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Artificial intelligence guided conformational mining
of intrinsically disordered proteins

Aayush Gupta', Souvik Dey® !, Alan Hicks' & Huan-Xiang Zhou® 2%

Artificial intelligence recently achieved the breakthrough of predicting the three-dimensional
structures of proteins. The next frontier is presented by intrinsically disordered proteins
(IDPs), which, representing 30% to 50% of proteomes, readily access vast conformational
space. Molecular dynamics (MD) simulations are promising in sampling IDP conformations,
but only at extremely high computational cost. Here, we developed generative autoencoders
that learn from short MD simulations and generate full conformational ensembles. An
encoder represents IDP conformations as vectors in a reduced-dimensional latent space. The
mean vector and covariance matrix of the training dataset are calculated to define a multi-
variate Gaussian distribution, from which vectors are sampled and fed to a decoder to
generate new conformations. The ensembles of generated conformations cover those sam-
pled by long MD simulations and are validated by small-angle X-ray scattering profile and
NMR chemical shifts. This work illustrates the vast potential of artificial intelligence in
conformational mining of IDPs.
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ditional physics-based approaches!:2, achieving break-

throughs in solving some of the most challenging
problems in chemistry and physics. For example, a deep neural
network has obtained nearly exact solutions of the electronic
Schrodinger equation for small molecule3. Another recent
breakthrough is the prediction of three-dimensional structures of
proteins by neural network-based methods, Alphafold* and
RoseTTafold>. With problems facing structured proteins being
solved by these and other Al-based methods®-?, a new frontier is
now presented by intrinsically disordered proteins (IDPs). Instead
of adopting well-defined three-dimensional structures, IDPs
readily access vast conformational space. Here we report on the
development of a generative AI model to mine the conforma-
tional space of IDPs.

IDPs, accounting for 30% to 50% of proteomes, perform many
essential cellular functions including signaling and regulation,
and are implicated in numerous human diseases!®!1. In parti-
cular, polyglutamine expansion is associated with Huntingtin’s
and other diseases!2. Amyloid-beta peptides, including AB40, are
linked to Alzheimer’s disease!3. The cell division machinery of
Mpycobacterium tuberculosis, the causative agent of tuberculosis,
contains a number of membrane proteins, including ChiZ, with
disordered cytoplasmic regions!4!°. The functional and disease
mechanisms of these and other IDPs remain unclear, in large part
because we lack knowledge of their conformational ensembles in
various states (e.g., in isolation, in aggregation, and bound with
interaction partners).

The vastness of IDPs’ conformational space poses great chal-
lenges. Experimental techniques are limited to probing some
aspects of the conformational space. For example, small-angle x-
ray scattering (SAXS) provides information on the overall shapes
and sizes of IDPs!®, whereas NMR properties, such as secondary
chemical shifts, carry residue-specific information but still vastly
under-represent the degrees of freedom of IDPs!7. Molecular
dynamics (MD) simulations offer an attractive approach for
IDPs, with an atomic representation for each conformation, but
the simulation time that can be presently achieved, which directly
determines the extent of conformation sampling, is largely limited
to 10s of us. The conformational ensembles of the 64-residue
cytoplasmic disordered region of ChiZ (referred to simply as
ChiZ hereafter) sampled by multiple replicate simulations,
totaling 36 ps in solution and 38 ps at membrane, have been
validated by SAXS and NMR data!%1>. While we cannot answer
whether 10 s of us of simulations are really long enough, we do
know that shorter simulations are insufficient. For example,
Kukharenko et al.!8 have shown that the conformations of a 22-
residue fragment of a-synuclein sampled in 1 ps represent only a
small subset of the ensemble collected from 13 ps of “expansion”
simulations. The latter are a large number (200) of short simu-
lations (30-100 ns) started from sparsely populated regions in a
two-dimensional embedded space (via sketch-map embedding).
How to exhaustively cover the conformational space of IDPs
without an inhibitory amount of computational time remains an
open question.

For structured proteins, autoencoders have been developed to
represent structures in two-dimensional latent spaces and
reconstruct the structures back in Cartesian coordinates®®. In
another recent study®, an autoencoder was trained to project the
inter-residue distances of the ribose-binding protein into a two-
dimensional latent space. The open and closed states of the
protein were found to occupy separate regions in the latent space.
The authors linearly interpolated points from these two states and
decoded the interpolated points into inter-residue distances that
represent conformations on the transition paths between the
open and closed states. The inter-residue distances from

Q rtificial intelligence (AI) is gradually overshadowing tra-

interpolation were finally coupled to an all-atom model to
enhance the latter’s conformational sampling in MD simulations.
Noé et al.” built Boltzmann generators, which use neural net-
works to represent protein structures sampled from short MD
simulations as a Gaussian distribution in the latent space; points
sampled from the Gaussian are transformed back as structures in
Cartesian coordinates. In toy problems, the authors demonstrated
that points located in different energy wells in conformational
space are repacked into a dense distribution with a single peak in
the latent space. These and other Al-based methods might
potentially be adapted to study IDPs!®. Several other approaches
may also provide inspirations for IDPs, including variational
autoencoders for dimensionality reduction of protein folding
trajectories and subsequent identification of intermediate states
by clustering in the latent space?’, and variational autoencoders
and other neural networks for optimal selection of Markov states
by training with conformations at a fixed lag time2122,

Here we present generative autoencoders designed to mine the
conformational space of IDPs. Our design goal is to accurately
sample the entire conformational space while limiting cost, which
is MD conformations needed for training the autoencoders. The
performance of the resulting autoencoders rivals that of expensive
MD simulations and is validated by SAXS and chemical shift
data. Our work opens the door to modeling IDPs in various
functional states.

Results

We built autoencoders first to represent IDP conformations as
vectors in a reduced-dimensional latent space (Fig. 1a). Training
of the autoencoders involved reconstructing the conformations
from the latent vectors and minimizing deviations from the ori-
ginal conformations. The training datasets consisted of con-
formations sampled from short MD simulations. We then
modeled the latent vectors of the training datasets as multivariate
Gaussian distributions (Fig. 1b). By sampling from these dis-
tributions for reconstruction, we generated the full conforma-
tional ensembles of IDPs (Fig. 1¢c). These generative autoencoders
were built for three IDPs: polyglutamine Q15, AB40, and ChiZ,
and were validated by their ability to cover all conformations
sampled in long MD simulations and to reproduce experimen-
tally measured properties. These IDPs contain 17 (including two
capping groups), 40, and 64 residues (denoted by Ni).

Note that our goal is to use the smallest amount of training
data - sampled from MD simulations as short as possible - to
build autoencoders that will generate the most accurate full
conformational ensemble of an IDP. To achieve this goal, we limit
the training dataset to conformations sampled from the initial
portion of the MD simulations, and use the subsequent portion
only for the purpose of testing the accuracy of the autoencoders.
Although increasing the training size or including conformations
randomly sampled anywhere from the simulations, such as by
shuffling the MD conformations before separating them into
training and test sets, can potentially increase the accuracy of the
autoencoders, doing so will depart from our goal.

Representation in a reduced-dimensional space. As a step-
pingstone to generating new conformations, we first reduced the
dimensionality of the conformational space. The original con-
formations of the IDPs were specified by the Cartesian coordi-
nates of heavy atoms (with truncation of some side chains). The
dimension of the conformational space was thus 3 N, where N,
denoting the number of heavy atoms included, was 140, 230, and
385, respectively, for Q15, AP40, and ChiZ. We chose the
dimension (1) of the latent space for each IDP to be 0.75N,, or
13 for Q15, 30 for AB40, and 48 for ChiZ.
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Fig. 1 Design of generative autoencoders. a Illustration of the architecture of an autoencoder. The encoder part of the autoencoder represents the

conformations of an IDP, specified by the Cartesian coordinates [x;, X5, ...,

The decoder then reconstructs the latent vectors back to conformations in Cartesian coordinates, [x¢/, X2/, ...,

xn] of N heavy atoms, as n-dimensional vectors [z;, z,, ...,

z,.] in the latent space.
xn']. During training, the weights of the neural

networks are tuned to minimize the deviation of the reconstructed conformations from the original ones. b Modeling of the distribution of the latent vectors
(blue) of the training set by a multivariate Gaussian (red). The mean vector and covariance matrix of the Gaussian are those of the training latent vectors.
The curves illustrate a Gaussian fit to the distribution of the training data; the scatter plots show a comparison of the training data and the Gaussian model.
¢ Generation of new conformations. Vectors sampled from the multivariate Gaussian are fed to the decoder to generate new conformations. IDP structures
are shown in a color spectrum with blue at the N-terminus and red at the C-terminus.

Conformations for training and testing the autoencoders came
from multiple ps-long MD simulations!423. We collected 95,000,
140,000, and 145,000 frames, respectively, at 10 ps intervals for
Q15 and 20 ps intervals for AB40 and ChiZ from each replicate
run; the numbers of replicate runs were 2, 4, and 12, respectively.
An initial portion (e.g., 10%) of each run was taken as a training
set whereas the remaining portion was the test set. The accuracy
of an autoencoder was assessed by the root-mean-square
deviations (RMSDs) between test conformations and their
reconstructions. These RMSDs were averaged for the entire
100-fold diluted test set (comprising frames saved at 1-ns
intervals for Q15 and 2-ns for AB40 and ChiZ). As adjacent
frames in MD simulations tend to have similar three-
dimensional structures, the dilution serves to reduce redundancy
of the test set. The reconstruction RMSD results are shown in
Fig. 2.

For QI5, the average reconstruction RMSDs are below 5A
even when only 5% of the MD simulations (corresponding to
95 ns of simulation time) is used for training (Fig. 2a). When the
training size is increased to 10% and 20%, the RMSDs stay
around 4.75 A for runl but decrease successively from 4.96 A to
473 A and 443 A for run2. This decrease in reconstruction
RMSD with increasing training size is likely because run2 was
started from an all a-helical conformation, which mostly melted
away over time (Fig. Sla). For Q15, we chose autoencoders
trained at the 10% size for generating new conformations.

For A[%40 training with the first 10% of the MD simulations
results in reconstruction RMSDs of 6.4 + 1.3 A (mean + standard
deviation among four MD runs) (Fig. 2b). The reconstruction
RMSDs decrease to 6.0+ 1.4 A with a 20% training size and
further to 5.4 + 1.1 A with a 30% training size. The higher RMSD
of run2 is probably due to more compact initial conformations
(Fig. S1b). For this IDP we chose a 20% training size for
generating new conformations.

Reconstruction becomes more challenging as the IDP size
increases. This is already apparent when AB40 is compared to
Q15, and is much more so for ChiZ, where training with 10% of
the MD simulations results in reconstruction RMSDs at
8.3+ 1.1 A for 10 of the 12 MD runs, and >10 A for the other
two runs (Fig. 2c). Still, the reconstruction RMSDs decrease to
74+13A with a 20% training size and further down to
6.4+1.0A with a 30% training size. For this larger IDP, we
chose 30% training size (corresponding to 870 ns of simulation
time) for generating new conformations.

To check whether the dimensions of the latent space chosen
according to 0.75N,., were adequate, we trained autoencoders
with a 200-dimentional latent space. The reconstruction RMSDs
improve for Q15 and AP40, but not for ChiZ (Fig. S2). So
increasing the latent-space dimension does not necessarily
improve accuracy, especially for the larger, more challenging
IDPs, in reconstruction (or in generating new conformations; see
below).
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Fig. 2 Average reconstruction RMSDs at different sizes of the training sets sampled from replicate MD runs. a Q15 at 5%, 10%, and 20% training sizes
from two runs. b Ap40 at 10%, 20%, and 30% training sizes from four runs. ¢ ChiZ at 10%, 20%, and 30% training sizes from 12 runs. A structure for each

IDP is shown.

We tested autoencoders where the input was dihedral angles or
distance matrices instead of Cartesian coordinates. The perfor-
mance of these models in reconstruction was much worse than
that with Cartesian coordinates as input (Supplementary Note 1).

Multivariate Gaussian models in latent space. The conforma-
tional ensembles of IDPs are broad and difficult to model!4. A
possible crucial benefit of representing the conformations in the
latent space is that, due to the reduced dimensionality, the dis-
tribution of the latent vectors would be more compact and
therefore easier to model. To assess this expectation, we calcu-
lated histograms in two-dimensional subspaces of the latent
space. For each autoencoder, about one half of the encoder output
values were consistently at or near zero, thereby further reducing
the effective dimension of the latent space. We only calculated
histograms for pairs of nonzero output neurons.

For the runl training set of Q15, only 7 of the 13 output
neurons were nonzero, resulting in 21 possible pairs. In Fig. S3,
we display the histograms of 10 pairs calculated for the training
(10% size) and test datasets. These histograms are indeed
compact. Moreover, the counterparts of the training and test
sets look very similar, with only minor differences for one or two
pairs. For example, in the (9, 11) pair, the histogram of the
training set is somewhat broader than the counterpart of the test
set. The substantial overlap between the distributions of the
training and test sets in the latent space explains the good
performance of the autoencoder in reconstruction.

The autoencoder for AP40 (runl; 20% training size) had only
15 nonzero output neurons (out of 30). Fig. 3 displays the
histograms of 8 nonzero pairs. All of these are single-peaked, and
the peak positions are the same for the training and test
counterparts in most cases, but with some shift for the (0, 27)
pair. The high-level of overlap between the training and test sets
allows for the satisfactory reconstruction of Ap40 conformations
reported above. In comparison, for the larger ChiZ, the
histograms representing conformations sampled from a single
MD run (runl) become irregular in shape (e.g., the (38, 39) pair)
and the divergence between the training and test sets becomes

4

prominent (e.g., the (15, 16) and (44, 47) pairs) (Fig. S4). These
features exhibited by the distributions in the latent space illustrate
the growing difficulty in reconstructing the conformations of
larger IDPs.

The compact distributions of Q15 and AP40 in the latent space
motivated us to model them as multivariate Gaussians. As shown
in Figs. S3 and 3, the distributions of the training sets and their
multivariate Gaussian models look very similar. More importantly,
the multivariate Gaussian models also overlap well with the
distributions of the test sets. Indeed, the overlap between the test
sets and the Gaussian models is greater than that between the test
sets and the corresponding training sets, as illustrated by the (9, 11)
pair of Q15 and the (0, 3) pair of AB40. Therefore the multivariate
Gaussian models seem promising for generating new conforma-
tions that are similar to those in the test sets of Q15 and Ap40. For
ChiZ, multivariate Gaussians are inadequate to model the irregular
shapes of the single-run distributions in the latent space (Fig. S4).

The foregoing qualitative observations are confirmed by
calculating the Kullback-Leibler (KL) divergence between the
Gaussian models and the distributions of the training and test
data in the latent space (Table S1). For both Q15 and Ap40, the
Gaussian models provide good representations of the training
data, with KL divergence values at or below 0.1 for all the pairs
shown in Figs. S3 and 3. Moreover, for all but one pair, the KL
divergence values between the test data and Gaussian models are
lower than those between the training data and test data. For
example, for the (9, 11) pair of Q15, the KL divergence decreases
from 0.10 for training vs test to 0.06 for test vs Gaussian; for the
(0, 3) pair of AP40, the KL divergence decreases from 0.58 for
training vs test to 0.38 for test vs Gaussian. On the other hand, for
ChiZ, the Gaussian model provides a poor representation of the
training data, with KL divergence as high as 0.48 (for the (0,
4) pair).

Autoencoder-generated conformations of Q15 and A(40. By
sampling from a multivariate Gaussian in the latent space and
using the decoder to reconstructing conformations, we turned the
autoencoder into a generative model. The multivariate Gaussian
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Fig. 3 Histograms of Ap40 in the latent space, calculated from training data, test data, and multivariate Gaussian. Histograms for pairs of encoder
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Fig. 4 Best-match RMSDs for autoencoder-generated conformations of Q15 and AB40. The average best-match RMSDs of 100-fold diluted test sets of
(a) Q15 and (b) AB40, against generated sets at different sizes. The latter sizes are measured in multiples of the test size of each IDP (= 85,500 for Q15
and 112,000 for AB40). For run], results are shown at sizes of the generated set ranging from the training size to 4x. For other MD runs, results are shown
at 1x. In the inset of each panel, an IDP conformation and its generated best match, with an RMSD close to the average values at 1%, is compared.

was parameterized on the same dataset for training the auto-
encoder. For Q15, the training size was 9500 and the test size was
85,500. The size of the generated set was measured as multiples of
the test size (1x = 85,500). For each conformation in the 100-fold
diluted test set, we found its best match (i.e., lowest RMSD) in the
generated set. We then used the average of the best-match
RMSDs for the diluted test set as the measure for the accuracy of
the generated set. With the generated sets at size 1x, the average
best-match RMSDs of the test sets are 3.59 and 3.58 A for MD
runl and run2, respectively. As illustrated in the inset of Fig. 4a, a
test conformation and its generated best match at 3.58 A RMSD
show very similar backbone traces. Since generating new con-
formations by the autoencoder is extremely fast, the generated set
can be easily expanded. With expanding sizes of the generated set,
the average best-match RMSDs show small but systematic
decreases, to 3.55 A at 2x, 3.52 A at 3x, and 3.51 A at 4x for runl
(Fig. 4a). The improvement in RMSD occurs because the
expanded size of the generated set yields better matches for the
test conformations. Conversely, the average best-match RMSDs
increase to 3.64 A when the size of the generated set is reduced to
0.5x and further to 3.79 A when the generated set is reduced to
the same size as the training set (at 0.11x).

High accuracy is also achieved for generated conformations of
APB40 on autoencoders trained with 20% (=28,000 conforma-
tions) of MD simulations (Fig. 4b). With the size of the generated
sets at 1x (=112,000 conformations), the average best-match
RMSDs of the 100-fold diluted test sets are 5.60 A, 7.50 A, 5.88 A,
and 584 A, respectively, for MD runl to rund. A test
conformation and its generated best match at 5.56 A RMSD
show very similar backbone traces (Fig. 4b, inset). The higher
average RMSD of the autoencoder for run2 in generating new
conformations mirrors the poorer performance of this auto-
encoder in reconstruction (Fig. 2b), and can also be attributed to
the overly compact conformations in the training set of this MD
run (Fig. SIb). With an expansion of the generated set, the
average best-match RMSD shows a slight decrease, to 5.42 A at 4x
for runl (Fig. 4b). Conversely, the average best-match RMSD
increases to 5.72 A at 0.5x and to 5.86 A at 0.25x (=size of the
training set).

Autoencoder-generated conformations of ChiZ. We first used a
similar protocol to train and test an autoencoder for ChiZ on a
single MD run (runl). The training size was 30% or 43,500 and
the test size was 101,500. With the generated set at size 1x
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training set (size =52,200) from all the 12 MD runs. The sizes of the generated sets are measured in multiples of the test size in a single MD run

(=101,500), and range from 0.51x (=training size) to 10x. The inset displays an IDP conformation and its generated best match, with an RMSD of the

average value at 10x%,

(=101,500 conformations), the average best-match RMSD of the
100-fold diluted test set is 7.95 A (Fig. S5a). Again the RMSD
decreases slightly with expanding sizes of the generated set, but is
still 7.35 A even at size 12x (=1.2 million conformations). The
high RMSD of the autoencoder trained on a single MD run is
presaged by the inadequate modeling of the training data by a
multivariate Gaussian in the latent space (Fig. S4 and Table S1).
One idea for improving the modeling is to represent the training
data in the latent space by a mixture of multiple Gaussians. We
tested this idea (Supplementary Note 2). The multiple-Gaussian
model indeed improves the representation of the training data,
but actually does worse in predicting the test conformations. For
example, with 8 Gaussians, the best-match RMSD of a generated
set at size 1x increases from 7.95 A to 8.50 A. In essence, as the
model tries to fit into the details of the training data, its ability to
capture generic features shared by the test data suffers.

It is possible that a single MD run may mine a limited region in
conformational space, but the regions mined by different MD
runs may partially overlap and the combined mining may
generate an ensemble that is densely distributed in the latent
space. Indeed, when we combine the conformations from 12 MD
runs for ChiZ, the histograms in the latent space for both the
training set and the test set become compact and have a single
peak for all but one (i.e., (9, 14)) of the nonzero pairs (Fig. 5a).
The distributions of the training and test latent vectors overlap
very well and are also modeled well by the multivariate Gaussian
parameterized on the combined training set. The KL divergence
values for training vs Gaussian, test vs Gaussian, and training vs
test are all lower than 0.1 for all the pairs (Table S1); the value for
training vs Gaussian is only 0.079 even for the (9, 14) pair.

The increase in overlap by combining data from multiple MD
runs pointed a way to improve autoencoders. As an initial test, we
pooled the generated conformations (each at size 1x) from the
autoencoders of the individual MD runs. When compared with
this pooled generated set (total size at 12x), the average best-
match RMSD of the runl test set is 7.04 A (Fig. S5b), which is
lower by 0.31 A than the corresponding value when the generated
set is at the same 12x size but produced solely by the runl

autoencoder (Fig. S5a). To take full advantage of the multiple MD
runs of ChiZ, we used the autoencoder trained on the combined
training set (a total of 52,200 conformations after a 10-fold
dilution) to generate new conformations. The generated set at size
1x now gives a best-match RMSD of 7.32 A for the 1000-fold
diluted, combined test set (final size = 1218). When the generated
set is expanded to a size 10x, the best-match RMSD reduces to
6.70 A (Fig. 5b). The inset illustrates a pair of conformations, one
from the test set and one from the generated set, at this RMSD.

Optimum selection of training sizes and latent-space dimen-
sions. In Supplementary Note 3, we present additional data for
the effects of varying training size and latent-space dimension on
the accuracy of autoencoders in generating new conformations.
In short, the selected training sizes, 10%, 20%, and 30% respec-
tively, for Q15, AP40, and ChiZ, are sufficient for model con-
vergence; additional training data do not yield appreciable gains
in model accuracy, especially given that we put a premium on
cost control of MD simulations. We selected 0.75N,., as the
latent-space dimension. Increasing the latent-space dimension by
10-30 has little effect on model accuracy. For Q15, a very large
value, 200, for the latent-space dimension actually leads to slight
increases in the best-match RMSDs of generated conformations
(Fig. S6, compared with Fig. 4a).

Further assessment of generated conformations. To properly
benchmark the autoencoder-generated conformations, we
examined the diversity of the test sets and the similarity between
the training and test sets (Table S2). We calculated the RMSDs of
each conformation with all others in a diluted test set. The
average pairwise RMSDs are quite high even within a single MD
run (runl), 6.98 A for Q15, 11.61 A for ApP40, and 18.21 A for
ChiZ, showing that the conformations in each test set are very
diverse. As expected, the average pairwise RMSD increases fur-
ther, to 19.23 A, for the combined and further diluted test set of
ChiZ. The diversity of the test conformations again illustrates the
challenge in generating conformations that are close to them.

6 COMMUNICATIONS BIOLOGY | (2022)5:610 | https://doi.org/10.1038/s42003-022-03562-y | www.nature.com/commsbio


www.nature.com/commsbio

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-022-03562-y

ARTICLE

The neighboring conformations in any MD run have relatively
low RMSDs, leading to small best-match RMSDs between
conformations in the test sets from single MD runs. The average
best-match RMSDs in runl are 3.71 A for Q15, 3.83 A for Ap40,
and 4.83 A for ChiZ (Table S2). However, for the combined and
further diluted test set of ChiZ, the average best-match RMSD
increases to 8.62A. The latter value may be viewed as a
benchmark for generated conformations to be claimed as
neighbors of test conformations. Because the average best-
match RMSD for the combined test set against the generated
set (at size 10x) is 6.70 A, or nearly 2 A below the benchmark, we
can claim that all the test conformations in the combined test set
have neighbors in the generated set. In other words, the generated
set fully covers the combined test set.

Another benchmark is given by the average best-match RMSD
between a test set and the correspondlng tralnmg set. For runl,
values of this benchmark are 3.96 A for Q15, 6.76 A for AB40, and
10.17 A for ChiZ (Table S2). When the comparison is against the
generated sets at the sizes of the training sets (shown as the first
point in Figs. 4a, b, and S5a), the average best-match RMSDs are
3.79, 5.86, and 8.16 A, respectively, each of which is lower than
the counterpart when the comparison is against the training set
itself. That is, relative to the training sets, the generated sets
provide better matches for the test sets. For Q15 and Ap40, this
outcome is to be expected because of the above observation that
the test sets overlap better with the Gaussian models than with
the training sets (Figs. S3 and 3; Table S1). For ChiZ, the
combined test set from the 12 MD runs has a best-match RMSD
of 8.47 A against the combined training set, which is 1.7 A lower
than the counterpart for the comparison within runl. This
decrease in best-match RMSD confirms the aforementioned
increase in data overlap when multiple MD runs are combined
(Figs. S4 and 5a). Moreover, the best-match RMSD of the
combined test set further reduces to 7.51 A when the generated
set is of the same size as and parameterized on the combined
training set (first point in Fig. 5b).

We also inspected more closely the generated conformations
that best match test conformations (insets in Figs. 4a, b, and 5b).
As already alluded to, test conformations and their generated best
matches show overall similarities in shape and size. However, the
generated conformations have considerable bond length and
bond angle violations. Refinement by energy minimization
restores essentially all bonds and angles to proper values (Fig. 6).
The refinement results in small increases in RMSD for the best-
matched test conformations, though an occasional decrease in
RMSD is possible. For the pairs of conformations shown in the
insets of Figs. 4a, b, and 5b, the RMSDs change from 3.58 A to
3454, from 556A to 595A, and from 6.67A to 6.87 A,
respectively (Fig. 6). For the generated set of ChiZ at size 1x, the
best-match RMSD increases from 7.32A to 7.66 A upon
conformational refinement.

Experimental validation of autoencoder-generated ChiZ con-
formational ensemble. To objectively assess the quality of the
autoencoder-generated conformational ensemble, we calculated
from it properties that can be measured experimentally. These
include SAXS profile and NMR chemical shifts. In Fig. 7, we
compare the experimental data for ChiZ* with results calculated
from 12,180 conformations collected from the combined test set
of the 12 MD runs, and with results calculated from 12,180
conformations generated by the autoencoder trained on the
combined training set. As reported previously!4, the MD simu-
lations reproduced both types of experimental data well: there
was very good agreement for the SAXS profile over the entire g
(momentum transfer) range from 0 to 0.5 A-1, with a mean

absolute percentage error (MAPE) of 3.9%; likewise the calculated
secondary chemical shifts were close to the experimental values,
with a root-mean-square error (RMSE) of 0.43 ppm. The
experimental SAXS profile is also reproduced well by the gener-
ated conformations, with an MAPE of 7.2%, validating the latter’s
sampling of the overall shape and size of ChiZ, though some
deviations are seen at the high g end. For secondary chemical
shifts, the RMSE increases to 0.63 ppm for the generated con-
formations. This RMSE is at the low end of the range of RMSEs
(0.63 to 0.84ppm) calculated on conformations from MD
simulations using four other force fields'#. Autoencoders trained
on conformations from these other force fields have similar
performances as the one reported above for ChiZ, demonstrating
the robustness of the approach (Supplementary Note 4).

Discussion

We have developed generative autoencoders to mine the broad
conformational space of IDPs. These autoencoders can not only
represent IDP conformations in the latent space with high fidelity
to allow for accurate reconstruction, but also generate new con-
formations to fill up the conformational space. The generated
ensemble contains close matches for all the conformations sam-
pled in long MD simulations, but with negligible computational
time. For example, sampling 100,000 conformations (at 20 ps
intervals) from MD simulations of AP40, even with GPU
acceleration?4, takes 80 days, whereas our autoencoder generates
the same number of conformations in 12 sec. In the case of ChiZ,
the autoencoder-generated conformations even yielded better
predictions for SAXS profile and chemical shifts than MD
simulations with several force fields.

Our generative autoencoders have the flavor of variational
autoencoders but are more intuitive. Rather than optimizing
Gaussians in the latent space during the training process as in
variational autoencoders, we only optimize reconstruction and
then use the latent vectors of the training set to calculate the mean
vector and covariance matrix, which are directly used to define a
multivariate Gaussian for generating new conformations. We
have shown that the difficulty posed by the longer sequence
length of ChiZ can be overcome by training on data sampled
from multiple MD runs. As the lengths of IDPs increase, the
problem becomes even more challenging. One possible way to
address this challenge is to break a long IDP into fragments and
treat each fragment as a separate IDP. However, IDPs do form
occasional long-range contacts!42>. The influence of long-range
contacts has to be somehow taken into consideration.

The generative autoencoders designed here are for mining the
conformational space of IDPs in isolation. The power of this
approach demonstrated here suggests that it can be extended to
study IDPs in more complex functional states, such as when
bound to or associated with an interaction partner (a target
protein or a membrane), or in aggregation. For example, ChiZ
associated with acidic membranes has been studied by long MD
simulations!®; generative autoencoders may also be able to mine
the conformational space of membrane-associated IDPs. IDPs are
prone to phase separation?®, resulting in a highly concentrated
phase surrounded by a dilute phase. Microsecond-long MD
simulations failed to sample the equilibration between the two
phases?’. Al-based models such as generative autoencoders may
open the door to solving this and other challenging conforma-
tional mining problems for IDPs.

Computational methods

Autoencoder design. We built and trained the autoencoders using
the Keras package (https://keras.io/) with TensorFlow backend
(https://www.tensorflow.org/) in Python 3.6?%. The autoencoders
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Calculations

The experimental data and the MD simulations are reported previously'®. RMSE was calculated as the square root of <(O; — E,-)2>
were done on either the test set comprising 12,180 conformations sampled from 12 MD runs, or on an autoencoder-generated set comprising the same
number of conformations, after refinement. The autoencoder was trained on a combined training set comprising 52,200 conformations sampled from the

12 MD runs.

all data points*

consisted of an encoder and a decoder. Both the encoder and
decoder had a dense neural network architecture, with two hidden
layers of 300 and 50 neurons, respectively. The input, hidden, and
output layers of the encoder and decoder were arranged as mirror
images of each other (Fig. 1a). This arrangement was chosen based
on its reduced training complexity as shown in previous recon-
struction work on structured proteins®. All layers except for the
final output layer had a rectified linear unit activation function; the
final output layer had a sigmoidal activation function.

The input to the encoder consisted of the Cartesian coordinates
of an IDP. Only heavy atoms (all for the backbone and selected

8

for side chains) were included; selected side-chain atom types
were CB, CG, CD, OEl, and NE2. This selection contained all the
heavy atoms of polyglutamine Q15, but truncated some of the
side chains in AP40 and ChiZ. Q15, Ap40, and ChiZ had N = 140,
230, and 385 heavy atoms, respectively, for a total of 3 N input
coordinates. The loss function was the binary cross-entropy,

H({)’i}a {)’i,}) = %lg [ —yilny/ - (1 _)’i)ln(l _)’;)}
(1
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where {y,} denotes the 3 N input Cartesian coordinates of the
IDP after a linear transformation into the range between 0 and 1
(see below), and {y;/} denotes the values of the corresponding
output neurons. The neural networks were trained by the Adam
optimizer given its effectiveness in handling large datasets. For
each autoencoder, training was done for 100 epochs using a batch
size of 40. Using the mean square error as the loss function
produced very similar accuracy in generating new conformation
(Supplementary Note 5).

The latent space dimension and training size were tested based
on reconstruction, which entailed encoding (i.e., representing the
conformations as vectors in the latent space) and then decoding
(i.e., constructing back full conformations from the latent
vectors). The dimensions of the latent spaces for the three IDPs
were finally chosen as n=13, 30, and 48. Parameters of
autoencoders trained on reconstruction were saved in decoder
and encoder files, and the decoder was then used to generate new
conformations.

Molecular dynamics simulations. Two 1 ps trajectories (100,000
frames each, saved at 10 ps intervals) for Q15, taken from Hicks
and Zhou?3, were run at 298K in GROMACS with the
AMBERO3ws force field?” for protein and TTP4P2005 for water30.
These simulations were performed using an enhanced sampling
method called replica exchange with solute tempering3-32 at
constant volume and temperature, with temperature regulated by
velocity rescaling®3. The simulations were judged to be well
equilibrated, as shown in particular by the agreement in the
distribution of radius of gyration with simulations using a second
enhanced sampling method, i.e., temperature replica exchange®*.
For ChiZ, 12 trajectories of 3 ps each (150,000 frames, saved at
20 ps intervals), taken from Hicks et al.l4, were run on GPUs using
pmemd.cuda?4 in AMBER18%> with the ff14SB force field*® for
protein and TIP4PD37 for water. These simulations were performed
at constant temperature (300K) and pressure 1atm), with
temperature regulated by the Langevin thermostat (damping
constant at 3ps~1)38 and pressure regulated by the Berendsen
barostat (pressure relaxation time at 2 ps)3°. These simulations were
thoroughly validated by experimental data including SAXS, chemical
shifts, and NMR relaxation properties. Additional simulations were
performed using four other protein/water force field combinations,
including AMBERO3ws/TIP4P2005, AMBER99SB-ILDN“0/TIP4PD,
AMBERI15IPQ/SPCEb#!, and CHARMM36m/TIP3Pm*2. The pro-
tocol for ChiZ was used to run four replicate simulations of AB40 at
278 K (3.5 ps each; 175,000 frames saved at 20 ps intervals)?>. Again
the simulations were thoroughly validated by experimental data
including chemical shifts and NMR relaxation properties.

Data preprocessing. MD trajectories in GROMACS and AMBER
trajectory formats were first converted to conformations in PDB
format (with solvent stripped). An initial portion of each trajec-
tory (5000, 35000, and 5000 frames for Q15, AP40, and ChiZ,
respectively) were removed. The remaining trajectory was split
into two parts, the first (e.g., 10%) as the training dataset and the
second as the test dataset.

The Biobox library in Python (https://github.com/degiacom/
biobox)® was used to preprocess the coordinates in each dataset.
All the frames were aligned to the first one according to RMSD,
and shifted to have all coordinates positive. Coordinates were
then scaled between 0 and 1 (via dividing by the maximum
coordinate value) for using as input to the encoder. The output
coordinates of the decoder were scaled back to real coordinates
using the same scaling factor. The choice of the reference frame
for the structural alignment before shifting and scaling the

coordinates had no effect on the accuracy in generating new
conformations (Supplementary Note 5).

RMSD calculation. We used a code of Ho (https://boscoh.com/
protein/rmsd-root-mean-square-deviation.html) to calculate
RMSDs of output conformations. A custom Python code (https://
github.com/aaayushg/generative_IDPs/tree/main/RMSD)  was
written to find the lowest RMSD between a given test con-
formation against a set of generated conformations, and calculate
the average of these best-match RMSDs for the test set (100-fold
diluted).

Generating new conformations. The mean vector g with ele-
ments

U= <zl>training (2)
and covariance matrix ¢ with elements
Oy = <(Zl - n"ll)(zm - Hm)>training (3)

were calculated from the latent vectors, {z;}, of the training
dataset; here <- - denotes an average over the training

set. The latter two quantities in turn defined a multivariate
Gaussian distribution (Fig. 1b),

1

) == ——
Q@) v/ (2m)"deto
from which vectors were sampled and fed to the decoder to
generate new conformations (Fig. 1c). In the above, det represents
determinant of a matrix, and the superscript “I” signifies trans-
pose. Sampling from multivariate Gaussians was implemented
using the NumPy library (https://numpy.org/) in Python. Histo-
grams were calculated in two-dimensional subspaces of the latent
space, for qualitative comparison among the training, test, and
multivariate Gaussian datasets (https://github.com/aaayushg/
generative_IDPs/tree/main/Plot_histogram).

We used the Kullback-Leibler divergence

p (Z I Zm)

D = dz)dz,p(z;,z,,) In ——= 5

el = [ [dadzypterz)m B2 o

to quantify the difference between two distributions, p(z;, z,,) and

q(z;,z,,), in a two-dimensional subspace of the latent space.

p(z;,2,,) and q(z;, z,,) are proportional to the histograms but are

normalized. The integral was evaluated as a summation over the

two-dimensional grid over which the histograms were calculated

(see, e.g., Fig. 3). For any grid point where either p(z;,z,,) or

q(z;, z,,) was 0, the contribution from that grid point to Dy, (plq)
was set to 0.

! >training

(1) (2
e~z o(z—p) ()

Refinement of autoencoder-generated conformations. The
generated conformations had considerable bond length and bond
angle violations. We used a simple procedure to remedy this
problem. First all the missing heavy and hydrogen atoms were
added in each structure using tleap in AmberTools3>. Then the
structure was subject to 500 steps of conjugate-gradient energy
minimization in vacuum using NAMD 2.13%3. The protein force
field was AMBER(ff14SB3°.

Calculation of SAXS profile and chemical shifts for ChiZ. The
SAXS profile for each conformation was then calculated using
FoXS* and scaled to optimize agreement with the experimental
profile!*. Chemical shifts were calculated using SHIFTX2%
(www.shiftx2.ca). Chemical shifts for random-coil conformations
calculated using POTENCI® were subtracted to obtain secondary
Ca and CP chemical shifts. SAXS profiles and chemical shifts
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were averaged over all the conformations in the diluted test set
(12180 frames from 12 trajectories) or a generated set (of the
same size). For the latter, the conformations after refinement by
energy minimization were used.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Saved autoencoder models and example data are available on GitHub: https://github.
com/aaayushg/generative_IDPs.

Code availability
The implementation codes and tutorials are available on GitHub: https://github.com/
aaayushg/generative_IDPs.
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