
RESEARCH ARTICLE

Assessing small-mammal trapping design

using spatially explicit capture recapture

(SECR) modeling on long-term monitoring

data

Chase M. FreemanID
1, Laureen Barthman-Thompson2, Robert Klinger3, Isa Woo4, Karen

M. Thorne1*

1 U.S. Geological Survey, Western Ecological Research Center, Davis, CA, United States of America,

2 California Department of Fish and Wildlife, Stockton, CA, United States of America, 3 U.S. Geological

Survey, Western Ecological Research Center, Sacramento, CA, United States of America, 4 U.S. Geological

Survey, Western Ecological Research Center, Moffett Field, CA, United States of America

* kthorne@usgs.gov

Abstract

Few studies have evaluated the optimal sampling design for tracking small mammal popula-

tion trends, especially for rare or difficult to detect species. Spatially explicit capture-recap-

ture (SECR) models present an advancement over non-spatial models by accounting for

individual movement when estimating density. The salt marsh harvest mouse (SMHM; Rei-

throdontomys raviventris) is a federal and California state listed endangered species

endemic to the San Francisco Bay-Delta estuary, California, USA; where a population in a

subembayment has been continually monitored over an 18-year period using mark-recap-

ture methods. We analyzed capture data within a SECR modeling framework that allowed

us to account for differences in detection and movement between sexes. We compared the

full dataset to subsampling scenarios to evaluate how the grid size (area) of the trap design,

trap density (spacing), and number of consecutive trapping occasions (duration) influenced

density estimates. To validate the subsampling methods, we ran Monte Carlo simulations

based on the true parameter estimates for each specific year. We found that reducing the

area of the trapping design by more than 36% resulted in the inability of the SECR model to

replicate density estimates within the SE of the original density estimates. However, when

trapping occasions were reduced from 4 to 3-nights the density estimates were indistin-

guishable from the full dataset. Furthermore, reducing trap density by 50% also resulted in

density estimates comparable to the full dataset and was a substantially better model than

reducing the trap area by 50%. Overall, our results indicated that moderate reductions in the

number of trapping occasions or trap density could yield similar density estimates when

using a SECR approach. This approach allows the optimization of field trapping efforts and

designs by reducing field efforts while maintaining the same population estimate compared

to the full dataset. Using a SECR approach may help other wildlife programs identify sam-

pling efficiencies without sacrificing data integrity for long term monitoring of population

densities.
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Introduction

Obtaining accurate estimates of density and abundance is fundamental for quantifying and

tracking wildlife populations for species conservation and management [1]. Managers are

often faced with balancing robust field monitoring designs with the level of effort, especially

for long-term monitoring programs that require a sustained level of staff and funding over

time. Assessing long-term datasets can provide important insights on the efficacy of these field

sampling methods and reveal potential improvements or time savings for wildlife monitoring.

The use of small mammal traps is a key method for determining the presence and abundance

of small mammals in habitats where animal detection may be difficult [2–4]. Small mammal

trapping has been successfully used for decades to monitor populations [e.g., 5, 6] and inform

conservation questions [e.g., 7–9]. For example, in south Africa trapping across functional

groups provided information on impacts of agriculture practices adjacent to conservation

lands [10], and Sherman and pitfall traps were effective in capturing small mammals in Mada-

gascar to determine impacts from forest isolation and presence of wild boar and cattle [11].

Small mammal trapping has also provided data for deriving species richness, density, and pop-

ulation abundance estimates, which can then be used to evaluate climate-richness relationships

[12] or related to habitat complexity, land use, and communities [e.g., 13–17]. The data can

also be used to re-evaluate field efforts [18] and inform management and conservation goals

[19]. Long-term population data can be especially valuable for assesing changes in populations,

composition, community demographics, and local colonization/extinction rates [20, 21].

Thus, the effectiveness of conservation practices, management actions [22], and effects of land-

scape factors such as habitat disturbance can be determined through time [23].

A variety of live trapping methods are available to determine the presence or absence of

small mammal species, including pitfall traps, cameras, and small enclosures (e.g., Sherman

and Tomahawk live traps). But while many basic aspects of sampling have remained

unchanged for decades, increased costs and logistical constraints have resulted in more scru-

tiny of trapping designs. A principal goal of most trapping studies is to ensure data are compa-

rable across space and time while also taking into account level of effort, so trap number,

arrangement (i.e., grid, transect, random, array), density (i.e., number of traps or spacing

between traps), and duration (i.e., number of consecutive trapping nights) become very impor-

tant considerations [24–27].

In addition to trapping design, a number of analytical approaches based on capture-recap-

ture (CR) models have been developed over the last 50 years to estimate population size from

live-trapping data [28–30]. The statistical foundations for estimating population size from CR

histories were detailed by Otis et al. (1978), but estimating the effective sampling/trapping

area, and thus population density, remained a significant challenge for many decades.

Recently, spatially explicit capture-recapture (SECR) models have addressed this issue by

incorporating movement and spatial distribution of captured individuals relative to trap loca-

tions to derive a detection function for making estimates of population density [31–33]. SECR

models have many advantages compared to conventional CR models, with perhaps the most

important being an objective determination of the area for estimating density [34–36].

Our objective was to use SECR modeling to evaluate different sampling designs with the

goal of optimizing sampling effort while preserving data integrity and maintaining robust den-

sity estimates. We used a continuous 18-year salt marsh harvest mouse (SMHM; Reithrodont-
omys raviventris) CR dataset and modeled changes in grid size, trap density, and the number

of consecutive trapping occasions to determine an optimal sampling design while maintaining

acceptable precision of density estimates. We addressed two main questions: 1) How did grid

size (trap number), trap density, and the number of trapping occasions affect density
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estimates? and 2) Could we decrease trapping efforts and still achieve the same population

estimates?

Materials and methods

Study species

The salt marsh harvest mouse is endemic to the tidal marshes of the San Francisco Bay- Delta

estuary in northern California, USA. The species’ historical tidal marsh habitat has been

reduced by approximately 80% due to diking, draining, and filling for urban, industrial, and

agricultural development [37], leading to its listing as endangered by both the federal and state

governments [38]. The SMHM occupies tidal marsh, managed marsh, and adjacent habitat

types that consist of wetland plant species that vary with salinities that range from freshwater

to sea water. In tidal marsh, areas with mixed wetland plant species, such as fat hen (Atriplex
triangularis), saltgrass (Distichlis spicata), Baltic rush (Juncus balticus), and Olney’s three-

square bulrush (Schoenoplectus americanus), had greater SMHM densities compared to areas

dominated by common pickleweed (Salicornia spp.) [39]. In tidal and managed marshes, both

mixed-vegetation and pickleweed-dominated areas supported greater SMHM densities than

upland habitats dominated by grasses [39]. Mixed vegetation including rabbitsfoot grass (Poly-
pogon monspeliensis), fat hen, pickleweed, watergrass (Echinochloa crus-galli), and alkali bul-

rush (Bolboschoenus maritimus) may provide additional seed resources for foraging SMHM

[40]. Within pickleweed-dominated tidal marshes SMHM appeared to be a habitat generalist

and associated positively with larger continuous marsh patch sizes that were not bisected by

levees or roads [41]. Habitat loss, degradation, and fragmentation as well as species interac-

tions, competition, contaminants, disease, and climate related impacts such as sea-level rise,

severe drought, and changes in heavy storms, are all challenges to SMHM recovery; however,

no single driver of SMHM population densities has been identified and many data gaps remain

[42]. A key component of addressing data gaps includes long-term monitoring, which needs

to be optimized for staff effort in order to be sustainable. Long term density estimates of

SMHM provide insight into environmental, landscape, and management variables that influ-

ence populations; thus monitoring their populations is a key priority in the conservation and

recovery of the species [43–45]. Therefore, developing a standard trapping design protocol for

SMHM is part of a species-wide effort to improve data consistency among management enti-

ties [42].

Study site

The study was conducted in the Suisun Marsh, Solano County, within the San Francisco Bay-

Delta estuary located approximately 30 miles northeast of San Francisco, California (Fig 1).

Historically, the area was a complex of sloughs, ponds, and tidal marshes. Presently the Suisun

Marsh is a mosaic of diked marshes managed seasonally for migratory waterfowl and other

wildlife with 6,300 acres of relatively unaltered tidal marshes, uplands, bays, and sloughs [37].

Annual SMHM monitoring has been conducted from 1998 to the present using live trapping

efforts [42]. For this analysis we used survey data from one location within Suisun Marsh

known as the California Department of Fish & Wildlife’s Grizzly Island Wildlife Area, Cres-

cent Unit, a diked managed wetland area within Suisun Marsh (Fig 1). Vegetation within Cres-

cent Unit, and specifically within the trapping grid, was dominated by pickleweed (Salicornia
pacifica), but also included rabbitsfoot grass, brassbuttons (Cotula coronopifolia), and bare

ground.
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Trapping

The trapping arrangement consisted of a square grid of 10 x 10 traps (total 100 traps) at

approximately 10 m spacing intervals (9.43 meters exact spacing calculated by SECR package;

Fig 1). Within an hour of sunset, Sherman live traps (7.62x7.62x25.4 cm; H.B. Sherman Traps,

Tallahassee, FL) were baited and left closed on site for two nights to allow animals to become

adjusted to the trap’s presence. On the third night the traps were opened at dusk and checked

at dawn; all animals were processed (below), and traps were closed during the day. This proce-

dure was repeated for three consecutive nights. Therefore, a single trapping event included

repeated trapping over 4 consecutive occasions (nights), resulting in 400 trap nights for each

yearly capture event. All Reithrodontomys spp (SMHM, R. raviventris and the sympatric west-

ern harvest mouse R.megalotis) were marked using a unique numerical fur clip pattern or ear

tag to identify individual recaptures before release at the site of capture [43]. All other captured

rodents were identified to species, sex, and fur clipped to identify recaptures. Trapping

occurred at the same location every year from 2000 to 2017 during June, except for 2001 (July)

2002 and 2003 (August).

SECR modeling

We created capture histories for each unique SMHM captured during the 18-year study, then

used the SECR package in R [46, 47] to obtain density estimates (D), detection functions (g0),

and home range indices (σ) for each of the 18 years. Model selection began with comparing

three detection functions (HN = half-normal, EX = negative exponential; HR = Hazard rate)

to determine the best initial model. We then analyzed models where the baseline detection rate

(g0; the probability of detecting an individual at its activity center) and the baseline home

range index (σ) could vary depending on three covariates: 1) time, 2) behavior, and 3) individ-

ual effects, with individual effects represented in a finite mixture model with sex as the class.

Fig 1. The study site is within a Suisun Bay marsh located in the eastern portion of the San Francisco Bay-Delta estuary, CA.

https://doi.org/10.1371/journal.pone.0270082.g001
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The time effect accounted for the detection function varying among capture occasions, while

the behavioral effect considered the degree of boldness of SMHM towards traps after their first

capture (i.e., “trap shy” or “trap happy”, where captured individuals may become subsequently

less or more likely to enter a trap, respectively). Individual effects accounted for variation in

detection and home range among male and female mice.

We estimated density within an explicit spatial sampling region. It included the trapping

grid as well as a buffer sufficiently large to ensure all individuals were exposed to potential

sampling. We used the values of σ obtained from a preliminary analysis to develop the spatial

region in SECR, with the buffer around the trapping grid being based on a distance at least 4

times the initial σ parameter (50 m; Fig 2), which was also consistent with movement distances

(11.9 m) found by Bias and Morrison 1999 [48]. We used the Akaike Information Criterion

(AIC) [49] to determine the best fit model, which was the negative exponential detection func-

tion that allowed g0 and σ to vary by sex (Fig 2).

Trapping variation analysis

To assess various reduced trapping effort, we used two methods; 1) We subsampled from our

original trapping design and replicated the SECR modeling to produce new estimates of D, g0,

and σ; and 2) We used the estimates of D, g0, and σ for the full 18 year dataset as the true values

for Monte Carlo simulations. Monte Carlo simulation is a modeling approach commonly used

to estimate the outcomes of subsampling scenarios. Here we evaluated reduced trap number,

reduced number of sampling days and reduced trap density, using probability distributions

derived from the full dataset [50].

Subsampling from our original 4-night 100 trap grid design included a 9x9 grid (81

traps), 8x8 grid (64 traps), 7x7 grid (49 traps), 6x6 grid (36 traps), 5x5 grid (25 traps), 4x4

grid (16 traps), a half density (50 traps) trapping design, and a 3-night trapping occasion

(100 traps; Fig 3). The half density variation removed every other trap, creating a repeating

five-dice pattern and resulted in a mean trap spacing of 13 meters calculated by the SECR

package (Fig 3). SECR modeling was then completed for each of the subsamples for each

year. This allowed us to compare density estimates for reduced trapping effort to the true

density estimates on a yearly basis. Absolute difference and percent absolute difference

were assessed for density, SE, g0, and σ to determine if a reduced sampling effort was com-

parable to the original design.

Monte Carlo simulations were performed with three variables being manipulated to assess

their effects on density estimates: (1) trap number (16, 25, 36, 49, 64, 81, and 100); (2) number

of consecutive trapping occasions (3 or 4); and (3) trap spacing (10 m, 15m, and 20m). These

simulations provided 100 density estimates for comparison to the original trapping design.

Performance of estimators was summarized as the average across replicates of relative bias

(RB)

RBj ¼
ðD̂j � DjÞ

Dj
; ð1Þ

and root mean square error (RMSE)

RMSEj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Pn
j¼1

ðD̂j � DjÞ
2

n

s

ð2Þ

where Dj is the true number in realization j
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Relative trapping effort

The relative trapping effort was expressed in terms of the staff time required to conduct each

subsampling scenario was estimated relative to the full design as the baseline. Time estimates

to conduct a complete survey included pre-survey setup and logistics (e.g., gathering and

Fig 2. Three indicators inspected to determine the proper buffer distance to implement as well as to determine

the correct detection function. A) Salt marsh harvest mouse frequency of distances moved in meters for the entire 18

year full 100 trap dataset; B) Detection probability curves for male and female SMHM related to distance (red line

indicates buffer distance used); C) Effective sampling area as a function of increasing buffer width.

https://doi.org/10.1371/journal.pone.0270082.g002

PLOS ONE Assessing small-mammal trapping design using spatially explicit capture recapture modeling

PLOS ONE | https://doi.org/10.1371/journal.pone.0270082 July 5, 2022 6 / 20

https://doi.org/10.1371/journal.pone.0270082.g002
https://doi.org/10.1371/journal.pone.0270082


ensuring gear is in good working condition, mixing bait), survey time (e.g., setting and check-

ing traps, processing animals), and post-survey trap cleaning.

Results

Trapping

Between 2000 and 2017, we captured 716 individual SMHM over 7,200 trap nights. Annual

density estimates (individuals ha-1) ranged from 9.13±2.70 SMHM ha-1 in 2017 to 53.84±6.58

in 2005, with an overall mean density estimate of 30.76 SMHM ha-1 for the 18-year study

period. Between 2000 and 2010, SMHM density estimates ranged between 16.88±3.65 and

53.84±6.58 with a mean density of 37.34 SMHM ha-1. Afterwards, between 2011 and 2017,

SMHM density estimates seemed to stabilize at a lower density ranging between 9.13±2.70 and

28.39±4.72 with a mean of 20.41 SMHM ha-1.

Trap number

Reducing the number of traps (while maintaining the original spacing interval) systematically

reduced the number of total captures from 716 (full dataset) to 272 (6x6 grid; Table 1), which

drastically reduced the number of data points on which the model was built. Further subsam-

pling and reduction to the 5x5 (25 traps) and 4x4 (16 traps) grids resulted in extremely large

deviations of model parameters and density estimates; therefore, these two designs will not be

discussed further. Model parameters varied for the trap number subsampled datasets, with

Fig 3. Crescent Unit trapping grid variations for subsampling reduced trapping designs. From top left to bottom right: Original field data collection layout

of 10x10 grid, 9x9 grid, 8x8 grid, 7x7 grid, 6x6 grid, and a half density grid with 50 traps. Photos of small mammal trapping (photo credits: L. Thompson, I.

Woo, and W. Thein).

https://doi.org/10.1371/journal.pone.0270082.g003
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male g0 being lower for the reduced trap number variations except for the 6x6 grid (36

traps), and female g0 higher for all reduced trap number variations (S1 Table). Male σ
remained relatively stable except for the 6x6 grid, in which it was smaller compared to the

other trap number variations; female σ was also smaller for all subsampled trap number

variations (S1 Table). These differences in model parameters led to differences in the

model’s ability to replicate density estimates of the full dataset. For instance, a reduction

from 100 traps to 81 traps led to a mean absolute difference in density estimates of 1.76

individuals per hectare (6.4% change), whereas a reduction to 36 traps led to a mean dif-

ference in density of 5.61 individuals per hectare (24.3% change; Table 1). The ability of

the trap number models to replicate (within the SE of the full dataset) the full datasets den-

sity estimate varied across years with the 9x9 grid successfully replicating the full dataset

100 percent of the time, while the 6x6 grid (50%) was half as successful (Fig 4). Averaging

across years, all trap number variations except the 6x6 grid stayed within the SE of the full

dataset (Fig 4). To ensure there was no spatial bias from reducing the number of traps, we

created five spatially different 7x7 grids and calculated density estimates for each across all

years. All five grids resulted in density estimates not significantly different from each

other across all years (F = 1.086, p = 0.369; S1 Fig)

The Monte Carlo simulations were consistent with the trap number subsampling results

and indicated that a reduction in the number of traps did not affect density estimates when

grids had more than 49 traps (7x7 grid; Fig 4). However, a reduction below 64 traps (8x8 grid)

resulted in larger variance in RB and RMSE, thus reducing precision of the density estimates

(Fig 5).

Table 1. Salt marsh harvest mouse density estimates (mice/ha) and capture numbers [D(capture)] for the full dataset and subsampled datasets between 2000 and

2017.

Area Trap Spacing Duration

Year Full Dataset 9x9 8x8 7x7 6x6 Half-Density 3-day

2000 26.11 (34) 29.43 (31) 34.04 (28) 33.81 (23) 37.28 (18) 20.79 (19) 28.08 (33)

2001 32.03 (41) 31.39 (32) 31.19 (25) 24.19 (16) 27.33 (13) 33.55 (30) 32.39 (37)

2002 44.9 (58) 40.49 (42) 38.98 (32) 35.47 (24) 39.48 (19) 40.73 (37) 48.87 (56)

2003 26.93 (35) 24.88 (26) 27.13 (22) 26.84 (18) 33.51 (16) 21.82 (20) 25.57 (30)

2004 28.66 (37) 25.43 (26) 27.85 (22) 23.18 (15) 18.95 (9) 22.85 (21) 31.42 (36)

2005 53.84 (69) 55.59 (57) 58.57 (47) 53.35 (35) 63.26 (30) 60.62 (54) 50.04 (57)

2006 16.88 (22) 15.06 (16) 14.31 (12) 11.6 (8) 10.57 (5) 18.42 (17) 17.04 (20)

2007 53.26 (69) 55.45 (58) 51.55 (42) 53.36 (36) 54.46 (26) 50.95 (46) 52.61 (61)

2008 33.4 (43) 31.91 (33) 29.59 (24) 30.83 (21) 31.31 (15) 34.41 (31) 34.9 (40)

2009 51.85 (67) 51.88 (54) 52.04 (42) 49.38 (33) 50.69 (24) 51.8 (47) 55.08 (63)

2010 42.89 (55) 41.91 (43) 41.54 (33) 39.43 (26) 41.89 (20) 43.43 (39) 41.89 (48)

2011 15.6 (20) 15.42 (16) 15.04 (12) 16.57 (11) 20.94 (10) 18.04 (16) 16.68 (19)

2012 20.54 (27) 17.86 (19) 18.13 (15) 17.57 (12) 16.54 (8) 21.66 (20) 20.9 (25)

2013 21.63 (28) 23.14 (24) 24.42 (20) 19.55 (13) 25.13 (12) 27.28 (25) 22.48 (26)

2014 28.39 (37) 27.5 (29) 25.53 (21) 23.21 (16) 25.13 (12) 30.35 (28) 28.09 (33)

2015 23.73 (31) 26.45 (28) 26.4 (22) 29.18 (20) 37.28 (18) 24.73 (23) 21.87 (26)

2016 23.82 (31) 25.06 (26) 21.95 (18) 20.88 (14) 18.74 (9) 26.41 (24) 20.54 (24)

2017 9.13 (12) 8.58 (9) 9.62 (8) 11.6 (8) 16.54 (8) 9.72 (9) 9.29 (11)

Avg. 30.7 (39.7) 30.4 (31.6) 30.4 (24.7) 28.8 (19.3) 31.6 (15.1) 30.9 (28.1) 30.9 (35.8)

Total 553.6 (716) 547.4 (569) 547.8 (445) 520 (349) 569 (272) 557.6 (506) 557.7 (645)

Percent Change -1.11% (-20.5%) -1.03% (-37.8%) -6.07% (-51.2%) 2.79% (-62.0%) 0.71% (-29.3%) 0.75% (-9.9%)

https://doi.org/10.1371/journal.pone.0270082.t001
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Trap density

When reducing the density of the traps by 50 percent while maintaining the original sampling

area (effectively increasing the trap spacing from 9.43 meters to 13 meters), the model main-

tained comparable trapping data with a 29 percent reduction in total captures (n = 506) when

compared to the full dataset (n = 716; Table 1). Model parameters were also similar to the full

dataset; male g0 had the largest change with a reduction in detection, and female g0 was

slightly higher (S1 Table). However, both male and female σ remained relatively stable though

slightly smaller than the full dataset, and sex ratio did not change (S1 Table). These small dif-

ferences in model parameters led to the model’s ability to replicate similar density estimates of

the full dataset. The reduction from 100 traps to 50 traps with 13 meter spacing led to a mean

absolute difference in density estimates of 2.75 individuals per hectare (9.9% change; Table 2).

The ability of the trap spacing model to replicate (within the SE of the full dataset) the full data-

sets density estimate varied across years, but in general successful replication of the full dataset

occurred 72 percent of the time (Fig 4).

The Monte Carlo simulations were consistent with trap spacing subsampled data, showing

that an increase in trap spacing from 10 m to 15 m or 20 m did not affect density estimates or

RB and actually reduced RMSE (Fig 6).

Fig 4. Absolute difference and absolute percent difference for both density estimates and standard error (SE) across years for the full dataset compared

to the subsampled datasets. (lower black line indicates the minimum SE observed [2017], red line indicates the mean SE, and upper black line indicates the

maximum SE observed [2005]).

https://doi.org/10.1371/journal.pone.0270082.g004
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Trapping duration

With reduced trapping duration from 4 nights to 3 nights, the model maintained comparable

trapping data with only a 9.9 percent reduction in total captures (n = 645) when compared to

the full dataset (n = 716; Table 1). Model parameters varied from the full dataset with male g0

being slightly less and σ being slightly larger than the full dataset (S1 Table). However, female

parameters had large changes with g0 increasing and σ decreasing (S1 Table). Despite these

rather large changes in model parameters, the model maintained the ability to replicate density

estimates within 1 SE of the full dataset. The reduction from 4 nights to 3 nights led to a mean

Fig 5. Density estimate, relative bias, and root mean square error for Monte Carlo simulations (n = 100) using the mean

density, detection function, and home range as the true values for comparing the number of trapping occasions (3, 4), and

the number of traps (100, 81, 64, 49).

https://doi.org/10.1371/journal.pone.0270082.g005
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absolute difference in density estimates of 1.59 individuals per hectare (5.09% change;

Table 2). Reducing the trap nights from 4 nights to 3 nights resulted in model agreement with

the full dataset across all years and, averaging across years, the density estimates stayed within

the SE of the full dataset (Fig 4).

Monte Carlo simulations also showed that a reduction to a 3-night trapping occasion design

resulted in similar estimates of density and RB as in the full dataset with only a small increase

in the RMSE (Figs 5 and 6). The only instances when reduction of trapping duration adversely

affected the model’s ability to replicate density, RB, and RMSE, was when combined with a

reduction in trapping numbers or with an increase in trap spacing (Figs 5 and 6).

Overall trapping variation

Subsampling scenarios reduced the number of captures and therefore the ability of the model

to accurately replicate the detection rate, home range, and sex ratio of the full dataset (S1

Table). This reduction in the accuracy of model parameters propagated in the model’s ability

to replicate density estimates. Due to the reduction in the number of traps, fewer individuals

were captured (as well as recaptured; Table 1), and density estimates in the subsampled data-

sets were less precise than those in the full dataset (Fig 4). Overall, the 9x9 trap grid as well as

the 3-night trapping subsampling scenarios remained within one standard error of the density

estimate for the full datasets in all 18 years, whereas the other subsample designs were less

likely to achieve this accuracy: 8x8 (94%), half-density (77%), 7x7 (61%), and 6x6 (50%; Fig 4).

Across all years, the 9x9 trapping grid and 3-night trapping occasion designs had less than a 2

individuals per hectare difference from the original design, and the half-density and 8x8 trap-

ping grid designs were both under 3 individuals per hectare (Fig 5).

Table 2. Difference of density estimates for the subsampled datasets compared to the full dataset, showing mean, absolute mean, and absolute max summaries.

Year Full Dataset Difference from the Full Data set

9x9 8x8 7x7 6x6 Half-Dens. 3-day

2000 26.11 -3.32 -7.94 -7.71 -11.17 -1.98 5.31

2001 32.03 0.63 0.84 7.84 4.70 -0.36 -1.52

2002 44.91 4.41 5.93 9.44 5.42 -3.97 4.17

2003 26.93 2.04 -0.20 0.08 -6.58 1.36 5.11

2004 28.66 3.23 0.80 5.47 9.70 -2.76 5.81

2005 53.84 -1.75 -4.73 0.49 -9.42 3.79 -6.78

2006 16.89 1.82 2.57 5.28 6.31 -0.16 -1.53

2007 53.26 -2.20 1.71 -0.11 -1.20 0.65 2.31

2008 33.40 1.49 3.80 2.57 2.09 -1.50 -1.01

2009 51.85 -0.04 -0.19 2.46 1.15 -3.23 0.04

2010 42.90 0.98 1.35 3.46 1.00 1.00 -0.54

2011 15.61 0.18 0.57 -0.96 -5.34 -1.08 -2.44

2012 20.55 2.68 2.41 2.98 4.00 -0.36 -1.11

2013 21.64 -1.51 -2.79 2.08 -3.50 -0.85 -5.65

2014 28.40 0.89 2.86 5.18 3.26 0.31 -1.96

2015 23.74 -2.71 -2.67 -5.44 -13.55 1.86 -1.00

2016 23.83 -1.24 1.87 2.94 5.08 3.29 -2.59

2017 9.13 0.55 -0.49 -2.47 -7.41 -0.16 -0.59

mean 0.34 0.32 1.87 -0.86 -0.23 -0.22

Absolute mean 1.76 2.43 3.72 5.61 2.75 1.59

Absolute max 4.41 7.94 9.44 13.55 6.78 3.97

https://doi.org/10.1371/journal.pone.0270082.t002
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Overall, correlations among raw capture numbers, capture efficiency, and, especially,

differences in the original density estimates and density estimates of the reduced study

designs indicated a trapping duration of 3-nights and a 9x9 grid arrangement were the

least biased modifications of the original design. Correlations (r) among the original den-

sity estimates and density estimates of the reduced study designs were generally high

(range in r = 0.89 to 0.99; S2 Fig). But the ranges in annual bias estimates for the 3-night

trapping duration and 9x9 grid arrangement were at least half those for the other grid and

trap spacing arrangements (S3 Fig).

Fig 6. Density estimate, relative bias, and root mean square error for Monte Carlo simulations (n = 100) using the mean

density, detection funtion, and home range as the true values for comparing the number of trapping occasions (3, 4), and

trap spacing (10, 15, 20 meters).

https://doi.org/10.1371/journal.pone.0270082.g006

PLOS ONE Assessing small-mammal trapping design using spatially explicit capture recapture modeling

PLOS ONE | https://doi.org/10.1371/journal.pone.0270082 July 5, 2022 12 / 20

https://doi.org/10.1371/journal.pone.0270082.g006
https://doi.org/10.1371/journal.pone.0270082


Relative trapping effort

The reduction from four trapnights down to three trapnights resulted in the greatest time

saved compared to the original full design, while all other subsampling scenarios resulted in

minor time savings (<15%; Table 3). The relative percent time saved is estimated as a range,

since processing fewer traps and animals would result in time savings; however preparations,

logistics, and post survey cleaning efforts would be minimally impacted.

Discussion

Population monitoring

Monitoring wildlife populations and their habitat is one of the most fundamental needs in wildlife

management; however, managers face persistent challenges associated with accuracy, costs, and

logistics, all of which play a role in implementing a long-term monitoring program and its sus-

tainability into the future. Long-term monitoring of small mammal populations provides insights

on population trends, can help determine if conservation measures are effective, and can inform

managers whether further management actions are necessary for the recovery of an endangered

species or to prevent biodiversity loss [51]. In particular, long-term datasets can be analyzed to

relate population responses to different environmental factors, changes in landcover, or climatic

changes (i.e., prolonged drought, severe storm surges) [e.g., 52–54] that may become more fre-

quent in the future [55]. However, tracking population trends on small mammals can be arduous

given their secretive nature and the difficulty in locating or counting individuals.

We leveraged one of the longest continuous monitoring datasets for the endangered SMHM

and modeled the tradeoffs among subsampling approaches with reduced sampling area, sampling

density, and number of sampling days. In terms of a reduced sampling area, the 9x9 grid was the

only grid reduction pattern that resulted in density estimates within one SE of the original method

for all 18 years and may be a viable option for reducing staffing effort while not biasing density

estimates. Reducing the length of trapping from four to three nights resulted in density estimates

within one SE of the original methods for the full 18-year dataset, but reducing sampling density

to half the number of original traps resulted in density estimates that were within 1 SE of the origi-

nal methods for only 14 of the 18 years (77%), indicating this sampling design could result in

undesirable errors. Conard et al. (2008) examined the effect of trap density and trapping duration

on species richness estimates and found that higher trap densities generally reached stable rich-

ness estimates in fewer nights than low density trapping arrangements [56]. They found that at

least 3 nights duration was needed to produce a stable estimate of species richness for the range of

trap densities tested (9–144 trap stations/ha), indicating the importance of carefully selecting

duration and density parameters to meet research objectives [56].

SECR modeling

Wildlife monitoring using live trapping is an important management tool to inform conserva-

tion objectives and management actions, especially for species that are difficult to detect [57,

Table 3. Relative percent time saved with each subsampling scenario compared to the full grid design. Percent time estimates included pre-survey setup and logistics,

time to conduct the surveys, and post-survey trap cleaning and data entry.

Original Subsampling Scenarios

Grid Design 10x10 Grid 9x9 Grid 8x8 Grid 7x7 Grid 6x6 Grid Half-Density 10x10 Grid

Number of Trap nights 4 4 4 4 4 4 3

Percentage of Time Saved 0% 0–5% 0–5% 5–10% 5–10% 10–15% 15–20%

https://doi.org/10.1371/journal.pone.0270082.t003
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58]. Estimating abundance from a SECR model can lead to greater flexibility and efficiency in

study design [59]. Our results suggest application of SECR models provides a viable approach

to identify trapping designs that save time and maintain the accuracy needed to compare

trends from long-term monitoring, especially for protected species. Sollmann, et al. (2012)

[18] showed that, while there are limits to the flexibility in spatial trap design for SECR model-

ling, it proved more robust to changes in trapping area size and spacing relative to animal

movement than non-spatial capture-recapture models. We found differences in parameter

model estimates for subsampled datasets which may be due to individual differences in detec-

tion and movement that become more apparent when a smaller portion of the overall popula-

tion is sampled.

Study designs should strive to sample as many individuals as possible to obtain adequate

data on individual movement, leading to improved precision of parameter estimates. This pre-

cision may be particularly important for difficult to detect species, including threatened or

endangered species that may have smaller populations or low trap encounter rates. A trapping

design that is small relative to a species home range may result in the capture of too few indi-

viduals and reduce the ability of the model to estimate parameters [60]. For instance, reducing

the area of the trap array to 0.50 ha (7x7 grid) had a large effect on sample size (sampling only

49% of the original individuals averaged across 18 years), and therefore, had a significant effect

on estimates. Particularly, female SMHM detection rate was overestimated and home range

was underestimated (S1 Table). Another important finding was that reducing the trapping

area had a much larger effect than reducing the trap density. A reduction of traps by 50 percent

(7x7 grid, 49 traps) reduced the individuals captured by 51 percent (n = 349), whereas the

reduction in trap density from 10 meter spacing to 13 meter spacing (Half density, 50 traps)

only reduced the individuals captured by 29 percent (n = 506). Therefore, the half density

design maintained a larger proportion of the full dataset and resulted in density estimates with

a mean percent difference of 9.98 compared to the 7x7 trap design which had density estimates

with a mean percent difference of 14.35. This difference was most likely due to better model

estimates for female g0 and σ (S1 Table, Fig 4) arising from the larger sample size. Efford and

Fewster (2013) [61] showed that SECR estimates of realized population size were generally less

biased than estimates from non-spatial methods and showed adequate precision. Furthermore,

these estimates were shown to be robust for some severe deviations from the fitted model of

home-range centers.

Many wildlife managers traditionally use CE as a quick way to determine population status

from year to year [62, 63] (S2 Table). While CE does provide the ability to quickly look at a

trend in the capture data, it only provides the number of unique individuals over the number

of trap nights. Capture-recapture models consider how many times a unique individual is cap-

tured and when the individual was captured during the trapping event to create population

estimates. SECR models also take into account where an individual was captured spatially to

provide more robust density estimates [34, 57, 59]. This explicit spatial component of SECR

models allows for better comparisons of real density estimates not only across years and space

but also across trapping designs, ultimately leading to more informed sampling designs. Kris-

tensen et al (2018), found that study design considerations will differ among species based on

their habitat and movements, recommending collecting preliminary pilot trapping data to

integrate into SECR simulations providing a means to optimize the study design for long term

monitoring [64]. Our results also show that SECR methodology can be employed in the plan-

ning/monitoring of a wide array of species by maximizing effectiveness and minimizing cost

and effort. SECR modeling is not only transferable across species but can be an important tool

for managers implementing adaptive management approaches.
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Management applications

Common management challenges include balancing the need for effective and efficient long-

term monitoring programs with available resources [62]. Financial and staffing constraints are

important considerations that may determine the spatial and temporal scales of survey efforts

in long-term monitoring projects [65–68], and reduced funding or other resources may create

barriers to long-term data collection. Additionally, managers may have an interest in minimiz-

ing impacts to habitats, protected species, and co-occurring species. Constraints while trapping

small mammals, in particular, include accessing protected/sensitive habitats and impacts to

rare or endangered species [52, 57]; therefore, reducing field efforts can have benefits. Our

study showed that some reduced trapping efforts can produce estimates comparable to those

from more intensive efforts (e.g. our original 10x10 grid trapped for four consecutive nights),

suggesting there may be opportunities to re-evaluate field efforts and gain efficiency. The

reduction in staff time was greatest when reducing the trapping occasion from four down to

three consecutive nights. Although the time savings overall were modest because of the pre-

and post- survey logistics and requirements, a shorter consecutive trapping duration can pro-

vide considerable flexibility in scheduling small mammal trapping surveys, especially when

environmental factors such as flooding from high tides, extreme weather, and hunting days

can limit the days on which surveys can occur.

Despite the temporal extent of the dataset, we acknowledge that our analysis was based on a

single grid. A SECR modeling approach with data from multiple grids and sites could incorpo-

rate small mammal variability from environmentally and ecologically distict areas and provide

further insights for species monitoring and management. For example, if a species is present

but captures are too low to derive meaningful density estimates, the minimum number of ani-

mals known alive (MNKA) can be used to derive an index to density. Deriving the relationship

between density and MNKA would require data from multiple grids with an adequate number

of captures as well as sites with few captures to assess density based differences in capture prob-

abilities. From a management perspective, trapping effort commonly varies by site because of

factors such as access, vegetation structure, and changing environmental constraints (e.g. high

tide inundation). Evaluating different grid arrangements relative to these site factors would

almost certainly provide managers with information that would allow them to better balance

logistical constraints with collecting adequate data to meet the survey goals.

Long-term datasets, such as what we used here, provide an opportunity to evaluate sam-

pling protocols and assess whether modifications might result in similar estimates and still

meet the goals of the project. Reassessment of monitoring efforts may result from shifting

monitoring or conservation goals [69, 70]. Concerns about funding, staff time, priorities,

impacts to species or their habitats can result in reductions or losses of long-term monitoring

efforts. Field sampling optimization exercises, such as what we present here, can provide a

means to modify large scale monitoring practices to meet programmatic needs and operational

constraints. This type of analysis can help managers understand how to optimize trapping

efforts, such as potentially expanding monitoring to underrepresented but priority target habi-

tat areas.

Conclusion

Here, we use SECR modelling to illustrate that a reduction in the number of trapping nights,

trap numbers, and trap density can provide small mammal density estimates similar to those

from the original design. The application of SECR models can inform future species monitor-

ing, reevaluation of current monitoring, and implementation of adaptive management strate-

gies [71]. Wildlife managers concerned about the detection and trapping design for small
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mammals can leverage long-term datasets and SERC models to inform their methodologies.

In addition, many endangered species are difficult to study due to small populations numbers,

fragmented habitats, and their elusive nature; this can reduce confidence in population density

trend estimates. SERC modeling can be a valuable tool in these situations. The analysis here

showed how long-term monitoring datasets collected with a consistent and robust methodol-

ogy can be used to understand how sampling designs might be modified to optimize manage-

ment investments and still achieve similar results. The SERC approach is a powerful spatial

modeling tool to estimate population densities and determine an optimal study design for

long-term monitoring.
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