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INTRODUCTION 
 

According to global cancer statistics, colon cancer has 

the fourth-highest rate of malignant tumors and the 

third-highest mortality rate among cancers [1]. There 

were approximately 1,096,601 new cases (6.1% of the 

total new cancer cases) and 551,269 deaths (5.8% of the 

total cancer deaths) from colon cancer in 2018 [2]. The 

traditional treatments for colon cancer are surgery, 

chemotherapy, and radiation. However, these treatments 

often have recurrent, drug-resistant, and toxic side 

effects, and have led to no significant improvement in 

colon cancer prognosis [3–5]. Immunotherapy is a new 

approach that has been developed in the last decade  

[6, 7]. In 2017, the US Food and Drug Administration 

first approved pembrolizumab (anti-PD-1) immuno-

therapy for the management of colorectal cancer [8]. 

Immunotherapy typically activates antitumor immunity 

through immune checkpoint inhibitors, such as 

antibodies targeting programmed cell death 1 (PD-1) 

and cytotoxic T-Lymphocyte antigen-4 (CTLA-4) [8]. 

However, due to the heterogeneity and complexity of 

tumor-immune microenvironments, few patients with 

advanced cancer have benefited from immune 

checkpoint inhibitors [9–11]. More and more research 

has focused on identifying predictive biomarkers for 

immunotherapy. At present, PD-L1 is the most widely 

accepted method. Because of the complexity of 
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ABSTRACT 
 

The heterogeneity and complexity of tumor-immune microenvironments lead to diverse immunotherapy 
effects among colon cancer patients. It is crucial to identify immune microenvironment-related biomarkers and 
construct prognostic risk models. In this study, the immune and stromal scores of 415 cases from TCGA were 
calculated using the ESTIMATE algorithm. AXIN2, CCL22, CLEC10A, CRIP2, RUNX3, and TRPM5 were screened 
and established a prognostic immune-related gene (IRG) signature using by univariate, LASSO, and multivariate 
Cox regression models. The predicted performance of IRG signature was external validated by GSE39582 
(n=519). Stratified survival analysis showed IRG signature was an effective predictor of survival in patients with 
different clinical characteristics. The protein expression level of six genes was validated by 
immunohistochemistry analysis. Difference analysis indicated the mutation rate, immune cell of resting NK cells 
and regulatory T cells infiltration and four immune checkpoints of PD-1, PD-L1, LAG3 and VSIR expression levels 
in the high-risk group were significantly higher than those in the low-risk group. A nomogram incorporating the 
gene signatures and clinical factors was demonstrated had a good accuracy (1-, 3-, and 5-year AUC= 0.799, 
0.791, 0.738). Our study identified a novel IRG signature, which may provide some references for the clinical 
precision immunotherapy of patients. 
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threshold quantification, PD-1 immune checkpoint 

cannot be used as an effective biomarker for screening 

advantaged populations. Therefore, it remains critical to 

build an effective model to accurately predict the 

prognosis of colon cancer patients with immunotherapy. 

The development of high-throughput technology and 

bioinformatics makes it possible to find more effective 

biomarkers in our big data environment. 

 

The tumor microenvironment (TME) is generally 

defined as the environment surrounding the tumor, 

including the extracellular matrix, blood vessels, 

immune cells, neurons, and other cellular functions, all 

of which are closely related to tumor progression and 

therapeutic effects [12, 13]. In our research, the 

ESTIMATE (Estimation of Stromal and Immune cells 

in Malignant Tumor tissues using Expression data) 

algorithm was used to construct TME and identify 

immune-related prognostic features [14]. The response 

rate to immunotherapy is 52% in colon cancer patients 

with microsatellite instability, while immunotherapy is 

not effective in colon cancer patients with microsatellite 

stability [15]. The instability was caused by defective 

DNA mismatch repair mechanisms that led to somatic 

cell mutation, which also increased the tumor mutation 

burden [16]. Moreover, immune checkpoint inhibitors 

are only effective for specific immune-infiltrating cell 

subsets. For example, high tumor-infiltrating T 

lymphocyte content makes PD-1 and CTLA-4 

monoclonal antibodies more effective. Therefore, the 

CIBERSORT (Cell type Identification by Estimating 

Relative Subpopulations of RNA Transcription) 

algorithm was used to analyze the relationship between 

the gene signature and immune cell infiltration [17]. 

 

The prognosis of colon cancer usually depends on many 

clinical factors, excluding the influence of genes and 

molecular levels. For example, the Joint American 

Committee on Node Metastasis’s staging of cancer has 

been recognized as a reference for preliminary 

prognostic predictions. In addition, age, sex, 

histological classification, and tumor location are other 

important factors that influence clinical outcomes and 

may enhance predictive value. Therefore, our study 

constructed a nomogram containing prognostic gene 

signatures and clinical prognostic factors to optimize 

their complementarities. 

 

The primary aim of the present study was to 

investigate immune-related genes (IRG) by using the 

ESTIMATE algorithm to construct and validate an 

IRG prognostic risk score model. Second, we 

explored the association between IRG signature and 

tumor mutation burden, tumor immune cell 

infiltration, and immune checkpoint expression to 

verify the reliability of IRG and select the optimal 

beneficiaries of immunotherapy. Finally, a nomogram 

that incorporated immune-related biomarkers and 

clinical features was constructed to assess the 

immunotherapy sensitivity and prognostic 

characteristics for each patient. 

 

RESULTS 
 

Construction of TME, screening of DEGs and 

functional enrichment analysis 

 

Detailed clinical characteristics of the training and 

validation cohorts are listed in Supplementary Table 1. 

The ESTIMATE algorithm was applied to estimate 

immune and stromal scores. The association of immune 

and stromal scores with clinical characteristics showed 

that the immune scores were different in pathological 

stage groups, tumor M staging groups, and tumor 

location groups. The immune score of stage I was 

significantly higher than stage IV (P = 0.008). M0 was 

significantly higher than M1 (P = 0.002), and the right 

side was significantly higher than the left side (P < 

0.001) (Figure 1A). White people and non-

adenocarcinomas had higher stromal scores than other 

races and adenocarcinomas (Race: P = 0.001; Histology 

classification: P = 0.012) (Figure 1B). Other variables 

had no significant differences in the distribution of 

immune scores and stromal scores (Supplementary 

Figure 1A, 1B). Immune scores range from -899.82 to 

2959.54, and stromal scores range from -2171.21 to 

1943.63. Colon cancer patients were divided into high 

score group and low score group by the optimal cut-off 

value (Supplementary Figure 1C, 1D). According to the 

log-rank test results, the OS of the high immune score 

group was significantly higher than that of the low 

immune score group (P = 0.018) (Figure 1C). There 

was no significant difference in OS between the high 

and low stromal score groups (P = 0.390) (Figure 1D). 
 

Immune- or stromal-related DEGs were identified by 

comparing the RNA-expression of colon cancer patients 

with high and low immune (or stromal) scores. A 

cluster analysis screened out immune-related DEGs 

with high score and low score groups, as displayed in 

the heat map (Figure 2A). A volcano plot revealed 

significantly differentially expressed genes (Figure 2C). 

A total of 1,076 genes were identified as immune-

related DEGs, which contain 120 up-regulated genes 

and 956 down-regulated genes. The heat map and 

volcano plot of stromal related DEGs are shown in 

Figure 2B, 2D. 1,199 stromal-related genes were 

screened, including 153 up-regulated genes and 1,046 

down-regulated genes. A Venn diagram displayed 844 

intersecting immune- and stromal-related DEGs, 

including 55 up-regulated and 789 down-regulated 

genes (Figure 2E, 2F). 
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Top terms of GO analysis included immune response, 

inflammatory response, cell adhesion, and innate 

immune response in BP; plasma membrane, 

extracellular exosome, and extracellular region in CC; 

and calcium ion binding, receptor activity, and serine-

type endopeptidase activity in MF (Figure 2G). The 

results of KEGG enrichment were also related to 

immune responses, including cytokine-cytokine 

receptor interaction, phagosome, chemokine signaling 

pathway (Figure 2H). Collectively, the results indicated 

that the enriched GO terms and KEGG pathways were 

mainly related to immune response. 

 

 
 

Figure 1. Association of stromal and immune scores with colon cancer clinical characteristics and prognosis in TCGA. (A) 
Significant differences in the distribution of immune scores among different tumor stage, metastasis, and tumor location groups. (B) 
Significant differences in the distribution of stromal scores among different race, tumor location, and histology classification groups. (C) 
Kaplan-Meier survival curves of high and low immune score groups. (D) Kaplan-Meier survival curves of high and low stromal score 
groups. 
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Construction, verification, and subgroup analysis of 

IRG risk score model 

 
Thirty genes related to the prognosis of colon cancer from 

1096 DEGs were screened by univariate Cox analysis. 

The LASSO regression analysis model further identified 

18 genes associated with OS (Supplementary Figure 2A, 

2B). Six significant independent prognostic genes were 

selected by multivariate Cox regression analysis. Among 

them, AXIN2, CCL22, and CLEC10A were protective 

genes whose high expression was associated with higher 

survival probability. CRIP2, RUNX3, and TRPM5 were 

dangerous genes whose high expression was associated 

with a lower probability of survival (Supplementary 

Figure 3A, 3B). The prognostic gene risk score model = (-

0.273 × expression value of AXIN2) + (-0.372 × 

expression value of CCL22) + (-0.299 × expression value 

of CLEC10A) + (0.344 × expression value of CRIP2) + 

(0.324 × expression value of RUNX3) + (0.341 × 

expression value of TRPM5) (Figure 3A). In accordance 

with the median risk score, all colon cancer patients from 

the TCGA and GEO cohorts were divided into high-risk 

 

 
 

Figure 2. Comparison between gene expression profiles of immune and stromal scores in TCGA. (A, B) Heat maps showing 

expression profiles for immune score and stromal score-related DEGs. (C, D) Volcano plots showing up-regulated and down-regulated DEGs 
related to immune score and stromal score. (E, F) Venn diagrams showing the intersection of immune score and stromal score related up-
regulated /down-regulated DEGs. (G) Histogram showing the top ten Gene Ontology terms in BP, CC, and MF. (H) Bubble chart exhibiting top 
fifteen KEGG analysis terms. 
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 groups and low-risk groups, respectively. The 

difference in OS between the two risk score groups was 

determined to be significant by a log-rank test (TCGA: 

P < 0.001, GEO: P = 0.019) (Figure 3B, 3E). The 

distribution of risk score, survival status, and gene 

expression among patients in the training set and 

validation set are given in Figure 3C, Figure 3F. The 

clustering heat maps showed that the expression of 

prognostic genes AXIN2, CCL22, and CLEC10A was 

up-regulated in the high-risk group, while the 

expression of CRIP2, RUNX3, and TRPM5 was down-

regulated in the high-risk group (Figure 3C, 3F). The 

AUC for 1-, 3-, and 5-year OS were 0.795, 0.757, and 

0.728 in the TCGA cohort, respectively (Figure 3D). 

The AUC values for 1-, 3-, and 5-year OS were 0.715, 

0.685, and 0.666 in GEO cohort, respectively (Figure 

3G). 

 

Low-risk scores were concentrated in other races, left 

site, and stage I/II; all of these subgroups were 

associated with higher OS. However, the white race, 

right site, and stage III/IV had an unfavorable prognosis 

and accumulated significant high-risk scores 

(Supplementary Figure 4). Since IRG risk score is 

highly correlated with the above clinical characteristics, 

we attempted to clarify whether the IRG signature has 

prognostic value independent of these clinical 

characteristics. Stratified survival analysis showed that 

the log-rank tests for the survival probability of both the 

high- and low-risk groups were significant in different 

subgroups (Figure 4). IRG risk score was an effective 

predictor of survival in subgroups of patients with 

different clinical characteristics. 

 
Verification of expression profiles and 

immunohistochemistry of six immune-related 

prognostic genes 

 
In the GSE39582 dataset, we calculated the correlation 

between the immune-related independent prognostic 

genes and risk scores. The expression levels of AXIN2, 

CCL22, and CLEC10A were significantly higher in the 

low-risk group, and the expression levels of CRIP2, 

RUNX3, and TRPM5 were significantly positively 

correlated with the risk scores (Figure 5A). This is 

consistent with TCGA cohort analysis. 

 
The HPA database was used to validate the protein 

expression levels of six genes. CCL22 and TRPM5 

were not available on the website, so we compared the 

other four genes’ IHC in normal tissue and tumor 

tissue. We found that AXIN2 staining was medium in 

normal tissues but low in cancer tissues, and the 

number of normal tissues was higher than that of 

cancer tissues. RUNX3 was weakly positive in tumor 

tissue but negative in normal tissue. CLEC10A and 

CRIP2 were negative in both normal and tumor tissues 

(Figure 5B). 

 
Correlations between somatic mutation, immune cell 

infiltration, immune checkpoints expression, and 

IRG signature 
 
By analyzing MuTect2 mutation annotation files, the 

total TMB and mutation distribution from the TCGA 

cohort (Supplementary Figure 5) were obtained. All 

patients with somatic mutation information were 

divided into either a high-risk group (n = 177) or a low-

risk group (n = 179) according to the above grouping 

rules. The frequency of mutation of the first 20 genes in 

the two groups was mostly similar (Figure 6A, 6B). The 

two groups of mutant genes with significantly different 

mutation frequencies are shown in the Figure 6C. The 

frequencies of all mutated genes were higher in the 

high-risk group than in the low-risk group, indicating 

that the frequency of somatic mutation was positively 

correlated with our IRG risk score (Figure 6C). The 

relationship between the IRG risk score and the first 

eight mutation pathways is shown in Supplementary 

Table 2. The mutation rate of RTK-RAS, NOTCH, 

MYC, Cell-Cycle, and TCF-Beta pathways in the high-

risk group was significantly higher than that in the low-

risk group. Taken together, these results suggested that 

colon cancer tumor cells in the high- and low-risk 

groups may have different mutation driver genes and 

pathways. 

 
The ―CIBERSORT‖ algorithm was used to estimate 

the difference in immune infiltration between low-risk 

and high-risk colon tumors in 22 immune cell subsets. 

The composition of immune cells in the high-risk and 

low-risk samples is shown in Supplementary Figure 

6A. The difference in the proportion of immune 

infiltrating cells between the high-risk and low-risk 

samples was exhibited on the heat map 

(Supplementary Figure 6B). The immune cells with 

significantly higher infiltration in the high-risk 

samples were resting NK cells, and regulatory T cells 

(P < 0.05). The infiltration of CD8 T cells, plasma 

cells, memory-activated CD4 T cells, resting dendritic 

cells, and activated dendritic cells were significantly 

higher in the low-risk samples than in the high risk 

samples (P < 0.05) (Figure 7). Therefore, different 

immune infiltrators in colon cancer patients might be 

used as prognostic indicators and targets of 

immunotherapy. 

 

The correlation between the risk scores and 

expression of five common immune checkpoints was 

shown on the circular plot (Figure 8A). The results 

showed that the risk scores were significantly 

positively correlated with the expression of PD-1, 
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Figure 3. Prognostic analysis and performance assessment of TCGA and GEO. (A) Forest map showing six signature genes identified 

by a multivariate Cox regression analysis. (B, E) Kaplan-Meier survival curves and log-rank tests of six prognosis genes in TCGA and GEO. (C, F) 
Distribution of risk score, survival status and gene expression among patients in TCGA and GEO. (D, G) AUC values for 1-, 3-, and 5-year OS in 
TCGA and GEO.  
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PD-L1, LAG3, and VSIR. The expression of CTLA-4 

in high and low risk groups had no significant 

difference (Figure 8B). The expression of PD-1, PD-L1, 

LAG3 and VSIR in the high-risk group was 

significantly higher than that in the low-risk group 

(Figure 8C–8F). 

 

Independent prognostic validation of IRG risk score 

and construction of a nomogram  

 

To explore whether IRG risk score is an independent 

predictor of colon cancer, age, gender, histological 

classification, pathological stage, tumor invasion, lymph 

node, metastasis, and tumor location were incorporated 

in the univariate analysis. The analysis indicated that 

age, metastasis, lymph node, tumor stage, and risk score 

were related to prognosis (Figure 9A). Risk score 

stratified and the meaningful clinical factors selected by 

univariate analysis were combined into a multivariate 

Cox regression analysis. There was collinearity among 

metastasis, lymph node, and tumor invasion and tumor 

stage. The multivariate Cox regression model did not 

include meaningful factors such as metastasis and 

lymph node. Old age (≥ 65 years: HR 2.09; 95% CI, 

1.29–3.41), high pathological stage (stage III: HR 3.96; 

95% CI, 1.19–13.14; stage IV: HR 13.02; 95% CI,

 

 
 

Figure 4. Kaplan-Meier survival subgroup analysis according to IRG signature stratified by clinical characteristics. (A) Age <65 
years and age ≥65 years. (B) Female and Male. (C) White race and other race. (D) Left site and right site. (E) Adenocarcinoma and other 
histological type. (F) Stage I/II and stage III/IV. 



 

www.aging-us.com 26102 AGING 

3.96–42.83), and high-risk score (HR 3.01; 95% CI, 

1.83–4.95) were independent prognostic factors  

(Figure 9B). 

 

A nomogram including risk score, age, and pathological 

stage was constructed that could visualize prognostic 

risk factors and provide a quantitative method for 

predicting the survival probability of colon cancer 

patients (Figure 9C). The AUC values of the nomogram 

for 1-, 3-, and 5-years were 0.799, 0.791, and 0.738 

respectively (Figure 9D). The calibration of the 

nomogram for the possibility of 1-, 3-, and 5-year 

survival suggested strong coherence between the 

prediction and actual observations (Figure 9E).  

 
Comparison of the IRG signature using the 

ESTIMATE algorithm with models using other 

methods 

 
To determine whether the immune-related gene 

signature obtained with the ESTIMATE algorithm was 

superior to other models, our model was used to 

compare it with the CIBERSORT and IMMPORT 

algorithms. Nine immune-related gene signature based 

on the CIBERSORT algorithm showed that the AUC 

values of 3-year and 5-year OS were 0.676 and 0.661, 

respectively. Five immune-related genes signature 

based on the IMMPORT algorithm showed that the 

AUC values of 3-year and 5-year OS were 0.663 and 

0.713, respectively. Although the other two algorithms 

do not calculate the 1-year AUC, our model has higher 

3-year and 5-year AUC than other models (Table 1). 

We can preliminarily conclude that the immune-related 

gene signature we obtained through the ESTIMATE 

algorithm has higher accuracy. 

 

DISCUSSION 
 

Because of the heterogeneity and complexity of tumor 

immune microenvironments, only some microsatellite 

instable colon cancer patients benefit from 

immunotherapy. It remains critical to construct an 

effective model for accurately predicting the 

immunotherapy prognosis of colon cancer patients. To 

our knowledge, this is the first study to apply the 

ESTIMATE algorithm to identify the immune-related 

prognostic signature of colon cancer. We validated the 

independent prognostic effects of IRG signature, the 

robustness of IRG signature in the external cohort, and 

the association of IRG signature with somatic cell 

mutations and immune cell infiltration. On this basis, 

we explored the association between risk score and 

immune checkpoint expression and identified the 

optimal beneficiaries of immune checkpoint inhibitors 

 

 
 

Figure 5. Differences in protein expression induced by six genes were verified in human tissue samples. (A) Pearson correlation 

of expression and risk score in GEO. (B) Representative immunohistochemical staining images of four genes in normal colon tissue and colon 
cancer specimen.  
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in colon cancer for the first time. Compared with 

models based on other methods, the immune-related 

signature we derived using the ESTIMATE algorithm 

has higher accuracy. Four immune-related genes were 

verified by immunohistochemistry in the HPA database, 

while CCL22 and TRPM5 need further experimental 

verification. 

 

The ESTIMATE algorithm was used to calculate 

immune and stromal scores. The results showed that a 

higher immune score was associated with better overall 

survival, indicating that TME was related to the 

prognosis of colon cancer. Similar associations were 

found in adrenocortical carcinoma, endometrial 

carcinoma, hepatocellular carcinoma, non-small cell lung 

cancer, and melanoma [18–22]. Furthermore, we 

observed that an immune score of M1 and stage IV was 

significantly lower than that of M0 and stage I. Immune 

or stromal scores were calculated based on a 

comprehensive score of all genes in the tissue [14]. 

Although immune score was related to prognosis, not all 

immune-specific genes were prognostic factors. 

Similarly, although stromal score was not associated with 

prognosis, stromal-specific genes are not necessarily 

unrelated to prognosis [23]. Since the intersect genes are 

the most comprehensive and conservative, we took the 

intersection of immunity and stroma to obtain DEGs 

related to both immunity and stroma. GO analysis

 

 
 

Figure 6. Mutant landscape of high-risk and low-risk groups in TCGA. (A, B) Waterfall plot representing the mutant landscape of the 

top 20 most frequently mutated genes in the high-risk group and low-risk group. (C) Forest plot representing the top 18 genes with significant 
differences in mutation rates between high- and low-risk groups. 
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Figure 7. Difference analysis of 22 immune cells infiltration between high- and low-risk groups.  
 

 
 

Figure 8. Correlation of risk scores with expression of five prominent immune checkpoints. (A) Circular plot visualizing correlation 

coefficient of risk scores with expression of five common immune checkpoints. Box plots showing comparison of the expression of (B) CTLA4, 
(C) PDL1, (D) VSIR, (E) PD1, and (F) LAG3 between high- and low-risk groups. 
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showed that 844 DEGs are involved in immune-

related biological processes such as immune 

response, inflammatory response, cell adhesion and 

innate immune response. KEGG analysis revealed 

that DEGs enriched in immune-related pathways 

including cytokine-cytokine receptor interaction, 

phagosome, and chemokine signaling pathways. The 

activation of cytokine-cytokine receptor interaction 

could promote intestinal tumorigenesis [24]. The 

main role of the chemokine signaling pathway is to 

regulate immune cell recruitment during 

inflammation and defense against external pathogens 

[25, 26]. New evidence has indicated that chemokines 

are a key component of cancer progression [27], and 

the functions of different chemokines are complex 

and diverse in the tumor microenvironment [28]. 

CXCL2 significantly promotes tumor migration and 

invasion [29], whereas overexpression of CXCL2 

inhibits tumor growth and promotes apoptosis [30]. 

CXCL11 promotes tumor cell proliferation and 

invasion by inducing macrophage infiltration, which 

leads to poor prognosis of colon cancer [31, 32]. 

Conversely, another study reports that CXCL11 and 

CXCL10 have synergistic antitumor effects [33]. 

Indeed, more and more studies are showing that the 

stromal differential expression of chemokines is 

related to the prognosis of cancer [34, 35]. These 

enriched functions and pathways could provide a 

reference for fundamental research on the molecular 

mechanisms of DEGs. 

 

The six genes that composed the risk score could be 

considered potential therapeutic targets. Among these, 

AXIN2, CCL22, and CLEC10A are the protective 

factors in the model. Axis Inhibition Protein 2 (AXIN2) 

is a protein coding gene. It presumably plays an 

important role in the regulation of the stability of beta-

catenin in the WNT signaling pathway. Intestinal tumor 

suppressor CDX2 activated AXIN2 promoter activities 

via intestinal cell-specific enhancer elements to inhibit 

WNT signaling pathways and prevent tumor invasion 

and migration [36]. Therefore, up-regulation of AXIN2 

could restore immune cell infiltration and enhance 

immunotherapy through inhibitory WNT/β-catenin 

pathways [37]. C-C Motif Chemokine Ligand 22 

(CCL22), generated by intestinal epithelial cells, 

produces anti-inflammatory cytokines (IL-4, IL-10) 

through chemotactic T cell capacity, thereby regulating 

physiological mucosal inflammation [38, 39]. CCL22 

knockout mice exhibited impaired immune response 

and increased mortality, which was associated with 

reduced macrophage recruitment [40, 41]. C-type lectin 

receptor family member 10A (CLEC10A) is an 

endocytosis receptor on antigen-presenting cells that 

plays an important role in dendritic cell maturation and 

initiation of immune response [42]. As an 

 

 
 

Figure 9. Independent analysis of IRG and construction of nomogram and performance assessment. (A, B) Univariate and 

multivariate Cox regression analysis of prognostic factors in TCGA. (C) Nomogram based on clinical factors and risk grads in TCGA. (D) AUC 
values for 1-, 3-, and 5-year survival rates in a nomogram. (E) Calibration for the possibility of 1-, 3-, and 5-year survival in a nomogram. 
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Table 1. Comparison of our immune-related gene signature using the ESTIMATE 
algorithm with immune-related gene signature using other methods. 

Immune-related gene signature  
AUC values 

1-Year 3-Year 5-Year 

Entire TCGA cohort    

Using ESTIMATE (Our model) 0.795 0.757 0.728 

Using CIBERSORT (PMID 31689990) - 0.676 0.661 

Using IMMPORT (PMID 32375704) - 0.663 0.713 

 

immunotherapy target, [43, 44] CLEC10A has proven 

to be an effective tool for activating the immune 

response in ovarian cancer [45] although its function in 

colon cancer has not been explored.  

 

High expression of CRIP2, RUNX3, and TRPM5 was 

significantly associated with an inferior prognosis. 

Cysteine Rich Protein 2 (Cysteine Rich Protein 2) may 

promote apoptosis of esophageal squamous cell 

carcinoma cells. However, the functional role of CRIP2 

and its involvement in colon tumorigenesis are still 

unknown. Runt related (RUNX) family of transcription 

factors, including runx1, runx2, and runx3, have been 

proposed to be key lineage-specific developmental 

regulators that are associated with multiple cancers. 

RUNX Family Transcription Factor 3 (RUNX3) is a 

downstream target of the TGF-β pathway, which is a 

tumor suppressor in pathway. RUNX3 has been 

described as a tumor suppressor gastric cancer and lung 

cancer [46, 47]. Paradoxically, RUNX3 has also been 

reported to play a carcinogenic role in basal cell 

carcinoma, head and neck squamous cell carcinoma, 

and ovarian cancer, which could promote tumor 

frequency and probability [48–50]. In any case, RUNX3 

is a key target for tumor therapy, and its specific 

molecular mechanisms need to be explored in the 

future. It has been reported that forced expression of 

Transient Receptor Potential Cation Channel Subfamily 

M Member 5 (TRPM5) increases the rate of acidic 

PHE-induced matrix metalloproteinase-9 expression 

and experimental lung metastasis. It has also been 

suggested that high expression of TRPM4, from the 

same family, is associated with aggressive tumor 

features and metastasis in colorectal cancer [51]. Five of 

these prognostic genes are specifically involved in 

immune-related processes (AXIN2, CCL22, CLEC10A, 

RUNX3, and TRPM5). Therefore, these five genes 

could be considered potential immunotherapy targets.  

 

To verify the accuracy of this information, we analyzed 

the six immune-related genes together with the risk 

scores in the GEO cohort. We found that protective 

genes were negatively correlated with risk scores, while 

risk genes were positively correlated with risk scores, 

which was consistent with the TCGA data set. We also 

demonstrate that the proteins encoded by the six 

immune-related genes were expressed at different 

degrees in tumor tissues and normal tissues. Images of 

IHC staining of AXIN2, CLEC10A, CRIP2, and 

RUNX3 verified the accuracy of the results, while IHC 

staining of the CCL22 and TRPM5 genes needs to be 

further verified. 
 

Somatic mutation analysis showed that our IRG 

signature was positively correlated with the frequency 

of somatic cell mutation. Since high somatic mutation 

means microsatellite instability-high, which has a 

higher immunotherapy response, the immunotherapy 

effect of the IRG high-risk group with high somatic 

mutation may be better. Furthermore, immune cell 

infiltration analysis showed high proportions of resting 

NK cells, regulatory T cells in the high-risk group. In 

contrast, low-risk group tissues had higher fractions of 

CD8 T cells, plasma cells, memory-activated CD4 T 

cells, resting dendritic cells, and activated dendritic 

cells. Research increasingly demonstrates that immune 

checkpoints are important influencing factors in tumor 

prognosis. Our results showed a significant positive 

correlation between risk scores and the expression of 

four key immune checkpoints (PD-1, PD-L1, LAG3, 

and VSIR). Previous evidence has suggested that the 

upregulation of PD-L1 on dendritic cells is related to 

the high expression of PD-1 on T cells, which means 

that dendritic cells present tumor antigens to T cells and 

inhibit anti-tumor responses [52]. Inhibition of PD-L1, 

LAG3, and CTLA4 could increase CD8 T cells and 

CD4 T cells and reduce Tregs, thereby enhancing anti-

tumor response [53–55]. The above studies are 

consistent with our conclusion, indicating that the poor 

prognosis in the high-risk group may be caused by a 

high expression of immune checkpoints and 

immunosuppressive microenvironments that promote 

the development of colon cancer. Therefore, 

immunosuppressive agents may be more effective for 

high-risk patients. 
 

We found correlations between IRG signature and 

somatic mutation, immune cell infiltration, and 

immunosuppression checkpoints, suggesting that the 

optimal beneficiaries of immunotherapy are high-risk 
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groups. We also validated the prognostic value of IRG 

characteristics in different subgroups and external 

cohorts. A multivariable Cox regression analysis 

combining clinical features with IRG risk scores 

showed that age, pathological stage, and risk score 

were significantly correlated with prognosis. Therefore, 

three independent prognostic factors were used to 

construct a nomogram. The AUC values for 1-, 3-, and 

5-years on the nomogram were higher than those on the 

gene risk score model, which indicates that the 

nomogram has better accuracy and sensitivity than 

single factor prediction models. 

 

Several recent studies have been committed to finding 

the immune signature of colon cancer prognosis. Pan  

et al. (2019) demonstrated that LAYN can be used as a 

prognostic biomarker for determining prognosis and 

immune infiltration in colon cancer using the TIMER 

site. Nevertheless, the accuracy and information of 

single immune-related biomarkers was lower than that 

of our multi-gene comprehensive model. Zhao et al. 

(2019) filtered and selected the immune-related genes 

using the criterion of a CIBERSORT P-value < 0.05. 

Chen et al. (2020) obtained immune genes from the 

IMMPORT database. The AUC of the model 

constructed by these methods is lower than that of the 

ESTIMATE algorithm adopted in this study.  

 

The present study differs from previous reports about 

colon cancer prognosis and has its own advantages. 

First, the ESTIMATE algorithm was applied to study 

genes characteristics in colon cancer microenvironment 

for the first time, and these genes affect the 

development of colon cancer and hence contribute to 

patients’ overall survival. Second, since colon cancer is 

a typical microsatellite-instable tumor, it is necessary to 

study its TMB and immune cell infiltration to establish 

the efficacy of immunotherapy. This study was the first 

to comprehensively analyze the relationship between 

IRG prognostic signature and TMB as well as immune 

cell infiltration, providing a new perspective on the 

predictive function of IRG signature in immunotherapy. 

Third, this study is the first to explore the correlation 

between the IRG signature and expression of immune 

checkpoint inhibitors and identify the optimal 

beneficiaries in clinical immune checkpoint inhibitor 

therapy. Our results may provide additional evidence 

for exploring the complex interactions between tumor, 

immunotherapy, and tumor environment in colon 

cancer. 

 

Nevertheless, our current research still has a few 

limitations. First, the main source of clinical 

characteristics for our dataset was the TCGA database. 

The majority of patients were from North America, and 

thus, we should extend our findings to other 

geographical and ethnic groups with great caution. 

Second, our study provides evidence that six novel 

immune-related genes are significantly related to the 

prognosis of colon cancer patients, but they were 

analyzed only through data mining merely. The function 

and mechanism of these genes depend on further 

experimental studies to elucidate. Thirdly, although we 

adjusted for the demographics and clinical 

characteristics as much as possible, information on 

other potentially variables (e.g., smoking, BMI) was not 

included in the present study. Finally, our retrospective 

study could lead to reporting bias. Thus, the results of 

new IRG signature need to be further validated in 

prospective studies. 

 

CONCLUSIONS 
 

In summary, we have demonstrated the effectiveness of 

the ESTIMATE algorithm applied for screening 

immune-related genes of colon cancer. IRG signature of 

AXIN2, CCL22, CLEC10A, CRIP2, RUNX3, and 

TRPM5 is a reliable prognostic predictor for colon 

cancer patients. We also found that the IRG signature is 

related to immune cell infiltration and expression of 

immune checkpoints, which further identified the 

optimal beneficiaries in clinical immune checkpoint 

inhibitor therapy. This new IRG signature provides a 

new theoretical basis for the prognosis assessment of 

colon cancer patients, and is expected to be further 

applied in future clinical practice. 

 

MATERIALS AND METHODS  
 

Data download and preparation 

 

Fragments per kilobase million (FPKM) data on RNA-

Seq and corresponding clinical characteristics of colon 

cancer were downloaded from The Cancer Genome 

Atlas (TCGA, https://portal.gdc.cancer.gov/, up to June 

06, 2020) using the Genomic Data Commons (GDC) 

tool. The original data included 482 tumor tissues and 

42 adjacent tissues. FPKM data was translated into 

transcripts per million (TPM) expression data. Based on 

the requirement of data integrality, patients that met the 

following criteria were excluded from the subsequent 

analysis: (1) repeated patient records; (2) missing 

follow-up time, T/N/M staging, or pathological stage 

information; (3) follow-up time was 0 days. Finally, our 

study identified 415 colon cancer samples as analytical 

datasets. 

 

This study selected the GSE39582 dataset from the 

Gene Expression Omnibus (GEO, http://www.ncbi. 

nlm.nih.gov/geo/) for external validation. The 

GSE39582 dataset was based on a GPL570 platform 

(Affymetrix Human Genome U133 Plus 2.0 Array) and 

https://portal.gdc.cancer.gov/
http://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/geo/
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included 558 colon cancer patients and 19 normal 

subjects. Our study eventually included 519 patients 

after deleting 38 samples that had a follow-up time of 0. 

The raw data were processed by RMA background 

correction, log2 transformation and normalization using 

an ―affy‖ package. All data were from publicly 

available databases, and there were no ethical issues 

involved. 

 

Identification of immune/stromal related-DEGs and 

functional enrichment analysis 

 

The ESTIMATE algorithm (https://sourceforge.net/ 

projects/estimateproject/) was used to calculate immune 

scores and stromal scores [14]. For samples that had a 

normal distribution, an independent t-test was 

performed to compare immune and stromal scores 

between two groups of clinical characteristics; one-way 

analysis of variance was used for comparison among 

three or more groups. Otherwise, Wilcoxon and 

Kruskal-Wallis analysis were conducted for two and 

three or more groups, respectively. We used the 

"maxstat" statistic from the "survminer" package to 

identify the optimal cut-off for continuous variables 

[56]. Immune and stromal scores were classified into 

high and low score groups, respectively, according to 

the optimal cut-off values. Overall survival (OS) was 

estimated by Kaplan-Meier, and a log-rank test was 

employed to compare survival differences between the 

two groups. 

 

Differential expression analysis of high and low score 

groups was performed with a "limma" package [57]. The 

P-value was adjusted with the false discovery rate (FDR) 

[58]. The up- and down-regulated immune and stromal 

genes were obtained based on the criteria of fold change 

≥1.5 and adjusted FDR <0.05. The intersection between 

immune-related differentially expressed genes (DEGs) 

and stromal-related DEGs was identified by using the 

VENNY website (https://bioinfogp.cnb.csic.es/tools/ 

venny/). Heat maps and volcano plots of DEGs were 

constructed using the ―pheatmap‖ and ―ggplot2‖ 

packages. 

 

The Gene Ontology (GO) and Kyoto Encyclopedia of 

Genes and Genomes (KEGG) pathway enrichment 

analysis of DEGs were implemented by the Database 

for Annotation, Visualization, and Integrated Discovery 

(DAVID) (https://david-d.ncifcrf.gov/) [59–61]. GO 

analysis included three main parts: biological process 

(BP), cellular component (CC), and molecular function 

(MF). We selected the top ten gene ontology terms in 

three parts to draw the histogram. The top fifteen 

KEGG analysis terms were exhibited in the bubble chart 

(where an adjusted P-value <0.05 was considered 

statistically significant). 

Construction, validation, and subgroup analysis of 

prognostic risk score model 
 

First, a univariate analysis of differential genes was 

performed to screen out significant genes. 

Subsequently, the least absolute shrinkage and selection 

operator (LASSO) Cox regression model was utilized 

for further screening of prognostic genes to avoid 

overfitting the model. Finally, a Cox proportional 

hazard regression was used to determine the optimal 

prognostic genes of the model [62]. The formula of the 

gene signature is as follows: Risk score = Ʃ (βi * Expi) 

(i = the number of prognostic genes, βi represents the 

gene coefficient, and Expi represents gene expression). 

Colon cancer patients were divided into high-risk and 

low-risk groups based on the median risk score. The 

―survival‖, ―glmnet‖, ―survminer‖, and ―forestplot‖ 

packages were used to conduct the above analysis. 

 

The risk score model was validated by 519 colon cancer 

patients from the GSE39582 dataset. The risk scores of 

the GSE39582 dataset were calculated based on the 

above formula. The GSE39582 dataset was also divided 

into high-risk and low-risk groups based on the median 

risk score. The performance of the risk score model in 

the training set and validation set was assessed based on 

a time-dependent receiver operating characteristic curve 

(ROC) analysis realized by ―timeROC‖ [63]. An area 

under time-dependent receiver operating characteristic 

curve (AUC) greater than 0.75 indicated clearly useful 

discrimination, while an AUC of 0.60 to 0.75 indicated 

possibly useful discrimination. 

 

To explore the association between the IRG signature 

and clinical characteristics, box plots were used to show 

risk scores for differences in age groups, gender, race, 

pathological type, tumor location, and tumor stage. A t-

test was used to compare whether there were significant 

differences in risk scores between different clinical 

features. A Kaplan-Meier method and log-rank test 

were used to compare the survival curves of different 

clinical features. To determine that the IRG signature 

was significant for survival prediction between different 

clinical characteristics, a survival analysis was 

performed on each subgroup. 

 

Expression profile and immunohistochemistry (IHC) 

validation of immune-related genes 

 

Scatter plots were used to show the distribution of gene 

expression profiles and risk scores. Pearson correlation 

coefficients were used to indicate the correlation 

between gene expression profiles and risk scores in the 

GEO cohort. Images of immunohistochemistry (IHC) 

staining of the selected prognosis-related genes in 

normal tissue and colon cancer tissue were retrieved 

https://sourceforge.net/projects/estimateproject/
https://sourceforge.net/projects/estimateproject/
https://bioinfogp.cnb.csic.es/tools/venny/
https://bioinfogp.cnb.csic.es/tools/venny/
https://david-d.ncifcrf.gov/


 

www.aging-us.com 26109 AGING 

from the Human Protein Atlas (HPA) database 

(http://www.proteinatlas.org). 
 

Correlations between somatic mutation, immune 

cell infiltration, immune checkpoint expression, and 

IRG signature 
 

CIBERSORT is a deconvolution algorithm for immune 

cell subtype expression based on linear support vector 

regression [17]. LM22 provides the annotated gene 

expression signatures for 22 immune cell subtypes, 

including plasma cells, myeloid subsets, seven T cell 

types, naive and memory B cells, and natural killer 

(NK) cells. Compared with traditional immuno-

histochemistry and flow cytometry methods, the 

CIBERSORT algorithm can comprehensively, quickly, 

and accurately infer the relative proportion of the 22 

invasive immune cells in tumors [17]. Immune cell 

fractions from high- and low-risk groups were analyzed 

using the CIBERSORT algorithm in our research. 

Immune checkpoint expression was used to predict the 

immunotherapeutic benefits of various malignancies. 

Therefore, we assessed the association between the 

expression of five common immune checkpoints—PD-

1, CTLA-4, lymphocyte-activation gene 3 (LAG3), 

programmed cell death 1(PD-1), and V-Set 

immunoregulatory receptor (VSIR), with the IRG 

signature. A circular plot showed the correlation 

between the risk score and the expression of the 

immune checkpoint, which was implemented with the 

"circlize" package. A box plot showed the differences in 

immune checkpoint expression between high- and low-

risk groups. 
 

Verification that IRG risk score is an independent 

prognostic factor and construction of a nomogram  
 

To assess the independent prognostic effect of the gene 

risk model, a Cox proportional hazards regression was 

used to perform univariate and multivariate analysis on all 

possible prognostic factors. Histological classification 

included adenocarcinoma and non-adenocarcinoma. 

Tumor location referred to left-side (descending colon, 

sigmoid colon, splenic flexure of colon), right-side 

(ascending colon, cecum, hepatic flexure of colon, 

transverse colon), or unknown [64]. Age, sex, 

pathological stage, and T/N/M stage were considered 

categorical variables.  
 

The nomogram was applied as a visual tool for 

predicting survival probability. All significant 

prognostic factors selected by multivariate Cox 

regression analysis were used to construct a 

nomogram to obtain a total score, thereby predicting 

1-, 3-, and 5-year survival probabilities. Subsequently, 

time-dependent ROC and calibration were used to 

assess the performance of the nomogram. If 

probabilities approach the 45-degree angle line in a 

calibration plot, it means there is strong agreement 

between the nomogram prediction and the actual 

observations. 

 

Abbreviations 
 

PD-1: programmed cell death 1; cytotoxic T-lymphocyte 

antigen-4: CTLA-4; TME: tumor microenvironment; 

Estimation of Stromal and Immune cells in Malignant 

Tumor tissues using Expression data: ESTIMATE; TMB: 

tumor mutation burden; Cell type Identification by 

Estimating Relative Subpopulations of RNA 

Transcription: CIBERSORT; IRG: immune-related genes; 

TCGA: The Cancer Genome Atlas; FPKM: Fragments 

per kilobase million; GDC: Genomic Data Commons; 

TPM: transcripts per million; GEO: Gene Expression 

Omnibus; OS: overall survival; FDR: false-discovery rate; 

DEGs: differentially expressed genes; GO: Gene 

Ontology; KEGG: Kyoto Encyclopedia of Genes and 

Genomes; BP: biological process; CC: cellular 

component; MF: molecular function; LASSO: least 

absolute shrinkage and selection operator; AUC: area 

under time-dependent receiver operating characteristic 

curve; IHC: immunohistochemistry; HPA: Human Protein 

Atlas; PD-L1: programmed cell death 1 ligand 1; LAG3: 

lymphocyte-activation gene 3; VSIR: V-Set 

immunoregulatory receptor. 

 

AUTHOR CONTRIBUTIONS 
 

XNZ and HZ designed the study. XNZ, HZ, XZS, XCJ, 

and YLY participated in data collection and analysis. 

XNZ and HZ drafted this manuscript. XNZ, HZ and 

YLY interpreted the data. YLY reviewed and revised 

this manuscript. All authors have approved the final 

manuscript. 

 

ACKNOWLEDGMENTS 
 

We would like to acknowledge the TCGA and GEO 

database developed by the National Institutes of Health 

(NIH). 

 

CONFLICTS OF INTEREST 
 

The authors declare no conflicts of interest. 

 

FUNDING 
 

National Natural Science Foundation (No. 82073670); 

The National Major Science and Technology Projects of 

the 13th Five-Year Plan of China (No. 2018ZX107 

15009). 

http://www.proteinatlas.org/


 

www.aging-us.com 26110 AGING 

REFERENCES 
 

1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2018. 
CA Cancer J Clin. 2018; 68:7–30. 

 https://doi.org/10.3322/caac.21442 PMID:29313949 

2. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, 
Jemal A. Global cancer statistics 2018: GLOBOCAN 
estimates of incidence and mortality worldwide for 36 
cancers in 185 countries. CA Cancer J Clin. 2018; 
68:394–424. 

 https://doi.org/10.3322/caac.21492 PMID:30207593 

3. Alese OB, Jiang R, Zakka KM, Wu C, Shaib W, Akce M, 
Behera M, El-Rayes BF. Analysis of racial disparities in 
the treatment and outcomes of colorectal cancer in 
young adults. Cancer Epidemiol. 2019; 63:101618. 

 https://doi.org/10.1016/j.canep.2019.101618 
PMID:31600666 

4. Panahi MH, Panahi H, Mahdavi Hezaveh A, Mansournia 
MA, Bidhendi Yarandi R. Survival rate of colon and 
rectum cancer in Iran: a systematic review and meta-
analysis. Neoplasma. 2019; 66:988–94. 

 https://doi.org/10.4149/neo_2019_190131N92 
PMID:31607130 

5. Allemani C, Matsuda T, Di Carlo V, Harewood R, Matz 
M, Nikšid M, Bonaventure A, Valkov M, Johnson CJ, 
Estève J, Ogunbiyi OJ, Azevedo E Silva G, Chen WQ, et 
al, and CONCORD Working Group. Global surveillance 
of trends in cancer survival 2000-14 (CONCORD-3): 
analysis of individual records for 37 513 025 patients 
diagnosed with one of 18 cancers from 322 
population-based registries in 71 countries. Lancet. 
2018; 391:1023–75. 

 https://doi.org/10.1016/S0140-6736(17)33326-3 
PMID:29395269 

6. Newick K, O’Brien S, Moon E, Albelda SM. CAR T cell 
therapy for solid tumors. Annu Rev Med. 2017; 
68:139–52. 

 https://doi.org/10.1146/annurev-med-062315-120245 
PMID:27860544 

7. Galon J, Bruni D. Approaches to treat immune hot, 
altered and cold tumours with combination 
immunotherapies. Nat Rev Drug Discov. 2019; 18: 
197–218. 

 https://doi.org/10.1038/s41573-018-0007-y 
PMID:30610226 

8. Tolba MF. Revolutionizing the landscape of colorectal 
cancer treatment: the potential role of immune 
checkpoint inhibitors. Int J Cancer. 2020; 147:2996–
3006. 

 https://doi.org/10.1002/ijc.33056 PMID:32415713 

9. Dienstmann R, Vermeulen L, Guinney J, Kopetz S, 
Tejpar S, Tabernero J. Consensus molecular subtypes 

and the evolution of precision medicine in colorectal 
cancer. Nat Rev Cancer. 2017; 17:79–92. 

 https://doi.org/10.1038/nrc.2016.126 PMID:28050011 

10. Sveen A, Løes IM, Alagaratnam S, Nilsen G, Høland M, 
Lingjærde OC, Sorbye H, Berg KC, Horn A, Angelsen JH, 
Knappskog S, Lønning PE, Lothe RA. Intra-patient inter-
metastatic genetic heterogeneity in colorectal cancer 
as a key determinant of survival after curative liver 
resection. PLoS Genet. 2016; 12:e1006225. 

 https://doi.org/10.1371/journal.pgen.1006225 
PMID:27472274 

11. Wang H, Wang X, Xu L, Zhang J, Cao H. A molecular 
sub-cluster of colon cancer cells with low VDR 
expression is sensitive to chemotherapy, BRAF 
inhibitors and PI3K-mTOR inhibitors treatment. Aging 
(Albany NY). 2019; 11:8587–603. 

 https://doi.org/10.18632/aging.102349 
PMID:31596728 

12. Kim S, Kim A, Shin JY, Seo JS. The tumor immune 
microenvironmental analysis of 2,033 transcriptomes 
across 7 cancer types. Sci Rep. 2020; 10:9536. 

 https://doi.org/10.1038/s41598-020-66449-0 
PMID:32533054 

13. Fridman WH, Pagès F, Sautès-Fridman C, Galon J. The 
immune contexture in human tumours: impact on 
clinical outcome. Nat Rev Cancer. 2012; 12:298–306. 

 https://doi.org/10.1038/nrc3245 PMID:22419253 

14. Yoshihara K, Shahmoradgoli M, Martínez E, Vegesna R, 
Kim H, Torres-Garcia W, Treviño V, Shen H, Laird PW, 
Levine DA, Carter SL, Getz G, Stemke-Hale K, et al. 
Inferring tumour purity and stromal and immune cell 
admixture from expression data. Nat Commun. 2013; 
4:2612. 

 https://doi.org/10.1038/ncomms3612 PMID:24113773 

15. Jácome AA, Eng C. Role of immune checkpoint 
inhibitors in the treatment of colorectal cancer: focus 
on nivolumab. Expert Opin Biol Ther. 2019; 19:1247–63. 

 https://doi.org/10.1080/14712598.2019.1680636 
PMID:31642347 

16. Picard E, Verschoor CP, Ma GW, Pawelec G. 
Relationships between immune landscapes, genetic 
subtypes and responses to immunotherapy in 
colorectal cancer. Front Immunol. 2020; 11:369. 

 https://doi.org/10.3389/fimmu.2020.00369 
PMID:32210966 

17. Newman AM, Liu CL, Green MR, Gentles AJ, Feng W, 
Xu Y, Hoang CD, Diehn M, Alizadeh AA. Robust 
enumeration of cell subsets from tissue expression 
profiles. Nat Methods. 2015; 12:453–57. 

 https://doi.org/10.1038/nmeth.3337 PMID:25822800 

18. Li X, Gao Y, Xu Z, Zhang Z, Zheng Y, Qi F. Identification 
of prognostic genes in adrenocortical carcinoma 

https://doi.org/10.3322/caac.21442
https://pubmed.ncbi.nlm.nih.gov/29313949
https://doi.org/10.3322/caac.21492
https://pubmed.ncbi.nlm.nih.gov/30207593
https://doi.org/10.1016/j.canep.2019.101618
https://pubmed.ncbi.nlm.nih.gov/31600666
https://doi.org/10.4149/neo_2019_190131N92
https://pubmed.ncbi.nlm.nih.gov/31607130
https://doi.org/10.1016/S0140-6736(17)33326-3
https://pubmed.ncbi.nlm.nih.gov/29395269
https://doi.org/10.1146/annurev-med-062315-120245
https://pubmed.ncbi.nlm.nih.gov/27860544
https://doi.org/10.1038/s41573-018-0007-y
https://pubmed.ncbi.nlm.nih.gov/30610226
https://doi.org/10.1002/ijc.33056
https://pubmed.ncbi.nlm.nih.gov/32415713
https://doi.org/10.1038/nrc.2016.126
https://pubmed.ncbi.nlm.nih.gov/28050011
https://doi.org/10.1371/journal.pgen.1006225
https://pubmed.ncbi.nlm.nih.gov/27472274
https://doi.org/10.18632/aging.102349
https://pubmed.ncbi.nlm.nih.gov/31596728
https://doi.org/10.1038/s41598-020-66449-0
https://pubmed.ncbi.nlm.nih.gov/32533054
https://doi.org/10.1038/nrc3245
https://pubmed.ncbi.nlm.nih.gov/22419253
https://doi.org/10.1038/ncomms3612
https://pubmed.ncbi.nlm.nih.gov/24113773
https://doi.org/10.1080/14712598.2019.1680636
https://pubmed.ncbi.nlm.nih.gov/31642347
https://doi.org/10.3389/fimmu.2020.00369
https://pubmed.ncbi.nlm.nih.gov/32210966
https://doi.org/10.1038/nmeth.3337
https://pubmed.ncbi.nlm.nih.gov/25822800


 

www.aging-us.com 26111 AGING 

microenvironment based on bioinformatic methods. 
Cancer Med. 2020; 9:1161–72. 

 https://doi.org/10.1002/cam4.2774  
PMID:31856409 

19. Chen P, Yang Y, Zhang Y, Jiang S, Li X, Wan J. 
Identification of prognostic immune-related genes in 
the tumor microenvironment of endometrial cancer. 
Aging (Albany NY). 2020; 12:3371–87. 

 https://doi.org/10.18632/aging.102817 
PMID:32074080 

20. Ge PL, Li SF, Wang WW, Li CB, Fu YB, Feng ZK,  
Li L, Zhang G, Gao ZQ, Dang XW, Wu Y. Prognostic 
values of immune scores and immune 
microenvironment-related genes for hepatocellular 
carcinoma. Aging (Albany NY). 2020; 12:5479–99. 

 https://doi.org/10.18632/aging.102971   
PMID:32213661 

21. Li J, Li X, Zhang C, Zhang C, Wang H. A signature of 
tumor immune microenvironment genes associated 
with the prognosis of non-small cell lung cancer. Oncol 
Rep. 2020; 43:795–806. 

 https://doi.org/10.3892/or.2020.7464 PMID:32020214 

22. Yang S, Liu T, Nan H, Wang Y, Chen H, Zhang X, Zhang 
Y, Shen B, Qian P, Xu S, Sui J, Liang G. Comprehensive 
analysis of prognostic immune-related genes in the 
tumor microenvironment of cutaneous melanoma. J 
Cell Physiol. 2020; 235:1025–35. 

 https://doi.org/10.1002/jcp.29018 PMID:31240705 

23. Pan XB, Lu Y, Huang JL, Long Y, Yao DS. Prognostic 
genes in the tumor microenvironment in cervical 
squamous cell carcinoma. Aging (Albany NY). 2019; 
11:10154–66. 

 https://doi.org/10.18632/aging.102429 
PMID:31740624 

24. Shi YJ, Zhao QQ, Liu XS, Dong SH, E JF, Li X, Liu C, Wang 
H. Toll-like receptor 4 regulates spontaneous intestinal 
tumorigenesis by up-regulating IL-6 and GM-CSF. J Cell 
Mol Med. 2020; 24:385–97. 

 https://doi.org/10.1111/jcmm.14742 PMID:31650683 

25. Zabel BA, Zuniga L, Ohyama T, Allen SJ, Cichy J, Handel 
TM, Butcher EC. Chemoattractants, extracellular 
proteases, and the integrated host defense response. 
Exp Hematol. 2006; 34:1021–32. 

 https://doi.org/10.1016/j.exphem.2006.05.003 
PMID:16863908 

26. De Paepe B, Creus KK, De Bleecker JL. Chemokines in 
idiopathic inflammatory myopathies. Front Biosci. 
2008; 13:2548–77. 

 https://doi.org/10.2741/2866  
PMID:17981734 

27. Treeck O, Buechler C, Ortmann O. Chemerin and 
cancer. Int J Mol Sci. 2019; 20:3750. 

 https://doi.org/10.3390/ijms20153750 
PMID:31370263 

28. Hembruff SL, Cheng N. Chemokine signaling in cancer: 
implications on the tumor microenvironment and 
therapeutic targeting. Cancer Ther. 2009; 7:254–67. 

 PMID:20651940 

29. Jiang ZT, Han Y, Liu XY, Lv LY, Pan JH, Liu CD. Tripterine 
restrains the aggressiveness of hepatocellular 
carcinoma cell via regulating miRNA-532-5p/CXCL2 
axis. Onco Targets Ther. 2020; 13:2973–85. 

 https://doi.org/10.2147/OTT.S238074 PMID:32308429 

30. Ding J, Xu K, Zhang J, Lin B, Wang Y, Yin S, Xie H, Zhou L, 
Zheng S. Overexpression of CXCL2 inhibits cell 
proliferation and promotes apoptosis in hepatocellular 
carcinoma. BMB Rep. 2018; 51:630–35. 

 https://doi.org/10.5483/BMBRep.2018.51.12.140 
PMID:30293547 

31. Gong B, Kao Y, Zhang C, Sun F, Gong Z, Chen J. 
Identification of hub genes related to carcinogenesis 
and prognosis in colorectal cancer based on integrated 
bioinformatics. Mediators Inflamm. 2020; 
2020:5934821. 

 https://doi.org/10.1155/2020/5934821 
PMID:32351322 

32. Zeng YJ, Lai W, Wu H, Liu L, Xu HY, Wang J, Chu ZH. 
Neuroendocrine-like cells -derived CXCL10 and CXCL11 
induce the infiltration of tumor-associated 
macrophage leading to the poor prognosis of 
colorectal cancer. Oncotarget. 2016; 7:27394–407. 

 https://doi.org/10.18632/oncotarget.8423 
PMID:27034164 

33. Wang P, Yang X, Xu W, Li K, Chu Y, Xiong S. Integrating 
individual functional moieties of CXCL10 and CXCL11 
into a novel chimeric chemokine leads to synergistic 
antitumor effects: a strategy for chemokine-based 
multi-target-directed cancer therapy. Cancer Immunol 
Immunother. 2010; 59:1715–26. 

 https://doi.org/10.1007/s00262-010-0901-6 
PMID:20706716 

34. Oliveira-Neto HH, Silva ET, Leles CR, Mendonça EF, de 
Cássia Alencar R, Silva TA, Batista AC. Involvement of 
CXCL12 and CXCR4 in lymph node metastases and 
development of oral squamous cell carcinomas. 
Tumour Biol. 2008; 29:262–71. 

 https://doi.org/10.1159/000152944 PMID:18781098 

35. Kleer CG, Bloushtain-Qimron N, Chen YH, Carrasco D, 
Hu M, Yao J, Kraeft SK, Collins LC, Sabel MS, Argani P, 
Gelman R, Schnitt SJ, Krop IE, Polyak K. Epithelial and 
stromal cathepsin K and CXCL14 expression in breast 
tumor progression. Clin Cancer Res. 2008; 14:5357–67. 

 https://doi.org/10.1158/1078-0432.CCR-08-0732 
PMID:18765527 

https://doi.org/10.1002/cam4.2774
https://pubmed.ncbi.nlm.nih.gov/31856409
https://doi.org/10.18632/aging.102817
https://pubmed.ncbi.nlm.nih.gov/32074080
https://doi.org/10.18632/aging.102971
https://pubmed.ncbi.nlm.nih.gov/32213661
https://doi.org/10.3892/or.2020.7464
https://pubmed.ncbi.nlm.nih.gov/32020214
https://doi.org/10.1002/jcp.29018
https://pubmed.ncbi.nlm.nih.gov/31240705
https://doi.org/10.18632/aging.102429
https://pubmed.ncbi.nlm.nih.gov/31740624
https://doi.org/10.1111/jcmm.14742
https://pubmed.ncbi.nlm.nih.gov/31650683
https://doi.org/10.1016/j.exphem.2006.05.003
https://pubmed.ncbi.nlm.nih.gov/16863908
https://doi.org/10.2741/2866
https://pubmed.ncbi.nlm.nih.gov/17981734
https://doi.org/10.3390/ijms20153750
https://pubmed.ncbi.nlm.nih.gov/31370263
https://pubmed.ncbi.nlm.nih.gov/20651940
https://doi.org/10.2147/OTT.S238074
https://pubmed.ncbi.nlm.nih.gov/32308429
https://doi.org/10.5483/BMBRep.2018.51.12.140
https://pubmed.ncbi.nlm.nih.gov/30293547
https://doi.org/10.1155/2020/5934821
https://pubmed.ncbi.nlm.nih.gov/32351322
https://doi.org/10.18632/oncotarget.8423
https://pubmed.ncbi.nlm.nih.gov/27034164
https://doi.org/10.1007/s00262-010-0901-6
https://pubmed.ncbi.nlm.nih.gov/20706716
https://doi.org/10.1159/000152944
https://pubmed.ncbi.nlm.nih.gov/18781098
https://doi.org/10.1158/1078-0432.CCR-08-0732
https://pubmed.ncbi.nlm.nih.gov/18765527


 

www.aging-us.com 26112 AGING 

36. Olsen AK, Coskun M, Bzorek M, Kristensen MH, 
Danielsen ET, Jørgensen S, Olsen J, Engel U, Holck S, 
Troelsen JT. Regulation of APC and AXIN2 expression 
by intestinal tumor suppressor CDX2 in colon cancer 
cells. Carcinogenesis. 2013; 34:1361–69. 

 https://doi.org/10.1093/carcin/bgt037 
PMID:23393221 

37. Luke JJ, Bao R, Sweis RF, Spranger S, Gajewski TF. 
WNT/β-catenin Pathway Activation Correlates with 
Immune Exclusion across Human Cancers. Clin Cancer 
Res. 2019; 25:3074–83. 

 https://doi.org/10.1158/1078-0432.CCR-18-1942 
PMID:30635339 

38. Barbara G, Xing Z, Hogaboam CM, Gauldie J, Collins 
SM. Interleukin 10 gene transfer prevents 
experimental colitis in rats. Gut. 2000; 46:344–9. 

 https://doi.org/10.1136/gut.46.3.344 PMID:10673295 

39. Hogaboam CM, Vallance BA, Kumar A, Addison CL, 
Graham FL, Gauldie J, Collins SM. Therapeutic effects 
of interleukin-4 gene transfer in experimental 
inflammatory bowel disease. J Clin Invest. 1997; 
100:2766–76. 

 https://doi.org/10.1172/JCI119823 PMID:9389741 

40. Chvatchko Y, Hoogewerf AJ, Meyer A, Alouani S, 
Juillard P, Buser R, Conquet F, Proudfoot AE, Wells TN, 
Power CA. A key role for CC chemokine receptor 4 in 
lipopolysaccharide-induced endotoxic shock. J Exp 
Med. 2000; 191:1755–64. 

 https://doi.org/10.1084/jem.191.10.1755 
PMID:10811868 

41. Matsukawa A, Hogaboam CM, Lukacs NW, Lincoln PM, 
Evanoff HL, Kunkel SL. Pivotal role of the CC chemokine, 
macrophage-derived chemokine, in the innate immune 
response. J Immunol. 2000; 164:5362–68. 

 https://doi.org/10.4049/jimmunol.164.10.5362 
PMID:10799899 

42. Yan H, Kamiya T, Suabjakyong P, Tsuji NM. Targeting C-
Type Lectin Receptors for Cancer Immunity. Front 
Immunol. 2015; 6:408. 

 https://doi.org/10.3389/fimmu.2015.00408 
PMID:26379663 

43. Zizzari IG, Napoletano C, Battisti F, Rahimi H, 
Caponnetto S, Pierelli L, Nuti M, Rughetti A. MGL 
Receptor and Immunity: When the Ligand Can Make 
the Difference. J Immunol Res. 2015; 2015:450695. 

 https://doi.org/10.1155/2015/450695 PMID:26839900 

44. van Kooyk Y, Ilarregui JM, van Vliet SJ. Novel insights 
into the immunomodulatory role of the dendritic cell 
and macrophage-expressed C-type lectin MGL. 
Immunobiology. 2015; 220:185–92. 

 https://doi.org/10.1016/j.imbio.2014.10.002 
PMID:25454488 

45. Eggink LL, Roby KF, Cote R, Kenneth Hoober J. An 
innovative immunotherapeutic strategy for ovarian 
cancer: CLEC10A and glycomimetic peptides. J 
Immunother Cancer. 2018; 6:28. 

 https://doi.org/10.1186/s40425-018-0339-5 
PMID:29665849 

46. Ito K, Liu Q, Salto-Tellez M, Yano T, Tada K, Ida H, 
Huang C, Shah N, Inoue M, Rajnakova A, Hiong KC, Peh 
BK, Han HC, et al. RUNX3, a novel tumor suppressor, is 
frequently inactivated in gastric cancer by protein 
mislocalization. Cancer Res. 2005; 65:7743–50. 

 https://doi.org/10.1158/0008-5472.CAN-05-0743 
PMID:16140942 

47. Li QL, Kim HR, Kim WJ, Choi JK, Lee YH, Kim HM, Li LS, 
Kim H, Chang J, Ito Y, Youl Lee K, Bae SC. 
Transcriptional silencing of the RUNX3 gene by CpG 
hypermethylation is associated with lung cancer. 
Biochem Biophys Res Commun. 2004; 314:223–28. 

 https://doi.org/10.1016/j.bbrc.2003.12.079  
PMID:14715269 

48. Salto-Tellez M, Peh BK, Ito K, Tan SH, Chong PY, Han 
HC, Tada K, Ong WY, Soong R, Voon DC, Ito Y. RUNX3 
protein is overexpressed in human basal cell 
carcinomas. Oncogene. 2006; 25:7646–9. 

 https://doi.org/10.1038/sj.onc.1209739 
PMID:16767156 

49. Tsunematsu T, Kudo Y, Iizuka S, Ogawa I, Fujita T, 
Kurihara H, Abiko Y, Takata T. RUNX3 has an oncogenic 
role in head and neck cancer. PLoS One. 2009; 4:e5892. 

 https://doi.org/10.1371/journal.pone.0005892 
PMID:19521519 

50. Lee CW, Chuang LS, Kimura S, Lai SK, Ong CW, Yan B, 
Salto-Tellez M, Choolani M, Ito Y. RUNX3 functions as 
an oncogene in ovarian cancer. Gynecol Oncol. 2011; 
122:410–7. 

 https://doi.org/10.1016/j.ygyno.2011.04.044 
PMID:21612813 

51. Kappel S, Stokłosa P, Hauert B, Ross-Kaschitza D, 
Borgström A, Baur R, Galván JA, Zlobec I, Peinelt C. 
TRPM4 is highly expressed in human colorectal tumor 
buds and contributes to proliferation, cell cycle, and 
invasion of colorectal cancer cells. Mol Oncol. 2019; 
13:2393–405. 

 https://doi.org/10.1002/1878-0261.12566 
PMID:31441200 

52. Hassannia H, Ghasemi Chaleshtari M, Atyabi F, 
Nosouhian M, Masjedi A, Hojjat-Farsangi M, Namdar A, 
Azizi G, Mohammadi H, Ghalamfarsa G, Sabz G, 
Hasanzadeh S, Yousefi M, Jadidi-Niaragh F. Blockage of 
immune checkpoint molecules increases T-cell priming 
potential of dendritic cell vaccine. Immunology. 2020; 
159:75–87. 

 https://doi.org/10.1111/imm.13126 PMID:31587253 

https://doi.org/10.1093/carcin/bgt037
https://pubmed.ncbi.nlm.nih.gov/23393221
https://doi.org/10.1158/1078-0432.CCR-18-1942
https://pubmed.ncbi.nlm.nih.gov/30635339
https://doi.org/10.1136/gut.46.3.344
https://pubmed.ncbi.nlm.nih.gov/10673295
https://doi.org/10.1172/JCI119823
https://pubmed.ncbi.nlm.nih.gov/9389741
https://doi.org/10.1084/jem.191.10.1755
https://pubmed.ncbi.nlm.nih.gov/10811868
https://doi.org/10.4049/jimmunol.164.10.5362
https://pubmed.ncbi.nlm.nih.gov/10799899
https://doi.org/10.3389/fimmu.2015.00408
https://pubmed.ncbi.nlm.nih.gov/26379663
https://doi.org/10.1155/2015/450695
https://pubmed.ncbi.nlm.nih.gov/26839900
https://doi.org/10.1016/j.imbio.2014.10.002
https://pubmed.ncbi.nlm.nih.gov/25454488
https://doi.org/10.1186/s40425-018-0339-5
https://pubmed.ncbi.nlm.nih.gov/29665849
https://doi.org/10.1158/0008-5472.CAN-05-0743
https://pubmed.ncbi.nlm.nih.gov/16140942
https://doi.org/10.1016/j.bbrc.2003.12.079
https://pubmed.ncbi.nlm.nih.gov/14715269
https://doi.org/10.1038/sj.onc.1209739
https://pubmed.ncbi.nlm.nih.gov/16767156
https://doi.org/10.1371/journal.pone.0005892
https://pubmed.ncbi.nlm.nih.gov/19521519
https://doi.org/10.1016/j.ygyno.2011.04.044
https://pubmed.ncbi.nlm.nih.gov/21612813
https://doi.org/10.1002/1878-0261.12566
https://pubmed.ncbi.nlm.nih.gov/31441200
https://doi.org/10.1111/imm.13126
https://pubmed.ncbi.nlm.nih.gov/31587253


 

www.aging-us.com 26113 AGING 

53. Fiegle E, Doleschel D, Koletnik S, Rix A, Weiskirchen R, 
Borkham-Kamphorst E, Kiessling F, Lederle W. Dual 
CTLA-4 and PD-L1 blockade inhibits tumor growth and 
liver metastasis in a highly aggressive orthotopic 
mouse model of colon cancer. Neoplasia. 2019; 
21:932–44. 

 https://doi.org/10.1016/j.neo.2019.07.006 
PMID:31412307 

54. Kieffer Y, Hocine HR, Gentric G, Pelon F, Bernard C, 
Bourachot B, Lameiras S, Albergante L, Bonneau C, 
Guyard A, Tarte K, Zinovyev A, Baulande S, et al. Single-
cell analysis reveals fibroblast clusters linked to 
immunotherapy resistance in cancer. Cancer Discov. 
2020; 10:1330–51. 

 https://doi.org/10.1158/2159-8290.CD-19-1384 
PMID:32434947 

55. Esmaily M, Masjedi A, Hallaj S, Nabi Afjadi M, 
Malakotikhah F, Ghani S, Ahmadi A, Sojoodi M, 
Hassannia H, Atyabi F, Namdar A, Azizi G, Ghalamfarsa 
G, Jadidi-Niaragh F. Blockade of CTLA-4 increases anti-
tumor response inducing potential of dendritic cell 
vaccine. J Control Release. 2020; 326:63–74. 

 https://doi.org/10.1016/j.jconrel.2020.06.017 
PMID:32580042 

56. Hothorn T, Zeileis A. Generalized maximally selected 
statistics. Biometrics. 2008; 64:1263–9. 

 https://doi.org/10.1111/j.1541-0420.2008.00995.x 
PMID:18325074 

57. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, 
Smyth GK. Limma powers differential expression 
analyses for RNA-sequencing and microarray studies. 
Nucleic Acids Res. 2015; 43:e47. 

 https://doi.org/10.1093/nar/gkv007 PMID:25605792 

58. Reiner A, Yekutieli D, Benjamini Y. Identifying 
differentially expressed genes using false discovery 
rate controlling procedures. Bioinformatics. 2003; 
19:368–75. 

 https://doi.org/10.1093/bioinformatics/btf877 
PMID:12584122 

59. Dennis G Jr, Sherman BT, Hosack DA, Yang J, Gao W, 
Lane HC, Lempicki RA. DAVID: Database for 
Annotation, Visualization, and Integrated Discovery. 
Genome Biol. 2003; 4:P3. 

 https://doi.org/10.1186/gb-2003-4-5-p3 
PMID:12734009 

60. Kanehisa M, Furumichi M, Tanabe M, Sato Y, 
Morishima K. KEGG: new perspectives on genomes, 
pathways, diseases and drugs. Nucleic Acids Res. 2017; 
45:D353–D361. 

 https://doi.org/10.1093/nar/gkw1092 PMID:27899662 

61. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, 
Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, 
Harris MA, Hill DP, Issel-Tarver L, et al, and The Gene 
Ontology Consortium. Gene ontology: tool for the 
unification of biology. The gene ontology consortium. 
Nat Genet. 2000; 25:25–29. 

 https://doi.org/10.1038/75556  
PMID:10802651 

62. Motakis E, Ivshina AV, Kuznetsov VA. Data-driven 
approach to predict survival of cancer patients: 
estimation of microarray genes’ prediction significance 
by Cox proportional hazard regression model. IEEE Eng 
Med Biol Mag. 2009; 28:58–66. 

 https://doi.org/10.1109/MEMB.2009.932937 
PMID:19622426 

63. Alba AC, Agoritsas T, Walsh M, Hanna S, Iorio A, 
Devereaux PJ, McGinn T, Guyatt G. Discrimination and 
calibration of clinical prediction models: users’ guides 
to the medical literature. JAMA. 2017; 318:1377–84. 

 https://doi.org/10.1001/jama.2017.12126 
PMID:29049590 

64. Aggarwal H, Sheffield KM, Li L, Lenis D, Sorg R, Barzi A, 
Miksad R. Primary tumor location and survival in 
colorectal cancer: a retrospective cohort study. World J 
Gastrointest Oncol. 2020; 12:405–23. 

 https://doi.org/10.4251/wjgo.v12.i4.405 
PMID:32368319 

   

https://doi.org/10.1016/j.neo.2019.07.006
https://pubmed.ncbi.nlm.nih.gov/31412307
https://doi.org/10.1158/2159-8290.CD-19-1384
https://pubmed.ncbi.nlm.nih.gov/32434947
https://doi.org/10.1016/j.jconrel.2020.06.017
https://pubmed.ncbi.nlm.nih.gov/32580042
https://doi.org/10.1111/j.1541-0420.2008.00995.x
https://pubmed.ncbi.nlm.nih.gov/18325074
https://doi.org/10.1093/nar/gkv007
https://pubmed.ncbi.nlm.nih.gov/25605792
https://doi.org/10.1093/bioinformatics/btf877
https://pubmed.ncbi.nlm.nih.gov/12584122
https://doi.org/10.1186/gb-2003-4-5-p3
https://pubmed.ncbi.nlm.nih.gov/12734009
https://doi.org/10.1093/nar/gkw1092
https://pubmed.ncbi.nlm.nih.gov/27899662
https://doi.org/10.1038/75556
https://pubmed.ncbi.nlm.nih.gov/10802651
https://doi.org/10.1109/MEMB.2009.932937
https://pubmed.ncbi.nlm.nih.gov/19622426
https://doi.org/10.1001/jama.2017.12126
https://pubmed.ncbi.nlm.nih.gov/29049590
https://doi.org/10.4251/wjgo.v12.i4.405
https://pubmed.ncbi.nlm.nih.gov/32368319


 

www.aging-us.com 26114 AGING 

SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 

 

 

 
 

Supplementary Figure 1. Cutoff values for high and low immune/stromal scores in TCGA. (A) No significant differences in the 

distribution of immune scores among different lymph node, tumor invasion, race, and histology classification groups. (B) No significant 
differences in the distribution of stromal scores among different tumor stage, metastasis, lymph node, and tumor invasion groups. (C) An 
illustration of optimal cutoff identification for immune scores. The scatter plot shows the standardized log-rank statistic value for each 
corresponding expression cutoff. The optimal cutoff with the maximum selected log-rank statistic is marked with a vertical dashed line. The 
histogram shows the density distribution for low and high immune score groups divided by the optimal cutoff. (D) An illustration of optimal 
cutoff identification for stromal scores. 
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Supplementary Figure 2. Eighteen DEGs were identified by a LASSO regression analysis. (A) LASSO coefficient profiles of the TME-

related prognostic DEGs. (B) Partial likelihood deviance of different numbers of variables revealed by the LASSO regression model. 
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Supplementary Figure 3. Kaplan-Meier survival curves and log-rank tests of six prognosis genes in TCGA and GEO. (A) Kaplan-

Meier plots of overall survival for patients from TCGA, grouped by expression of six prognosis genes, AXIN2, CCL22, CLEC10A, CRIP2, RUNX3, 
and TRPM5. (B) Kaplan-Meier plots of overall survival for patients from GEO, grouped by expression of six prognosis genes, AXIN2, CCL22, 
CLEC10A, CRIP2, RUNX3, and TRPM5. 
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Supplementary Figure 4. Boxplots and survival analysis for correlation test between clinical characteristics and IRG signature 
in the TCGA. (A) Age <65 years and age ≥65 years. (B) Female and Male. (C) White race and other race. (D) Left site and right 
site. (E) Adenocarcinoma and other histological type. (F) Stage I/II and stage III/IV. 

 
 

 
 

Supplementary Figure 5. Tumor mutation burden and mutation distribution of all colon cancer patients. 
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Supplementary Figure 6. Immune infiltrations of high-risk and low-risk groups in TCGA. (A) Relative proportion of immune 

infiltration in high-risk and low-risk groups. (B) Heat map of 22 immune cell proportions in high- and low-risk groups. 
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Supplementary Tables 
 

 

Supplementary Table 1. The clinical characteristics in TCGA [n (%)]. 

Variables TCGA cohort (N=415) GEO cohort (N=519) 

Age   

<65 157(37.8) 192(37.0) 

≥65 258(62.2) 327(63.0) 

Gender   

male 221(53.3) 233(44.9) 

female 194(46.8) 286(55.1) 

Race   

White 192(46.3)  

Others 223(53.7)  

Tumor invasion   

T1 9(2.2) 11(2.1) 

T2 72(17.4) 43(8.3) 

T3 285(68.7) 337(64.9) 

T4 49(11.8) 105(20.2) 

Unknown  23(4.4) 

Metastasis   

M0 317(76.4) 468(90.2) 

M1 60(14.5) 30(5.8) 

Unknown 38(9.2) 21(4.0) 

Lymph node   

N0 245(59.0) 281(54.1) 

N1 98(23.6) 124(23.9) 

N2 72(17.4) 85(16.4) 

N3  5(1.0) 

Unknown  24(4.6) 

Pathological stage   

Stage I 73(17.6) 36(6.9) 

Stage II 164(39.5) 253(48.7) 

Stage III 118(28.4) 200(38.6) 

Stage IV 60(14.5) 30(5.8) 

Tumor location   

Left 125(30.1) 310(59.7) 

Right 186(44.8) 209(40.3) 

Unknown 104(25.1)  

Histological classification   

Adenocarcinoma 351(84.6)  

Others 64(15.4)  
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Supplementary Table 2. Numbers of mutations and numbers of patients with mutations in high- and low-risk groups. 

Pathway 
No. of mutations 

 
No. of patients with mutations(%) 

high-risk low-risk 
 

high-risk low-risk P 

RTK-RAS 81 78 
 

151(85.3%) 135(75.4%) 0.019 
WNT 64 61 

 
164(92.7%) 161(89.9%) 0.364 

NOTCH 62 61 
 

103(58.2%) 81(45.3%) 0.015 
Hippo 37 31 

 
104(58.8%) 96(53.6%) 0.330 

PI3K 28 23 
 

96(54.2%) 90(50.3%) 0.455 

MYC 13 10 
 

39(22%) 18(10.1%) 0.002 
Cell-Cycle 10 6 

 
30(16.9%) 8(4.5%) <0.001 

TGF-Beta 7 7 
 

70(39.5%) 46(25.7%) 0.005 
TP53 6 6 

 
115(65%) 113(63.1%) 0.717 

NRF2 3 2 
 

13(7.3%) 6(3.4%) 0.094 

 

 

 


