosteum was peeled off from the tibia. Muscle 
was obtained from the quadriceps. Adipose tissue was 
prepared from the subcutaneous fat around the knee. 
Nucleated cells from the bone marrow were isolated 
with a density gradient (Ficoll-Paque; Amersham 
Biosciences, Uppsala, Sweden).   

 Colony-formation assay 

 Nucleated cells derived from synovium were plated at 
0.5, 5, 50 and 500  �  10 3  cells/60-cm 2  dish, cultured 
for 14 days, and stained with crystal violet. The opti-
mal initial cell density was determined based on the 
following criteria: (a) the colony size was not affected 
by contact inhibition, and (b) the greatest number of 
colonies was obtained. We then harvested the cells 
plated at optimal densities from the remaining dishes 
and expanded them as mentioned above.   

 In vitro proliferation assay 

 Synovial MSCs were plated at 5  �  10 3  cells/60-cm 2  
dish in complete culture medium and passaged 
every 14 days. Cells from each passage were har-
vested and counted with a hemocytometer, and the 
total accumulated cell number was calculated.   
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 In vitro differentiation assay 

 For chondrogenesis, 250 000 cells were placed in a 
15-mL polypropylene tube (Becton-Dickinson and 
Co.) and centrifuged at 450  g  for 10 min. The 
pellets were cultured in chondrogenesis medium 
consisting of high-glucose Dulbecco ’ s modifi ed 
Eagle ’ s medium (Invitrogen) supplemented with 
1  μ g/mL bone morphogenetic protein (BMP)-7 
(Stryker Biotech, Hopkinton, MA, USA), 10 ng/
mL transforming growth factor (TGF)- β 3 (R&D 
Systems, Minneapolis, MN, USA), 100 n M  dex-
amethasone (Sigma-Aldrich Corp., St Louis, MO, 
USA), 50  μ g/mL ascorbate-2-phosphate, 40  μ g/mL 
proline, 100  μ g/mL pyruvate and 1:100 diluted 
ITS  �  Premix (6.25  μ g/mL insulin, 6.25  μ g/mL 
transferrin, 6.25 ng/mL selenious acid, 1.25 mg/
mL bovine serum albumin and 5.35 mg/mL lino-
leic acid; BD Biosciences Discovery Labware, Bed-
ford, MA, USA). For microscopy, the pellets were 
embedded in paraffi n, cut into 5- μ m sections, and 
stained with toluidine blue (17 – 19). 

 For adipogenesis, cells were cultured in adipogenic 
medium, which consisted of complete medium supple-
mented with 100 n M  dexamethasone (Sigma-Aldrich 
Corp.), 0.5 m M  isobutyl-methylxanthine (Sigma-Al-
drich Corp.) and 50  μ  M  indomethacin (Wako), for 21 
days. The adipogenic cultures were fi xed in 4% para-
formaldehyde and then stained with fresh Oil Red O 
solution (20). 

 For calcifi cation, cells were cultured in calcifi ca-
tion medium, which consisted of a complete medium 
of 1 n M  dexamethasone, 20 m M   β -glycerol phosphate 
(Wako) and 50  μ g/mL ascorbate-2-phosphate (Sig-
ma-Aldrich Corp.), for 21 days. The cells were fi xed 
in 4% paraformaldehyde and stained with 0.5% 
Alizarin Red solution (21).   

 DiI labeling 

 Synovial MSCs were resuspended at 1  �  10 6  cells/
mL in  α MEM without FBS, and a fl uorescent lipo-
philic tracer, DiI, was added at a fi nal concentration 
of 5  μ L/mL. After incubation for 20 min at 37 ° C and 
two washings with phosphate-buffered saline (PBS), 
DiI-labeled cells were resuspended in 100  μ L culture 
medium (22).   

 Experimental set-up 

 The fi rst pig was used for anatomical study and har-
vesting mesenchymal tissues to stock the MSCs for 
further analyses. When pigs for the  in vivo  study were 
prepared, cryopreserved synovial MSCs were thawed 
and expanded 2 weeks before transplantation. On 
the day of transplantation surgery, all colony-forming 

cells were harvested and suspended in 100  μ L culture 
medium and transplanted as described. Four pigs were 
used for an early adhesion assay with transplantation 
of GFP porcine synovial MSCs ( n   �  2) (Figure 2A) 
and DiI-labeled MSCs ( n   �  2). Other pigs were ana-
lyzed by arthroscopy every month, and two pigs were 
sacrifi ced at 1 month after treatment for histological, 
macroscopical and MRI analyses. Five pigs were sac-
rifi ced at 3 months after treatment and analyzed by 
histology and MRI (Figure 2D).   

 Transplantation of synovial MSCs into the 
cartilage defects 

 All pigs underwent general anesthesia, and the medial 
femoral condyle was approached through a medial 
parapatellar incision. Full-thickness osteochondral 
defects (8  �  8 mm square and 2 mm deep; approxi-
mately 1.5 mm cartilaginous and 0.5 mm bony part) 
were created with various sizes of drills in the weight-
bearing area of the medial femoral condyles in both 
knees, 10 mm below the terminal ridge. When the 
defects were created, bleeding was not observed, and 
a procedure to stop bleeding from the bottom of the 
defect was not required. 

 The right knee of each pig was treated with MSCs 
and the left knee served as a vehicle internal control. 
The MSCs were harvested and collected from the cul-
ture dishes several hours before transplantation, and 
harvested MSCs were suspended in a 50-mL conical 
tube containing 40 mL culture medium. Just before 
the transplantation, the tube was centrifuged for 
5 min at 1500 r.p.m., and the supernatant was 
removed. Centrifuged MSCs were suspended in 
100  μ L culture medium. The transplanted cell 
number was a maximum of 5.3  �  10 7 , a minimum 
of 2.2  �  10 7 , and on average 3.8  �  10 7 . 

 The cartilage defect was faced upward, and its 
position was held manually. A suspension of pre-
pared MSCs in 100  μ L culture medium was placed 
into the defect through an 18-gauge needle. Culture 
medium alone (100  μ L) was placed into the defects 
in the left knee in the same manner. After 10 min, 
the incisions were closed without washing the inside 
of the knee joint. After the anesthetic wore off, the 
pigs were allowed to walk freely without fi xation. To 
reduce the risk of infection, we avoided the use of an 
immune suppressor. 

 For euthanasia, an overdose intravenous injec-
tion of KCl was used under adequately deep general 
anesthesia. For macroscopic analyses, all samples at 
1 month ( n   �  3) and 3 months ( n   �  5) were evalu-
ated with the International Cartilage Repair Society 
(ICRS) macroscopic score (23) (see the supplemen-
tary tables).   
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and repaired cartilage; the bottom was the interface 
between bone and repaired cartilage, and the top 
was the superfi cial surface of the repaired cartilage. 
The ROI for native cartilage was drawn over the full-
thickness weight-bearing areas of the femoral con-
dyle at both sides of the repair site, about 3 mm from 
the lateral edge of the repair site (14,15).   

 Statistical analyses 

 To assess differences, Wilcoxon rank-sum tests were 
used except for MRI analysis. For MRI analysis, 
the paired  t -test was used. A value of  P   �  0.05 was 
considered signifi cant.    

 Results  

 Characteristics of porcine synovial cells as MSCs 

 The initial cell-plating density to produce the opti-
mal colony number was determined to be 5  �  10 3  
cells/60-cm 2  dish (Figure 1A). Three cell lineages 
derived from three different pigs maintained their 
proliferation potential over 20 passages (Figure 
1B). Colony-forming cells derived from porcine 
synovium displayed a trilineage potential, differ-
entiating into chondrocytes and adipocytes, and 
osteocytes, when cultured in their respective dif-
ferentiation media (Figure 1C).  In vitro  chondro-
genesis assays demonstrated that cartilage pellets 
of colony-forming cells derived from synovium 
were the heaviest among those derived from the 
other mesenchymal tissues (Figure 1D). These 
results indicated that colony-forming cells derived 
from porcine synovium had similar characteristics 
to those of MSCs, and the highest chondrogenic 
potential compared with cells derived from the 
other tissues examined.   

 Local adherent technique for transplantation of MSCs 

 After expanding for 14 days (Figure 2A), colony-
forming cells derived from synovium of the transgenic 
GFP pig expressed GFP (Figure 2B). A drop of MSC 
suspension through a needle (Figure 2Ci) could be 
detected with the GFP arthroscopy system (Figure 
2Cii). After placement of the MSC suspension for 10 
min, the bottom of the cartilage defect looked foggy 
(Figure 2Ciii) and GFP MSCs were still detected in 
the cartilage defect (Figure 2Civ), even though the 
irrigation fl uid was fl ushed from the tip of the arthro-
scope (see the supplementary movies). DiI-labeled 
MSCs were also traced (Figure 2D, E) and remained 
in the cartilage defect at 7 days (Figure 2F), but they 
could not be found at 1 and 3 months.   

 Arthroscopy 

 All knees were observed with arthroscopy (Linvatec 
8180A camera console surgical video equipment, 
with LIS8430 for the light source; Zimmer Inc., 
Warsaw, IN, USA) at 1, 2 and 3 months after trans-
plantation. An arthroscope, a probe and a shaver 
system were inserted through longitudinal incisions 
at the medial and lateral sides of the patella ten-
don. All arthroscopic observations were evaluated by 
Oswestry arthroscopy score (23) (see the supplemen-
tary tables). For arthroscopic observation of GFP 
MSCs, a newly developed fl uorescence arthroscope 
(Olympus Medical Systems Corp., Tokyo, Japan) was 
used.   

 Histological analyses 

 The samples were cut into a thickness of a 15 mm 
square with 5 mm containing a defect, fi xed in 
4% paraformaldehyde, and decalcifi ed with 0.5  M  
ethylene diamine tetra acetic acid (EDTA; pH 7.5) 
for 3 days at 4 ° C. Paraffi n sections were stained 
with Safranin O. All samples were evaluated with a 
modifi ed Wakitani score (11) (see the supplementary 
tables).   

 dGEMRIC 

 Before histological analyses, medial femoral con-
dyles were collected and pre-contrast MRI was per-
formed. An MRI system at 1.5 Tesla (Signa HDx; 
GE Healthcare, Chalfont St Giles, UK) was used 
with a custom-made micro-imaging coil. Each 
specimen was pre-treated with 0.5 m M  gadopentate 
dimeglumine (Gd-DTPA 2 –  ; Magnevist ® ; Schering, 
Berlin, Germany) in 0.9% normal saline overnight 
at 4 ° C with continuous stirring. The next day the 
samples were removed from refrigeration, and post-
contrast MRI was performed at room temperature. 
R1 was defi ned as the reciprocal of the T1 value. The 
R1 measurement was performed using a fast-spin 
echo inversion-recovery (FSE-IR) sequence (2400 
ms repetition time, 18 ms echo time, six inversion 
times of 50 – 2000 ms, 30  �  30 mm fi eld of view, 
1.0-mm section thickness, 512  �  512 matrix). The 
difference between the pre-Gd-enhanced R1 value 
and the post-Gd enhanced R1 value ( Δ R1) indicated 
the glycosaminoglycan (GAG) concentration (14). 
Color-coded  Δ R1-calculated heat maps of the car-
tilage were generated using MATLAB (Mathworks, 
Natick, MA, USA) with a mono-exponential curve 
fi t. Blue represents a high content of GAG, and red 
a low content. For R1 measurements, the region of 
interest (ROI) for repaired tissue was defi ned as the 
area where both sides were connected between native 
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 Histological analyses 

 At 1 month, membranous tissue completely covered 
the defects only in the MSC-treated knees (Figure 4A). 
At 3 months, newly synthesized cartilage matrix was 
observed in every sample in the MSC-treated knees. In 
contrast, there was no cartilage matrix in the control 
knees (Figure 4B). Furthermore, cartilage defects 
were further enlarged in the control knees. Higher 
magnifi ed observations demonstrated a columnar 
arrangement of chondrocytes with lacunae in the 
repaired cartilage in the MSC-treated knees (Figure 
4C, D). The modifi ed Wakitani score for histological 
analysis of cartilage repair was signifi cantly higher in 
the MSC-treated knees than in the control knees at 
3 months (Figure 4E).   

 dGEMRIC 

 The cartilage defects showed predominantly red 
(lower glycosaminoglycan concentration) in both 
the MSC and control knees at 1 month (Figure 
5A). At 3 months, they changed to blue (higher gly-
cosaminoglycan concentration) in the MSC-treated 

 Arthroscopic and macroscopic observation 

 At 1 month, a thin membrane covered the cartilage 
defects only in the MSC-treated knees (Figure 3A). 
At 2 months, a thicker white membrane covered the 
defects in the MSC-treated knees, while the carti-
lage defects were enlarged in the control knees. At 
3 months, the defects were covered with cartilage 
tissue in the MSC-treated knees. In contrast, the 
defects were further enlarged in the control knees. 
Arthroscopic observation was easier in the MSC-
treated knees at all time-points because intra-artic-
ular adhesion and synovial hypertrophy were less in 
the MSC-treated knees compared with the control 
knees. The Oswestry arthroscopy score improved 
over the course of time, and a signifi cant difference 
between the two groups was observed at 3 months 
(Figure 3B). Similar results were obtained with the 
macroscopic evaluation (Figure 3C). The ICRS score 
for macroscopic observation was signifi cantly higher 
in the MSC-treated knees than in the control knees 
(Figure 3D). We found no complications through-
out this cell transplantation study in the knees 
examined.   
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Figure 1.     Characteristics of porcine synovial MSCs. (A) Colony formation. (B) Proliferation. (C)  In vitro  chondrogenesis, adipogenesis 
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reported similar results previously in humans (4), 
rats (5) and rabbits (22). These fi ndings suggest that 
MSCs derived from synovium have a high chondro-
genic potential irrespective of animal species. 

 The  in vitro  chondrogenic potential was evaluated 
by the weight of the pellet. During  in vitro  chondrogen-
esis of MSCs, the pellets increased in size and weight. 
In contrast, the DNA yield per pellet decreased over 
time. The radioactivity per DNA in the cells, assessed 
by pre-labeling with 3H-thymidine, was stable dur-
ing  in vitro  chondrogenesis of MSCs. Consequently, 
the increase in pellet size could be attributed to the 
production of extracellular matrix (ECM) and not 

knees, while remaining red in the control knees. The 
average   R1 value for ROI (Figure 5B) was higher 
in the MSC-treated knees than in the control knees 
(Figure 5C).    

 Discussion 

 One of the principal fi ndings of the study was the 
high chondrogenic potential of MSCs from synovium 
in pigs. In this study,  in vitro  chondrogenesis assays 
demonstrated that cartilage pellets of MSCs from 
synovium were heavier than those from bone marrow, 
muscle, periosteum and adipose tissue in pig. We have 
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a more effective chondrogenesis dependent on MSC 
sources. 

 To track the cells, we used both GFP and DiI 
systems. The use of GFP cells is advantageous in 
that dead GFP cells are not detected. In this study, 
GFP synovial MSCs were derived from the Jinhua 
pig, and the recipients used were Mexican hairless 
pigs. This was a major mismatch transplantation 
model, because Jinhua and Mexican hairless pigs 
have a high independency of gene profi le as a result 
of inbreeding (29). Therefore, the analysis of trans-
plantation of GFP cells was limited for the obser-
vation of arthroscopic transplantation of synovial 
MSCs, because we wanted to avoid the possibility 
of an immune reaction after adherence of the cells. 
The use of GFP cells is disadvantageous in that GFP 
is often undetectable after processing for histology, 
especially in the case of paraffi n embedding (30). To 
solve these problems, we used the DiI system to track 
the transplanted cells. 

 For histological and other analyses, we created 
cartilage defects and left the suspension of MSCs on 
the defects for 10 min in an open arthrotomy. For 
GFP analysis, after the cartilage defects were created 
in an open arthrotomy, the joint capsule and skin were 
sutured, then the suspension of MSCs was placed on 
the defects through the needle while we observed 
the defect with an arthroscope, and the suspension 
was left for 10 min. Fluorescence arthroscopy dem-
onstrated that GFP MSCs remained in the cartilage 
defects, even though the irrigation fl uid was fl ushed 
from the tip of the arthroscope. This indicates that the 
method we used makes it possible to transplant MSCs 
into the cartilage defects through a small incision by 
arthroscopy, with minimal invasiveness. Although a 
GFP-detecting endoscopy system for the airway has 
been reported previously (31), this system still seems 
to be unpopular. Our study is the fi rst report demon-
strating GFP cells in joints with arthroscopy. 

 In this study, the number of MSCs adhering to 
the cartilage defect was not quantifi ed. In our previ-
ous  ex vivo  study using human and rabbit samples, a 
suspension of synovial MSCs was placed on the full-
thickness defect of the articular cartilage fragment, 
and approximately 60% of the cells were attached 
to the defect within 10 min (11). A recent study 
reported that the addition of magnesium to the cell 
suspension increased the number of synovial MSCs 
attached to the cartilage defect  in vitro  and  in vivo  
(32). In our pig study, the medium for MSC suspen-
sion contained 1 m M  magnesium, and we estimated 
that more than 60% of the cells adhered to the car-
tilage defect. 

 The cartilage defect we created might be better 
called an osteochondral defect rather than a cartilage 
defect. We tried to create a full thickness cartilage 

to the proliferation of the cells (19,24). Pellet weight 
is always correlated with the expression of cartilage-
related mRNA, such as COL2A1, with proteoglycan 
staining by Safranin O, type II collagen by immu-
nostaining, and protein expression of chondroitin 
4-sulfate by enzyme-linked immunosorbent assay 
(ELISA) (4 – 7,17 – 19,25). Furthermore, the results 
of  in vitro  chondrogenesis refl ected the results of  
in vivo  chondrogenesis in that undifferentiated MSCs 
were transplanted into cartilage defects, and carti-
lage matrix production by MSCs was evaluated after 
4 weeks in rabbits (6). All the results demonstrate 
that the weights of the pellets are quantitative indica-
tors for chondrogenesis of MSCs. 

  In vitro  chondrogenesis appears to be most suc-
cessful when a combination of dexamethasone, 
TGF- β  and BMP is used in MSCs derived from 
bone marrow (18), synovium (19), muscle (26), 
periosteum (27) and adipose tissue (28). However, 
our current results do not exclude the possibility that 
a different combination of growth factors may induce 
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Figure 3.     Arthroscopic and macroscopic analyses of cartilage 
defects with and without transplanted MSC. (A) Sequential 
arthroscopic view at 1, 2 and 3 months. (B) Quantifi cation of 
arthroscopic view of cartilage defect.  ∗  P   �  0.05 by Wilcoxon 
rank-sum test. (C) Representative macroscopic features. (D) 
Quantifi cation of macroscopic features of cartilage defect. 
 ∗  P   �  0.05 by Wilcoxon rank-sum test.  
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was removed, because any remaining cartilage would 
affect the outcome of this study. We also thought that 
if we could repair an osteochondral defect with our 

defect, but it was not technically easy to do with pre-
cision. Therefore, we preferred to create the osteo-
chondral defect in order to be sure all the cartilage 
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Figure 4.     Histological analyses of cartilage defect transplanted with MSCs. (A) Representative sections stained with Safranin O at 1 month. 
Red indicates extracellular matrix, and blue indicates cancellous bone. (B) Example sections of the best, representative and worst outcomes 
in the MSC-treated knees at 3 months and in the control from the opposite sides. Borders of the original defect are shown by both 
arrowheads. (C) Magnifi ed histology of the indicated area. (D) High magnifi cation of the indicated area. (E) Quantifi cation of histologies 
of cartilage defect.  ∗  P   �  0.05 by Wilcoxon rank-sum test.  
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a 2-mm osteochondral defect consisting of 1.5 mm 
in the cartilage and 0.5 mm in the subchondral bone 
was created, and the infl uence of the subchondral 
bone defect would have been less than that when the 
subchondral bone was penetrated deeper. 

 In this study, DiI-labeled cells were detected at 1 
week, but not at 4 and 12 weeks. The process of car-
tilage repair was observed within at least 3 months. 
These fi ndings suggest that transplantation of synovial 
MSCs secretes some trophic factors to enhance car-
tilage repair rather than directly differentiating into 
chondrocytes. According to our recent report, in a 
co-culture of rat nucleus pulposus cells and human 
synovial MSCs, a species-specifi c microarray revealed 
that gene profi les of the nucleus pulposus were altered 
markedly, with suppression of genes related to matrix 
degradative enzymes and infl ammatory cytokines (35). 

method, we could also repair a full thickness cartilage 
defect through further abrading of the full thickness 
cartilage defect to create an osteochondral defect. 

 By penetrating the subchondral bone, host bone 
marrow MSCs would have migrated into the defect. 
Because bone marrow MSCs also have chondrogenic 
potential (33), the effect of bone marrow MSCs 
would not have been negligible in our study. How-
ever, we were able to demonstrate the higher effect of 
synovial MSCs, because the control defects were not 
repaired at all. The depth of the osteochondral defect 
may have affected the result of the repair. Chang  et al.  
(34) compared the histological score of the spontane-
ous repair of the defect between a 2-mm and 5-mm 
depth of osteochondral defect in pigs for 36 weeks, 
and the score of the 2-mm defect was better than 
that of the 5-mm osteochondral defect. In our study, 
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Figure 5.     Evaluation with dGEMRIC. (A) Representative images. Arrows indicate the bottoms of the repair tissue. (B) ROI for repaired cartilage 
(solid-line area) and for native cartilage (dotted-line areas). (C) Quantifi cation of   R1 values at 3 months.  ∗  P   �  0.05 by paired  t -test.  
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analyze porcine cartilage repair by dGEMRIC and 
to compare its histological results. 

 Although transplantation of synovial MSCs 
induced cartilage repair compared with control 
knees, cartilage repair was not yet complete at 
3 months. We can suggest three reasons for this. First, 
3 months was too short a time to mature the cartilage 
defect in this model. Even in our rabbit study, it took 
6 months to repair the cartilage defect after trans-
plantation of synovial MSCs (22). In porcine studies 
by others, it seems that cartilage repair was not com-
plete at 6 months after bone marrow MSCs trans-
plantation (37 – 39). Because of the limitation of our 
animal facility, we could not perform observations 
for more than 3 months in this study. Second, we 
created the cartilage defect in both knees, and all pigs 
were free in the cage. Therefore, both knees could 
not avoid bearing weight. Third, allogeneic synovial 
MSCs were used in this study to prevent variability 
of porcine MSCs. 

 However, this study is valuable because we have 
demonstrated the ability of synovial-derived MSCs to 
repair cartilage in the porcine knee relative to vehicle-
treated knees. Furthermore, the potential problems 
in this study, as mentioned above, can be overcome if 
and when this therapy is applied in humans, because 
weight bearing can be controlled on the treated knee, 
and autologous cells can be prepared to expand in 
autologous human serum (7). 

 In conclusion, an  in vitro  chondrogenesis assay 
revealed that MSCs from synovium had a higher 
chondrogenic potential than that from other mesen-
chymal tissues in pig, as has been found in other spe-
cies (4,5,22). Through the use of transgenic porcine 
GFP-expressing synovial MSCs and a new fl uores-
cence arthroscopy system, we were able to visualize 
the actual delivery and adhesion of the cells in the 
cartilage defect. We utilized dGEMRIC to obtain 
detailed serial images of cartilage repair produced 
by MSCs. Sequential arthroscopic, histological and 
MRI analyses demonstrated that the cartilage defect 
was fi rst covered with a membrane, and then the 
cartilage matrix emerged after transplantation of syn-
ovial MSCs (Figure 6). 
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Identifi cation of the trophic factors by synovial MSCs 
in a cartilage defect model is required in a future 
study. 

 We have shown that transplantation of synovial 
MSCs into cartilage defect promotes cartilage repair 
in pigs. To the best of our knowledge, only Ando  et al . 
(36) have previously reported the effect of transplan-
tation of synovial MSCs into cartilage defects in a pig 
model. They cultured synovial MSCs at a high den-
sity in growth medium containing ascorbate 2-phos-
phate, to form a complex of the cultured cells and 
the extracellular matrix. After detaching the tissue-
engineered construct by application of shear stress 
using gentle pipetting, the constructs were implanted 
into the cartilage defect (36). Comparing Ando  et al . ’ s 
study (36) and ours, our method is simpler, and we 
provide several kinds of novel information during the 
process of cartilage repair. 

 We have reported previously that placing a syn-
ovial MSC suspension on the osteochondral defect 
for 10 min promotes cartilage regeneration in rab-
bits. Histological analyses demonstrated that the 
osteochondral defect was initially fi lled with cartilage 
matrix at 4 weeks, then the border between the bone 
and cartilage moved upward, and fi nally the thickness 
of the regenerated cartilage became similar to that of 
the neighboring cartilage in rabbits (11,32). In the 
pig study, after transplantation of synovial MSCs, the 
cartilage defect was fi rst covered with a membrane at 
4 weeks, then the cartilage matrix emerged, although 
the repair of the subchondral bone was not observed. 
These fi ndings may indicate different processes of 
cartilage repair between rabbits and pigs. 

 After placement of the MSC suspension, consist-
ing of on average 38 million cells in 100  μ L, for 10 
min, although the inside of the knee joint was fi lled 
with irrigation fl uid fl ushed from the tip of the arthro-
scope, the bottom of the cartilage defect looked foggy 
through conventional light arthroscopy (Figure 2Ciii). 
This was possible because the cartilage defect was 
mostly covered with synovial MSCs. The color of the 
suspension of synovial MSCs was similar to that of 
the cartilage defect after placement of the MSC sus-
pension for 10 min, which supports our speculation. 
For clinical application, we can guess the existence 
of MSCs without labeling, by arthroscopic observa-
tion if a high concentration of MSC suspension is 
prepared. 

 dGEMRIC requires more effort than conventional 
MRI because it requires twice as many imagings both 
before and after contrast agent administration. How-
ever, dGEMRIC can provide information about the 
thickness of repaired cartilage and glycosaminoglycan 
concentration (14,15). In this study, we confi rmed 
the usefulness of dGEMRIC for cartilage repair. To 
the best of our knowledge, this is the fi rst study to 
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