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One of the major therapeutic challenges for hepatocellular carcinoma (HCC), the most form of primary 
liver cancer, is how to overcome drug resistance. Due to the high failure rate of systemic therapy in treating 
advanced HCC patients and the increasing recurrence rate, HCC is a highly lethal malignancy. Primary 
and acquired drug resistance are major contributing factors to the patients with advanced HCC who do 
not respond effectively to long-term systemic therapy. Therefore, it is essential to look into the molecular 
processes that lead to drug resistance. Different studies have indicated that epithelial-to-mesenchymal 
transition (EMT) plays a critical part in the emergence of drug resistance. Several signaling pathways 
regulate this phenomenon. This review primarily concentrates on drug resistance triggered by EMT, 
especially in the context of HCC. The key signaling pathways that cause drug resistance in HCC, including 
transforming growth factor-β and epidermal growth factor receptor signaling, liver cancer stem cells, 
and noncoding RNAs, are highlighted in the present study, along with the most recent molecular targets 
discovered to prevent drug resistance. These targets could help develop novel and combinatory HCC 
therapy approaches. Therefore, this review aims to provide both the latest findings on molecular basis 
and potential solutions for HCC drug resistance.

Introduction

   Among primary liver cancers, hepatocellular carcinoma (HCC) 
is the most prevalent type [  1 ], which has the fourth leading 
cause of cancer-related mortality worldwide [  2 ]. It is estimated 
that by 2045, the global liver cancer death rate would be around 
71.6% [  3 ]. Further, HCC has a relative 5-year survival rate of 
only 18%, which emphasizes its poor prognosis [  4 ]. The risk 
factors for HCC encompass chronic infection with hepatitis 
B (HBV) and hepatitis C (HCV) viruses, alcohol addiction, 

nonalcoholic fatty liver disease, diabetes, obesity, tobacco use, 
hereditary hemochromatosis, and contact with dietary con-
taminants like aflatoxins and aristolochic acid [  5 –  7 ]. Current 
therapeutic approaches encompass surgical resection, liver 
transplantation radiofrequency ablation, transarterial chemo-
embolization, microwave ablation, and rarely systemic chemo-
therapy [  8 ]. HCC patients frequently have treatment resistance, 
especially those with advanced or metastatic cancer, even if 
these treatments initially aid in treating the illness [  9 ,  10 ]. There 
are different mechanisms of chemoresistance that cause the 
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high relapses after chemotherapy and targeted molecular ther-
apy of HCC. These mechanisms include drug uptake and export, 
drug metabolism, changes in drug targets, balance between pro-
survival and pro-apoptotic factors, DNA repairing, adaptation to 
tumor microenvironment, and phenotypic transition. Epithelial-
to-mesenchymal transition (EMT) is one of the important mecha-
nisms that cause chemoresistance in HCC [  11 ,  12 ]. Mesenchymal 
phenotype that epithelial cells acquire during EMT change their 
ability to migrate and invade, produce cancer stem cells (CSCs), 
promote metastasis, and cause resistance to treatment [  13 ]. This 
review presents the mechanisms of EMT that cause drug resis-
tance in HCC, helping to understand the generation of treat-
ment resistance, and contains potential EMT-targeted therapies 
for HCC.   

EMT
   The EMT is a well-preserved cellular process in which stationary, 
polarized epithelial cells shed their cell polarity and intercellular 
adhesion, transforming into motile mesenchymal cells with 
enhanced migratory and invasive capabilities. Importantly, the 
mesenchymal-to-epithelial transition (MET) mechanism allows 
mesenchymal cells to return to an epithelial phenotype. This 
indicates that EMT is not irreversible [  14 –  16 ]. EMT takes place 
across various physiological and pathological contexts, such as 
embryonic development, wound repair, tissue fibrosis, and can-
cer progression [  17 ]. In cancer pathogenesis, EMT is associated 
with initiation and progression of tumor, development of resis-
tance to conventional therapies, and metastasis [ 14 ]. A dynamic 
process known as epithelial–mesenchymal plasticity (EMP) 
includes the transformation of epithelial cells into mesenchymal 
cells and vice versa. Gene expression alterations, decreased cell–
cell adhesion, and increased migratory and invasive capabilities 
are characteristics of this transition. EMP is crucial for normal 
physiological functions including wound healing and embryonic 
development, but it also plays a major role in the progression 
and metastasis of cancer. Cancer cells’ fitness is enhanced by 
EMP both during tumor growth and in response to therapies. 
Several studies indicate that dynamic changes in epithelial/mes-
enchymal states lead to the formation of heterogeneous tumor 
cell populations with different drug sensitivities. Recent studies 
indicate that hybrid epithelial/mesenchymal tumor cells have a 
remarkable correlation with resistance to therapy, presumably 
as a result of their enhanced capacity to survive a variety of thera-
peutic stressors [  18 –  20 ].  

Microenvironment drivers of the EMT
   Cancer-associated fibroblasts (CAFs), tumor-associated mac-
rophages (TAMs), any changes in the content of extracellular 
matrix (ECM), hypoxia, and immune and inflammatory cells 
are examples of EMT-related variables in the tumor microen-
vironment. These factors have remarkable important impact 
on the development of therapy resistance and could be potential 
therapeutic targets in future studies [ 14 ,  21 ]. Figure  1  summa-
rizes microenvironment drivers of the EMT and their related 
mechanisms.        

   Hypoxia and induction of hypoxia-inducible factor-1α (HIF- 
1α) are important microenvironmental factors that up-regulate 
several EMT regulators, including Snail, Twist, and Zeb1. By 
directly interacting with the hypoxia-response element (HRE) in 
the TWIST proximal promoter, HIF-1 controls the expression of 
TWIST. EMT and metastatic characteristics were reversed by 

small interfering RNA (siRNA)-mediated suppression of TWIST 
in HIF-1 overexpressing or hypoxic cells [  22 ,  23 ]. HIF-1 may have 
an effect by interacting with other variables. For example, HIF-1 
interacts with components of the transforming growth factor 
(TGF) family, which are also powerful inducers of EMT [  24 ].

   The ECM, a 3D structure surrounding cells in a distinct 
environment, serves as a vital part of the tumor microenvi-
ronment, offering both physical and biochemical support to 
the cells [  25 ]. ECM structural and functional alterations, 
including proteoglycan expression modifications, collagen 
interactome reorganization, macromolecule proteolysis, and 
integrin activations, drive EMT [  26 ,  27 ]. The majority of avail-
able treatments targeting EMT focus on blocking upstream 
inducers of EMT. Several studies have shown that it is possible 
to target the ECM, several ECM stiffness regulators, different 
mechanosensors, and mechanotransducers. Several inhibitors 
targeting CD44, DDR, LOX/LOX2, integrins, and FAK have 
been established, and in preclinical studies, some of these 
inhibitors have revealed anticancer properties [ 21 ,  28 –  32 ].

   EMT can be triggered and maintained by inflammatory cells 
and their secretome [  33 ,  34 ]. Within the tumor microenviron-
ment, TAMs comprise the biggest group of nontumor cells [  35 ]. 
TAMs are macrophages that reside in the tumor microenviron-
ment [  36 ,  37 ]. TAMs release pro-inflammatory cytokines like 
tumor necrosis factor-α (TNF-α), TGF-β, interleukin-1β (IL-
1β), IL-6, CCL5, CCL18, and CXCL13, playing a critical role 
in both induction and sustaining EMT. TAMs use a variety of 
modes of action to activate the EMT process [  38 –  41 ]. Granulocytes 
and myeloid-derived suppressor cells, among other myeloid 
cell types, can also initiate EMT [  42 –  44 ]. The activation of EMT 
is also mediated by lymphocytes that infiltrate tumors, such as 
regulatory T cells, mainly by releasing cytokines that promote 
inflammation and other tumor-promoting cytokines [  45 ].

   CAFs, myeloid-derived cells (mostly macrophages), and 
endothelial cells are the most common nontumor cells in the 
tumor milieu [  46 ]. By promoting EMT-related processes such 
as remodeling the ECM, altering tumor phenotype, and influ-
encing other cells within the tumor microenvironment, CAFs 
drive cancer progression. These activities are enabled by soluble 
factors and cellular connections between CAFs and other stro-
mal cells or tumor cells [  47 –  49 ]. TGF-β and pro-inflammatory 
cytokines are examples of EMT-enhancing factors generated 
by CAFs [  48 ,  50 ]. Further, multiple studies reveal that there is 
potential to treat cancer with therapeutic targeting of CAF-
stimulated EMT. Several drugs have been demonstrated to 
inhibit CAF-stimulated EMT by impairing the IL-6/IL-6R sig-
naling, such as cucurbitacin I (JSI–124), tocilizumab, and sil-
tuximab [  51 –  53 ].

   EMT is also controlled by microRNAs (miRNAs). These sub-
stances either down-regulate EMT-related transcription factors 
or, conversely, operate as working communicators between them 
to regulate the process of EMT [  54 ]. A set of 30 miRNAs, along 
with a group of target genes, has been identified as key regulators 
of the interactions among TGF-β, Notch, and Wnt signaling 
pathways during EMT [  55 ]. MiRNAs like miR-200, miR-34, and 
miR-338-3p, among others, have been shown to play significant 
roles in governing EMT [  56 –  58 ].

   EMT is also mediated by TGF-β [  59 ], which is a multifunc-
tional cytokine formed by various cells within the tumor micro-
environment and is a key inducer of EMT, immune evasion, 
and metastasis during cancer progression [  60 ]. In the initial 
phases of tumor development, TGF-β usually inhibits tumor 
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growth. However, in advanced phases, it promotes malignancy, 
especially by acting as the main inducer of EMT, which leads 
to the tumor progressing toward metastasis and developing 
resistance to chemotherapy. Numerous EMT transcription fac-
tors, such as SNAIL1, SNAIL2, ZEB1/2, and TWIST, can be 
induced by TGF-β through SMAD or non-SMAD signaling 
pathways [ 59 ,  61 ,  62 ]. Recent studies have shown that in tumor-
bearing mice, YM101, a new bispecific antibody that targets 
TGF-β and PD-L1 concurrently, can restore immunosuppres-
sion and prevent EMT [  63 ].   

Mechanisms of EMT-induced drug resistance
   Multidrug resistance (MDR) in the context of cancer treatment 
is cancer cells’ capacity to withstand the exposure to multiple 
types of anticancer drugs [  64 ]. Evaluating the drug response of 
cancer cells before and after induction of EMT is a simple 

method to examine the basic association between drug resis-
tance and EMT. In this context, several studies prove this poten-
tial connection and imply that EMT can cause cancer cells to 
become drug-resistant [  65 ]. Growing evidence indicates that 
EMT signaling has a role in chemoresistance, immune suppres-
sion, and cancer stemness, which can lead to tumor metastasis 
[ 14 ,  66 –  69 ]. The potential molecular pathways involved in the 
connection between EMT and medication resistance are cov-
ered in the following section.  

MDR-associated molecules
   The drug response of cancer cells is directly influenced by effec-
tor molecules, including P-gp (P-glycoprotein) and BCL-2. The 
contribution of EMT to drug resistance would be supported by 
studies indicating its relationship with these direct effectors 
(Fig.  2 ) [ 65 ,  70 ]. The expression of the multidrug transporter 

Fig. 1. Microenvironment drivers of the EMT. The development of therapy resistance is significantly impacted by EMT drivers related to the tumor microenvironment, including 
cancer-associated fibroblasts (CAFs), tumor-associated macrophages (TAMs), changes in the microRNAs, hypoxic conditions, extracellular matrix (ECM), and inflammatory and 
immune cells. These factors trigger various signaling pathways, including TGF-β, TNF-α, TGF-β, IL-1β, IL-6, HIFs, NOTCH, and WNT, which induce EMT-related transcription factors.
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P-gp, an energy-dependent drug efflux pump, is the primary 
mechanism driving MDR in cultured cancer cells [  71 ,  72 ]. P-gp, 
produced in humans by the MDR1 gene, was among the earliest 
identified members of the extensive adenosine triphosphate 
(ATP)-binding cassette (ABC) transporter family, known for its 
ATP-dependent transport functions [  73 ,  74 ]. Dysfunction of ABC 
transporters is a key contributor to MDR [  75 ]. P-gp enhances 
MDR by pumping out chemotherapeutic drugs and decreasing 
their intracellular concentration. Thus far, P-gp overexpression 
has been identified in several chemoresistant cancer types [  76 ].        

   Studies showed that the RNA interference (RNAi)-mediated 
silencing of Twist1 decreased P-gp levels in HeLa cervical cancer 
cells, hindered cell efflux function, and made the cells more sensi-
tive to cisplatin therapy [  77 ]. Besides, studies of human colorectal 
cancer cells indicated that the transcriptional factor Twist drives 
both EMT and the expression of P-gp [  78 ]. Additionally, Snail 
overexpression in MCF-7 cells results in adriamycin resistance 
and a significant increase in P-gp [  79 ]. Moreover, treatment 
of colorectal cancer HCT116 cells with the CCL21 cytokine, 
which promotes chemoresistance, increased P-gp expression 
and efflux function in addition to inducing Snail overexpression 
[  80 ]. Moreover, research on cisplatin-resistant human oral 
squamous cell carcinoma cell lines revealed that MDR1 over-
expression, an increase in P-gp functional activity, increased 
expression of EMT-related markers like N-cadherin. This over-
expression resulted in increased cell migration [  81 ]. Recently, 
several studies have demonstrated that miRNAs induce cancer 
EMT and P-gp up-regulation and imply that miRNAs that regu-
late EMT contribute to P-gp alteration [ 70 ]. Since overexpres-
sion of P-gp has been observed in a number of chemoresistant 
types of cancer, several mechanisms have been proposed to 
inhibit P-gp-related MDR. These mechanisms include (a) reduc-
ing P-gp efflux activity by changing its conformation or prevent-
ing P-gp-chemotherapeutic drug binding, (b) inhibiting P-gp 
expression to reduce efflux, and (c) knocking out the ABCB1 
gene. Natural products, synthetic compounds, and biological 
techniques are examples of potential strategies that can inhibit 
P-gp [ 76 ,  82 –  88 ].

   In addition to P-gp, BCL-2 family proteins are also connected 
with EMT. According to multiple studies, the expression of the 
BCL-2 protein could inhibit apoptosis and contribute to MDR 
development. Studies suggested that BCL-2 family proteins may 
have specific functions in EMT, and some pathways might co-
regulate EMT and BCL-2 family proteins [ 65 ,  89 ,  90 ]. For instance, 
let-7c was shown to be down-regulated in lung adenocarcinoma 
cells, which led to the development of docetaxel resistance. 
Conversely, let-7c up-regulation reversed the EMT phenotype 
of the cells and suppressed endogenous Bcl-xL [  91 ]. Additionally, 
Bcl-xL overexpression has also been linked to breast cancer 
metastasis through EMT induction [  92 ].

   In prostate cancer cells, P38–mitogen-activated protein 
kinase (MAPK) activation is a key factor in inducing zoledronic 
acid resistance and developing an aggressive and invasive phe-
notype. Zoledronic acid resistance, EMT marker expression, and 
invasion are all totally reversed by P38-MAPK inhibitors. Also, 
P38 inhibitors decrease VEGF, Eotaxin-1, IL-12, matrix metal-
loproteinase-9 (MMP-9), Bcl-2, and c-Myc expression [  93 ].

   In colon cancer cells, increased TLR4 expression after che-
motherapy enhances cell survival and EMT through phosphory-
lation of GSK3β. The inhibition of apoptosis occurs through 
up-regulation of the expression of anti-apoptosis-related BCL-2 
family proteins such as BCL-2, XIAP, and survivin [  94 ]. Recent 
studies by Xu et al. [  95 ] on triple-negative breast cancer (TNBC) 
indicated that TGF-β has a key function in TNBC epirubi-
cin resistance by regulating stemness, EMT, and apoptosis. 
Remarkably, epirubicin-resistant MDA-MB-231 cells showed 
different expression levels of Bcl2, Bax, E-cadherin, N-cadherin, 
and cyclin D1. In addition, studies on estrogen receptor-positive 
(ER+) breast cancer cells revealed that TGF-β could cause 
increase in expression of c-Myb, which is necessary for the 
expression of EMT markers. Using c-Myb siRNAs to transfect 
adjusted the TGF-β-induced decrease in E-cadherin expression 
and prevented the rise of Slug and Bcl-2 expression. In the 
meantime, c-Myb-silenced TGF-β-treated ER+ cell lines had 
an increase in apoptosis caused by etoposide [  96 ]. These find-
ings suggested that c-Myc may be involved in the regulation of 

Fig. 2. MDR-associated molecules cause EMT-induced drug resistance. Studies indicate that different factors such as RNAi-mediated silencing of Twist1, Snail overexpression, 
CCL21 cytokine, natural products, BCL-2 protein, and P38 affect P-gp and EMT-induced drug resistance.
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 BCL-2 and EMT. Apart from possible co-regulation through 
alternative molecules and pathways, direct interaction between 
BCL-2 and proteins linked to EMT has also been identified [ 65 ].

   Sun et al. [  97 ,  98 ] have reported on the structural and func-
tional interactions between Twist1 and Bcl-2. It was found that 
the basic helix-loop-helix DNA-binding domain of Twist1, 
along with two distinct regions of the Bcl-2 protein, played a 
role in the interaction between Bcl-2 and Twist1. The assembly 
of the Bcl-2/Twist1 complex facilitated the nuclear transport 
of Twist1 and triggered the transcription of genes linked to 
enhanced tumor cell plasticity, metastasis, and vasculogenic 
mimicry. Furthermore, it was found that nuclear expression of 
Bcl-2 and Twist1 was associated with a low rate of survival in 
HCC patients, which was also supported by another study.   

NF-κB
   Cancer drug resistance may be regulated by nuclear factor κB 
(NF-κB). After translocating the NF-κB transcription factor 
into the nucleus, it attaches to a particular promoter region of 
apoptosis-related molecules. For instance, the expression of 
Bcl-2 is increased when active NF-κB binds to its promoter 
region. The NF-κB pathway is linked with drug resistance in 
various tumors, including gastric, breast, ovarian, colorectal, 
prostate, and other cancers. NF-κB may also have a role in 
EMT. Therefore, one of the mechanisms that links EMT to the 
drug resistance may be the NF-κB pathway (Fig.  3 ). Various 
E-cadherin transcriptional repressors are related to NF-κB and 
EMT [ 65 ,  99 –  102 ].        

   In breast cancer, the nontransformed mammary epithelial 
cell line MCF10A displayed typical mesenchymal characteris-
tics, including reduced E-cadherin and enhanced vimentin, 
ZEB1, and ZEB2, when following transfection with the P65 
subunit of NF-κB or exposure to TNF-α (a potent NF-κB 
inducer). TNF-α withdrawal from the culture medium reversed 
the EMT-like phenotype associated with decreased ZEB1, ZEB2, 
and vimentin expression and increased E-cadherin expres-
sion [  103 ]. Another study on colon cancer cells indicated 
that the isoflavone genistein can induce apoptosis and inhibit 

proliferation by reversing EMT via the Notch1/NF-κB/Slug/E-
cadherin pathway. The expression of NF-κB p65 and p-NF-κB 
p65 was significantly down-regulated by genistein. Genistein 
elicits an anti-metastasis effect through E-cadherin up-regu-
lation and down-regulation of N-cadherin, FOXC1, FOXC2, 
ZEB1, ZEB2, Snail2/slug, and TWIST1 [  104 ]. Besides, another 
study reported that oxymatrine inhibits EMT by reducing the 
activation of the NF-κB signaling pathway in colon cancer 
cells [  105 ].

   The study of Pham et al. [  106 ] on gene chip screening revealed 
that NF-κB activation increased Twist-1 and inhibited the cel-
lular destruction brought on by chemotherapy. Their study also 
revealed that the protective activity of Twist-1/2 requires the 
suppression of inhibitory phosphorylation of Bcl-2 on Ser87. 
Their findings suggest that Twist-1 and Twist-2 are crucial for 
NF-κB-dependent chemoresistance. Other research also showed 
that NF-κB was required for Twist-1-mediated EMT and that is 
combined with in vitro/in vivo models of breast carcinogenesis. 
NF-κB was required for both formation and maintenance of 
EMT and in vivo metastasis [  107 ]. Additionally, a recent study 
used a model of primary breast cancer cells to explore the link 
between paclitaxel resistance and the mesenchymal phenotype, 
along with the underlying mechanisms involved. According to 
this study, mesenchymal primary breast cancer cells exhibited 
paclitaxel resistance, which was linked to the elevated NF-κB 
p65 and IKKα/β levels. In the meantime, paclitaxel resistance in 
mesenchymal breast cancer cells was reversed by inhibiting 
NF-κB activation [  108 ]. Another recent study discovered that 
miRNA-497 overexpression prevents gemcitabine resistance, 
migration, and invasion in pancreatic CSCs by targeting NF-κB1 
[  109 ]. These studies suggest that NF-κB could regulate both drug 
resistance and EMT, and EMT might influence sensitivity to 
drugs by controlling NF-κB.   

Cancer stem cells
   CSCs, also known as tumor-initiating cells, represent a subgroup 
of cancer cells capable of self-renewal and differentiation into 
various cancer cell types when exposed to chemotherapeutic 

Fig. 3. NF-κB causes EMT-induced drug resistance. Different factors such as TNF-α, Notch1, isoflavone genistein, microRNA-497, and oxymatrine affect NF-κB pathway. Induction 
of NF-κB pathway leads to increase of mesenchymal transcription factors such as vimentin, Zeb1, and Zeb2, which leads to EMT and drug resistance.
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agents. This ability can result in drug resistance and cancer 
relapse [  110 –  112 ]. Bonnet and Dick [  113 ] made the initial dis-
covery of CSCs in 1997 when they identified a subset of leukemia 
cells with CD34+/CD38− antigenic phenotypes that could lead 
to tumor formation in nonobese diabetic/severe combined 
immunodeficient recipient mice after transplantation. Aside from 
blood cancer, CSCs have also been found in a number of solid 
cancers, such as melanoma, brain, lung, liver, pancreatic, colon, 
breast, and ovarian cancer [  114 –  121 ]. The origin of CSCs may 
vary based on the tumor type, with several theories proposing 
different sources: mutated adult stem cells, altered adult progeni-
tor cells, or differentiated cells that have acquired stem-like prop-
erties through a process of dedifferentiation [ 110 ]. Multiple cell 
surface markers, including CD133, CD24, CD44, EpCAM (epi-
thelial cell adhesion molecule), THY1, ABCB5 (ATP-binding 
cassette B5), and CD200, have been confirmed to identify popula-
tions highly enriched in CSCs [ 114 ,  118 ,  120 ,  122 ]. The selection 
of cell surface markers for CSC identification may differ accord-
ing to the specific traits and phenotypes of each cancer type. For 
example, liver cancer CSCs are frequently isolated using surface 
markers like CD133+, CD44+, CD49f+, CD90+, ABCG2, CD24+, 
and ESA [  123 ,  124 ].

   Numerous studies indicated that most cancer cells may be 
eradicated by cancer treatment; nevertheless, CSCs are enhanced 
during chemotherapy and can continue to live, proliferate, and 
trigger a cancer recurrence with greater resistance against ther-
apy. Indeed, CSCs exhibit treatment resistance across a wide 
range of cancer types [  111 , 112 ,  125 ,  126 ]. For instance, CD133+ 
CSCs in glioblastoma displayed resistance to chemotherapy 
drugs such as temozolomide, carboplatin, paclitaxel, and etopo-
side [  127 ]. In breast tumors, CSCs are implicated in contributing 
to resistance against cisplatin and paclitaxel, both in vitro and 
in vivo [  128 ,  129 ]. In the case of colorectal cancer, CSCs are 
thought to be key players in mediating resistance to a variety of 
chemotherapeutic agents [  130 –  133 ]. Additionally, in cancers 
such as ovarian, pancreatic, prostate, and small-cell lung cancer, 
CSCs play a crucial role in resistance to chemotherapeutics 
[ 125 ]. CSCs contribute to chemoresistance using different mech-
anisms. These mechanisms include EMT, MDR or detoxification 
proteins, dormancy, tumor environment, self-renewal, epigen-
etic modification, and resistance to cell death caused by DNA 
damage [ 110 ].

   Studies indicated that circulating tumor cells from patients 
with metastases co-express both EMT and stem cell markers 
[  134 ]. Additionally, EMT induction or EMT transcription fac-
tor activation results in cancer cells acquiring stem-like char-
acteristics [  135 ]. Mani et al. [  136 ] initially indicated that 
triggering EMT in immortalized human mammary epithelial 
cells (HMLEs) generated stem cell-like cells that had a CD44high/
CD24low expression pattern, which matches the antigenic pro-
file typical of both human breast CSCs and normal mammary 
epithelial stem cells. It is significant that these cells also had other 
CSC characteristics, including self-renewal and an increased 
capability to form mammospheres, which is a characteristic 
trait of mammary epithelial stem cells. Moreover, they discov-
ered that stem cell-like cells isolated from HMLE cultures had 
markers identical to those of HMLEs that underwent an EMT 
and had mammosphere formation ability. Furthermore, they 
indicated that stem-like cells extracted from mouse or human 
mammary glands, as well as mammary tumors, exhibit EMT 
markers. Remarkably, the transcription factor ZEB1, an EMT 
regulator, has a critical role in regulating stemness and developing 

chemoresistance in CSCs of malignant glioma. ZEB1 pro-
motes chemoresistance by regulating the transcription of O-6-
methylguanine DNA methyltransferase (MGMT) via miR-200c 
and C-MYB. Also, ZEB1 expression is correlated with reduced 
survival and poor temozolomide response in glioblastoma 
patients [  137 ]. A recent study on esophageal cancer cells indi-
cated that drug-resistant esophageal cancer cells had stemness 
characteristics and stem cell biomarkers and were prone to 
EMT. Additionally, drug-resistant cells displayed decreased 
expression of the epithelial protein biomarkers Claudin-1, 
ZO-1, and E-cadherin and increased expression of the mesen-
chymal protein biomarkers vimentin, N-cadherin, and the 
transcription factor β-catenin [  138 ]. Consequently, EMT pro-
motes cancer cells to acquire stem cell-like features, which 
enhance cell invasion and drug resistance [  139 ]. Various signal-
ing pathways, including the Hedgehog, Notch, Wnt, platelet-
derived growth factor (PDGF), and NF-κB signaling pathways, 
as well as miRNAs, have been recommended to participate in 
this procedure [ 65 ,  68 ,  140 –  142 ]. In TNBC cells, the sensitivity 
to cisplatin and doxorubicin was increased by silencing of 
Notch1, which suppressed the AKT pathway and led to a 
decrease in EMT [  143 ]. Recently, a variety of nanomedicine 
methods for CSC-related treatment and diagnostics have been 
established [  144 ,  145 ]. For instance, targeting CSCs using mul-
tifunctional magnetic nanoparticles through a combination of 
chemotherapy and hyperthermia has proven to be an effective 
cancer treatment strategy [  146 ]. The in vivo study exhibited 
that the miR-125b-5p nanomedicine that targets EMT and 
CSCs has successfully inhibited tumors [ 146 ]. Another nano-
medicine approach involves utilizing co-loaded liposomes 
containing cabazitaxel and the CSC inhibitor silibinin to spe-
cifically target CD44 receptors on CSCs [  147 ].   

miRNAs
   Multiple miRNAs are indicated to co-regulate drug resistance 
and EMT [  148 ]. Through direct targeting of epithelial markers, 
miRNAs can contribute to chemoresistance (Fig.  4 ) [  149 ]. 
For instance, in cervical cancer, miR-375 directly suppresses 
E-cadherin, which results in paclitaxel chemoresistance [  150 ]. 
In colorectal cancer, miR-514b-5p has pro-metastatic proper-
ties by down-regulating E-cadherin expression, thereby pro-
moting drug resistance. Interestingly, miR-514b-3p, transcribed 
from the same RNA hairpin, acts in a contrasting manner 
by reversing EMT-associated drug resistance. It enhances 
the expression of epithelial markers while reducing mesenchy-
mal marker levels, leading to decreased cell migration, invasion, 
and resistance to drugs [  151 ]. In breast cancer, the miR-106b-25 
cluster induces doxorubicin resistance by suppressing EP300, 
a transcriptional activator of E-cadherin. EP300 suppression 
promotes cells with the phenotype characteristics of cells 
undergoing EMT, including increased cell motility and invasion 
and the capacity to proliferate following doxorubicin treatment 
[  152 ]. One of the most important signaling pathways in con-
trolling EMT-associated chemoresistance is the Wnt pathway. 
By targeting on the APC/Wnt/β-catenin pathway, miR-125b 
induced the EMT process and 5-fluorouracil resistance in 
colorectal cancer. Besides, CXCL12/CXCR4 could up-regulate 
miR-125b expression [  153 ]. Furthermore, in esophageal cancer, 
miR-221 promoted 5-fluorouracil resistance through the Wnt/
β-catenin pathway by directly targeting Dickkopf-2 expression 
[  154 ]. Moreover, the tumor suppressor PTEN could inhibit 
EMT by suppressing the phosphatidylinositol 3-kinase (PI3K)/
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AKT signal. In breast cancer, miR-93 contributes to inducing 
EMT and doxorubicin resistance through PTEN suppression 
[  155 ]. In lung adenocarcinoma, miR-27a was significantly 
up-regulated in cisplatin-resistant A549/CDDP cells. miR-
27a could suppress Raf kinase inhibitory protein, which results 
in EMT induction and cisplatin resistance [  156 ].             

EMT and Drug Resistance in HCC
   The transition in cell phenotype is a crucial component leading 
to the development of chemoresistance in HCC. Recently, 
growing interest has been focused on the function of EMT 
in HCC progression, drug resistance development, and HCC 
treatment [  157 ,  158 ]. EMT causes differentiated HCC cells to 
revert to an undifferentiated or stem cell-like state, promoting 
metastasis and drug resistance [ 158 ].

   Compared to well-differentiated liver cancer cell lines (Hep3B, 
HepG2, and Huh-7), poorly differentiated cell lines (HLE, HLF, 
and SK-Hep1) exhibit a loss of E-cadherin, express mesenchymal 
markers like N-cadherin, and demonstrate increased invasiveness 
as well as resistance to sorafenib, cisplatin, and doxorubicin. 
Additionally, according to clinical observations, poorly differenti-
ated HCC is more resistant to chemotherapy and has a poor 
prognosis [  159 ,  160 ]. Moreover, EMT in HCC tumors is spatially 
heterogeneous, with diverse phenotypes and regulatory mecha-
nisms in perivascular versus hypoxic niches. Blood vessel-rich 
perivascular regions stimulate EMT, which is characterized by 
increased expression of twist and vimentin and encourages tumor 
cell intravasation and dispersion. Hypoxic tumor areas increase 
tumor aggressiveness, stemness, and resistance to treatment by 
inducing EMT via HIF-1α and associated pathways. In HCC, 
this spatial heterogeneity affects tumor growth and metastatic 
patterns. Understanding this heterogeneity is critical for gen-
erating targeted treatments that incorporate the tumor micro-
environment’s spatial context to effectively block EMT-driven 
metastasis and therapy resistance [ 23 ,  161 –  163 ]. The following 
section discusses the potential molecules or pathways respon-
sible for EMT-induced drug resistance in HCC.  

TGF-β signaling pathway
   One of the most important regulatory factors in the liver cancer 
microenvironment is TGF-β, which also has a significant regu-
latory role in the EMT. In addition, there is a strong correlation 
between the liver cancer’s multidrug resistance and TGF-β’s 
regulatory impact on the tumor microenvironment [  164 ]. 
Induction of EMT in HCC is strongly influenced by the activa-
tion of the TGF-β signaling pathway (Fig.  5 A) [  165 ]. TGF-β 
promotes β-catenin accumulation in the nucleus, resulting in 
reduced epithelial marker expression and an up-regulation of 
stemness-related markers [  166 ]. Elevated plasma levels of TGF-
β1 have been linked to a poor therapeutic response to sorafenib 
and regorafenib in patients with advanced HCC [  167 ,  168 ]. The 
relationship between activation of the TGF-β pathway in HCC, 
increasing EMT, and promoting sorafenib resistance has been 
discovered [  169 ,  170 ]. SMAD proteins are components of the 
TGF-β pathway. In HepG2 and HuH7 cells, down-regulation 
of miR-145 resulted in doxorubicin resistance by enhancing 
SMAD3 expression. Additionally, up-regulation of miR-145 
suppressed SMAD3-related EMT features, resulting in higher 
E-cadherin expression and lower vimentin levels [  171 ]. Zhou 
et al. [ 169 ] found that overexpression of SMAD2 and SMAD4 
was associated with enhanced EMT, which in turn caused a 
mesenchymal phenotype and increased resistance to doxoru-
bicin and sorafenib in both HCC patients and in vitro model. 
Furthermore, down-regulation of miR-125b, a miRNA whose 
expression is significantly reduced in HCC, has been connected 
to the development of chemoresistance in HCC cells. Shrestha 
et al. [  172 ] discovered that PD-L1 silencing and TGF-β1-
induced EMT inhibition together re-sensitize HCC cells to 
sorafenib. According to a recent study by Modi et al. [  173 ], 
sorafenib, an inhibitor of RAF kinase and VEGFR-2, can counter-
act the EMT induced by TGF-β in HepG2 cells by up-regulating 
E-cadherin and down-regulating vimentin and SNAIL. VEGFR-2 
inhibitors may thus be effective against malignant cells with 
mesenchymal characteristics. According to recent research, 
autophagy could significantly induce drug resistance in HCC 
cells through molecular pathways such as TGF-β, NF-κB, 

Fig. 4. miRNAs cause EMT-induced drug resistance. miRNAs may promote chemoresistance by directly targeting epithelial markers. Different miRNAs by affecting E-cadherin, 
PTEN, RAF kinase, and Wnt/β-catenin pathway can affect drug resistance driven by EMT.
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Beclin 1, p62, NRF2, MAPK, and noncoding RNAs [  174 ,  175 ]. 
Moreover, EMT triggered by TGF-β stimulates PI3K/AKT 
signaling, a downstream pathway that LCSC markers like CD133 
employ to control P-gp expression. This convergence on PI3K/
AKT promotes drug efflux and resistance by increasing P-gp 
transcription and activity [  176 ,  177 ].           

EGFR signaling pathways
   The EMT condition influences the responsiveness of HCC cells 
to therapies targeting the epidermal growth factor receptor 
(EGFR). Fuchs et al. [  178 ] analyzed a set of 12 HCC cell lines, 
categorizing them as epithelial or mesenchymal based on their 
levels of E-cadherin and vimentin. Their findings revealed that 
mesenchymal cell lines exhibited greater resistance to EGFR 
inhibitors compared to epithelial lines, alongside higher expres-
sion of AKT and signal transducer and activator of transcrip-
tion 3 (STAT3) and increased integrin-linked kinase levels. 
Amphiregulin, an EGFR ligand that does not appear in normal 
livers, is up-regulated in most cases of liver cancer due to 
chronic liver injury. Medication resistance, in vivo tumorigenic 
possibility, anchorage-independent growth, and proliferation 
rate were all elevated in SK-Hep1 cells overexpressing amphi-
regulin. [  179 ]. Galectin-1 (Gal-1) is another signal that could 
promote EMT by altering EGFR pathways in HCC cells. In 
HCC cells, dysregulation of Gal-1 expression overactivated the 
FAK/PI3K/AKT and H-Ras/Raf/extracellular signal-regulated 
kinase (ERK) pathways and increased the phosphorylation of 
AKT, mTOR, and p70 kinases, as well as the expression of the 
αvβ3 integrin. These pathways’ dysregulation resulted in the 

EMT induction and increased sorafenib resistance. Furthermore, 
Gal-1 overexpression in tumors is correlated with a decreased 
response to sorafenib and poor HCC survivability outcomes 
[  180 ]. Xu et al. [  181 ] reported that down-regulation of hepa-
tocellular carcinoma-related protein 1 (HCRP1) induces EGFR 
activation and EMT, which in turn enhances HCC cell migra-
tion and invasion. HCRP1 down-regulation enhanced the EMT 
phenotype in HepG2 cells through increased Snail and Twist1 
and activation of AKT phosphorylation. Recent studies indi-
cated that KIAA1199 activates the EGF/EGFR-dependent 
EMT process, which results in sorafenib tolerance and the 
metastasis of HCC (Fig.  5 B) [  182 ]. According to Jin et al. [  183 ], 
HCC cells become more sensitive to lenvatinib when EGFR 
is inhibited. The combination of the EGFR inhibitor gefitinib 
and lenvatinib has strong anti-proliferative effects in xeno-
grafted liver cancer cells, immunocompetent animal models, 
patient-derived HCC tumors in mouse models, and liver 
cancer cell lines that express EGFR. Lenvatinib with gefitinib 
produced significant clinical responses in 12 patients with 
advanced HCC who had not responded to lenvatinib treat-
ment. Following 4 to 8 weeks of combination treatment, patients 
with HCC tumors with high EGFR expression showed a partial 
response.   

Liver cancer stem cells
   According to the CSC model, a subpopulation of tumor stem 
cells in cancer drives tumor growth. This model explains a 
number of clinical observations in HCC (as well as other can-
cers), such as the inevitable recurrence of tumors following 

Fig. 5. Signaling pathways responsible for EMT-induced drug resistance in HCC. (A) TGF-β signaling pathway induces EMT by prompting β-catenin accumulation in the nucleus 
and enhancing SMAD2, SMAD4, and SMAD3 expression, which results in sorafenib and doxorubicin resistance in HCC. (B) The EGFR signaling pathway induces drug resistance 
in HCC by affecting the EMT mechanism through the FAK/PI3K/AKT and H-Ras/Raf/ERK pathways and increasing the phosphorylation of AKT, mTOR, and p70 kinases.
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successful first chemotherapy and/or radiation therapy, the 
condition of tumor dormancy, and treatment resistance [  184 ].

   The EMT process helps to create and sustain the CSC popu-
lation in a number of cancers, such as HCC, which results in 
immunological evasion and treatment resistance [  185 ]. Liver 
cancer stem cells (LCSCs) can come from two sources: (a) mature 
hepatocytes that undergo phenotypic reprogramming and 
dedifferentiation as a result of an inflammatory microenviron-
ment and mutation buildup during carcinogenesis or (b) liver 
stem cells or progenitor cells by obtaining the oncogenic muta-
tions that counteract the usual proliferation limits found in 
healthy stem cells [  186 ,  187 ]. LCSCs and cells that undergo 
EMT enhance the heterogeneity of cells within the tumor and 
have similar genetic characteristics, including elevated expres-
sion of surface glycoproteins of cell adhesion (CD44, CD133, 
CD13, CD24, CD90, EpCAM, and N-cadherin), keratin 19, alde-
hyde dehydrogenase 1A1, and transcription factors (SNAI1, 
SLUG, TWIST1, ZEB1, and ZEB2) [  188 –  190 ]. High expression 
of the CSC markers CD133 and CD90 is correlated with a poorer 
answer to sorafenib in patients with HCC [  191 ]. Furthermore, a 
mesenchymal-like phenotype and CD44 expression, associated 
with TGF-β pathway activation, are indicators of poor respon-
siveness to sorafenib in HCC cells. Fernando et al. [ 165 ]’s study 
on HCC cells in vitro and in vivo showed that mesenchymal-like 
phenotypic cells with high CD44 expression levels were resis-
tant to the cell death caused by sorafenib. However epithelial-like 
cells were more susceptible to cell death induced by sorafenib. 
High expression of CD44 and CD133 leads to overexpression 
of ABC transporters in HCC cells [  192 ,  193 ]. The increased 
expression of ABC superfamily transporters, such as ABCB1, 
ABCC1, and ABCG2, renders CD133+ CD44+ HCC cells more 
resistant to chemotherapy drugs [ 192 ]. EpCAM, related to stem-
ness gene expression, and α-fetoprotein (AFP) expression, have 
been suggested as indicators for various HCC phenotypic sub-
groups. In particular, the EpCAM+/AFP+ (hepatic stem cell-like) 
and EpCAM−/AFP+ (hepatocytic progenitor-like) groups have 
been related to induced drug resistance. This is because of 
improved cell survival, mostly caused by overactivation of the 
Wnt/β-catenin pathway [  194 ]. Furthermore, sorafenib exposure 
enriched EpCAM+ cells in HCC patient-derived cells, which 
could facilitate acquired sorafenib resistance development [  195 ]. 
Recently, Tiwari et al. [  196 ] reported that piperine has antipro-
liferative activity against CD44+/CD133+ CSCs derived from 
HepG2 cells. Piperine also induces cell cycle arrest at the G1/G0 
phase, which impairs cell cycle progression. Investigating the 
effect of piperine against the EMT induced by TGF-β in hepa-
tocarcinogenesis showed that piperine was found to be able to 
repress the epithelial marker (E-cadherin). However, it was 
unable to down-regulate the levels of vimentin and SNAIL. 
Shrestha et al. [ 185 ] discovered that CSCs derived from human 
HCC have mesenchymal characteristics with elevated expression 
of immune checkpoints. This study indicated that the combina-
tion treatment strategy using SB431542 to block TGF-β1-
induced EMT, coupled with immune checkpoint inhibition 
through PD-L1 and CD73 knockdown alongside sorafenib, 
could effectively target an invasive, drug-resistant subgroup of 
CSCs derived from HCC. It is commonly acknowledged that 
CSCs have a substantial role in both acquired and primary drug 
resistance. In order to overcome medication resistance and 
enhance the therapeutic success in HCC, hepatic CSC-targeted 
therapy is thought to be a potential approach in future applica-
tions [  197 ]. Targeting LCSC in EMT-induced drug resistance 

has several limitations. There is mounting evidence that tumor 
cells with stem cell-like traits are more resistant to traditional 
treatment methods than those without stem cell traits. The 
characteristics of CSCs, such as their plasticity, quiescence, 
CSC niches, and enhanced drug efflux activity, are closely 
related to the processes by which resistance develops and limi-
tations of treatment [  198 ].   

Noncoding RNAs
   Several studies have shown that noncoding RNAs (ncRNAs), 
such as miRNAs, long noncoding RNAs (lncRNAs), and cir-
cular RNAs (circRNAs), are key contributors to drug resistance 
in HCC [  199 ]. Some ncRNAs are involved in drug resistance 
through EMT modulation [ 186 ,  200 ]. Therefore, growing num-
ber of studies have supported the importance of interplay between 
the ncRNAs and EMT-associated resistance in HCC [  201 ,  202 ]. 
Liu et al. [  203 ] reported that miR-130a-3p regulates gemcitabine 
resistance. miR-130a-3p was down-regulated in gemcitabine-
resistant HCC (GR-HCC) cells, and miR-130a-3p overexpres-
sion inhibited cell migration and invasion. Additionally, it has 
been demonstrated that miR-130a-3p regulates EMT and cell 
invasion through Smad4 inhibition in GR-HCC cells. MiR-125b 
has been shown to counteract oxaliplatin resistance in HCC by 
down-regulating EVA1A, which in turn inhibits both autoph-
agy and EMT processes. Analysis of oxaliplatin-sensitive and 
oxaliplatin-resistant HCC cell lines revealed that miR-125b 
expression was lower in the resistant cells. Furthermore, by 
preventing cell division, migration, and EMT, miR-125b over-
expression in susceptible cells reduced resistance to oxaliplatin. 
Furthermore, cyclin D1 and N-cadherin’s down-regulations 
and E-cadherin elevation at both mRNA and protein levels are 
caused by miR-125b overexpression in resistant cells, suggesting 
that it suppresses EMT [  204 ]. Provvisiero et al. [  205 ] revealed 
that vitamin D can restore HCC cells resistant to the mTOR 
inhibitor everolimus by increasing the miR-375 expression and 
therefore decreasing the expression of multiple oncogenes 
involved in EMT. Additionally, c-MYC has been identified as 
a novel target of miR-375. These findings might provide a novel 
method to overcome mTOR inhibitor resistance in HCC treat-
ment. LncSNHG16 expression is markedly elevated in HCC 
cells and is particularly linked to HCC invasiveness and poor 
patient outcomes. SNHG16 can act as an endogenous sponge 
for miR-140-5p and increase flap endonuclease 1 (FeN1), an 
oncogene associated with many cancers. It has been demon-
strated that FeN1 silencing inhibits EMT, which prevents pro-
gression and metastasis in HCC. In conclusion, SNHG16 affects 
the EMT of HCC cells by impacting the miR-140-5p/FeN1 axis, 
which leads HCC cells to become resistant to sorafenib [  206 –  208 ]. 
In HCC cells, lncH19 expression correlates negatively with 
sorafenib sensitivity. LncH19 knockdown can increase the sus-
ceptibility of HCC cells to sorafenib by suppressing EMT. 
Remarkably, H19 can increase miR-675 expression to induce 
EMT [  209 ]. In addition to H19, it has also been demonstrated 
that other lncRNAs, such as LINC01089 and CYTOR, can tar-
get the EMT process and impact malignant features like inva-
sion, metastasis, and proliferation, which affect cancer drug 
resistance [  210 –  213 ]. According to Sun et al. [ 213 ], lncLIMT 
(LINC01089), which suppresses EMT and miR-665 expression, 
reduces sorafenib resistance and slows down tumor development 
in nude mouse models. Moreover, lncPOIR suppresses sorafenib 
sensitivity and enhances HCC development by acting as a sponge 
for miR-182-5p, inhibiting the miR-182-5p expression, and 
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inducing EMT. LncPOIR knockdown reverses the EMT and 
sensitizes HCC cells to sorafenib (Fig.  6 ) [  214 ]. According to 
Hirao et.al., miR-125b-5p is up-regulated in HCC cell lines, 
which are resistant to sorafenib, and its overexpression inhib-
its the expression of ataxin 1 (ATXN1), which causes EMT. 
Accordingly, miR-125b-5p has been shown to increase sorafenib 
resistance in vivo models as well [  215 ]. Besides, there are still 
certain issues with miRNA-based treatments, namely, the off-
target effect and the absence of an ideal delivery mechanism. 
The in vivo delivery of miRNAs remains a difficulty due to their 
fast excretion, inappropriate intracellular release, poor biostabil-
ity, endosomal escape, and immunogenicity. Additionally, stable 
therapeutic targeting is difficult since EMT is a dynamic and 
reversible process, and miRNAs implicated in EMT regulation 
may have diverse effects based on the tumor microenvironment 
and cancer stage. Moreover, certain miRNAs have dual functions 
in drug resistance and EMT. Therapeutic targeting is made more 
difficult by this contradictions [ 20 , 148 ].            

Further Innovative Strategies and  
Future Perspectives
   Targeting EMT has been shown in numerous research projects 
to aid in overcoming chemoresistance; nanotechnology and 
nanomedicine are emerging technologies as potential approaches 
to accomplish this goal. For instance, some studies address the 
possibility of using nanotechnology to prevent EMT for treating 
chemoresistant solid tumors, such as breast cancer, lung cancer, 
pancreatic cancer, glioblastoma, ovarian cancer, gastric cancer, 
and HCC [  216 ]. Additionally, novel therapeutic targets for 
overcoming drug resistance are posttranslational EMT regula-
tors including Hakin-1, FBXW7, and USP27X [ 20 ,  217 –  219 ]. 
Additionally, recent research uses pharmacogenomics and bio-
informatics to evaluate how EMT affects therapy resistance and 
to create new pharmacological approaches for the future. For 
example, according to RACIPE mathematical modeling, Twist1 

and E-cadherin have a significant negative correlation, and 
Twist1 and vimentin have a positive correlation. Also, in the 
context of EMT, Twist1 overexpression increases genomic 
instability, which leads to cellular heterogeneity and potentially 
chemoresistance [  220 ]. A variety of recent studies in different 
types of cancer have revealed a correlation between EMT and 
the regulation of certain ribosomal proteins. Certain ribosomal 
proteins could regulate cell migration and modify EMT, ultimately 
leading to chemoresistance. For instance, down-regulation of 
the ribosomal protein uL3 contributes to enhanced cell migra-
tion and an EMT that leads to chemoresistance [  221 –  224 ]. 
Another new study about protein arginine methyltransferases 
(PRMTs) suggests that they enhance the development and main-
tenance of drug-tolerant cells via numerous methods, which 
includes EMT. PRMTs are the enzymes in charge of arginine 
epigenetic methylation, which controls a number of physiologi-
cal and pathological processes. Therefore, PRMTs make appeal-
ing therapeutic targets for overcoming drug resistance to 
anti-cancer medications [  225 ]. Additionally, the possibility of 
overcoming drug resistance has been explored for novel medi-
cations that target epigenetic regulators and pharmacological 
combinations that target multiple resistance pathways. Finding 
the biomarkers for medication resistance can help with the 
generation of customized precision treatment [ 13 ]. Based on 
another novel study, the tremendous potential for cuproptosis—
a recently discovered kind of cell death caused by copper—in 
cancer research communities has sparked a great deal of inter-
est. Copper-based treatments hold promises for addressing 
chemotherapy-resistant malignancies and may help to inhibit 
tumor growth. This study suggests that targeting cuproptosis 
could serve as a potential anticancer strategy or an effective 
approach to overcome drug resistance in cancer [  226 ]. Further-
more, combining immunotherapy and chemotherapy can be a 
successful strategy to overcome drug resistance. For instance, 
a clinical trial for unresectable HCC patients has shown that 
combination therapy of atezolizumab (anti-PD-L1 Ab) and 

Fig. 6. Noncoding RNA-induced drug resistance in HCC. Several noncoding RNAs, including long noncoding RNAs (LncSNHG16, lncH19, and lncPOIR) and microRNAs (miR-
130a-3p and miR-125b), contribute an essential part in drug resistance in HCC.
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bevacizumab (anti-VEGF Ab) provided significantly better 
overall survival rate and progression-free survival outcomes 
than sorafenib [  227 ]. Another recent clinical trial, HIMALAYA, 
a phase 3 randomized trial, showed promising outcomes for 
patients with unresectable HCC treated with a combination of 
durvalumab (anti-PD-L1 Ab) and tremelimumab (anti-CTLA4 
Ab) [  228 ]. These new studies open novel pathways for treating 
EMT-induced drug resistance in HCC and other similar can-
cers. Therefore, studying the reasons for EMT-induced drug 
resistance and solutions is so important and could help to estab-
lish new therapeutic protocols.   

Conclusion
   One of the main challenges in treating HCC is overcoming drug 
resistance. Due to primary and acquired drug resistance, a sig-
nificant number of patients with advanced HCC fail to achieve 
long-term improvement with systemic therapy, and this, col-
lectively with the disease’s growing incidence, makes HCC a 
very lethal cancer. Numerous studies showed that EMT con-
tributes significantly to drug resistance. This process is modu-
lated by the regulation of several signaling pathways, including 
NF-κB, Wnt, Hedgehog, Notch, TGF-β, AKT, and miRNAs. New 
treatment approaches that target EMT in order to restore drug 
sensitivity in HCC should be developed in light of our growing 
understanding of EMT and drug resistance. The combination 
of bioinformatics, pharmacogenomics, and chemical genomic 
data will be essential to find novel chemosensitizing medications 
and therapeutic targets that can overcome resistance to several 
chemotherapies. Further studies in this field could help develop 
novel therapeutic strategies that might significantly enhance the 
treatment of patients with advanced HCC. Developing research 
on EMT could considerably influence the future generation of 
cancer therapeutics for drug resistance.   
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