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Automated recognition of objects 
and types of forceps in surgical 
images using deep learning
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Analysis of operative data with convolutional neural networks (CNNs) is expected to improve the 
knowledge and professional skills of surgeons. Identification of objects in videos recorded during 
surgery can be used for surgical skill assessment and surgical navigation. The objectives of this study 
were to recognize objects and types of forceps in surgical videos acquired during colorectal surgeries 
and evaluate detection accuracy. Images (n = 1818) were extracted from 11 surgical videos for model 
training, and another 500 images were extracted from 6 additional videos for validation. The following 
5 types of forceps were selected for annotation: ultrasonic scalpel, grasping, clip, angled (Maryland 
and right-angled), and spatula. IBM Visual Insights software was used, which incorporates the most 
popular open-source deep-learning CNN frameworks. In total, 1039/1062 (97.8%) forceps were 
correctly identified among 500 test images. Calculated recall and precision values were as follows: 
grasping forceps, 98.1% and 98.0%; ultrasonic scalpel, 99.4% and 93.9%; clip forceps, 96.2% and 
92.7%; angled forceps, 94.9% and 100%; and spatula forceps, 98.1% and 94.5%, respectively. Forceps 
recognition can be achieved with high accuracy using deep-learning models, providing the opportunity 
to evaluate how forceps are used in various operations.

Recently, artificial Intelligence (AI) has been extensively utilized in many fields1 and has contributed tremen-
dously to improvements and advancements of technology. In this context, development using deep-learning 
technology2,3 has shared in the contribution. Deep learning is based on computer programs that automatically 
conduct repetitive learning from provided data and identify appropriate rules based on this process4,5. In the 
medical field, convolutional neural networks (CNNs)6,7 have also been extensively used in recent years not only 
for saving and archiving endoscopic surgical videos but also for analyzing the data from operations. The object 
recognition model used in this study has been commonly used to diagnose retinal diseases8,9, skin cancer10–13, 
colorectal neoplasms in endoscopy14,15, and arrhythmia in electrocardiography16–18. This research is expected to 
improve surgeons’ knowledge and professional skills19.

By analyzing preoperative images and intraoperative procedures and returning useful information to the 
surgeon during an operation, optimal surgery for patients that avoids risk through surgical navigation is the 
ultimate ideal. As a first step in the analysis of surgical procedures, an object recognition model is required to 
identify objects in surgical videos that require surgical skill assessment and surgical navigation. Attempts to 
develop such an object recognition model have been made, but sufficient results have not yet been obtained8. 
Herein, we constructed a model to recognize the object and types of forceps in surgical videos acquired during 
colorectal surgeries and evaluated its accuracy.

Materials and methods
Institutional approval.  The protocol for this study was reviewed and approved by the Tokyo Women’s 
Medical University Review Board (Protocol No: 5380) and conducted according to the principles of the Declara-
tion of Helsinki. All datasets were encrypted, and the identities of the patients were protected.

Consent to participate.  Oral consent was obtained from all study subjects. Informed consent forms that 
include information on the purpose of the study and study methods, the subject, the name of the implement-
ing organization, the name of the person in charge, and how to handle personal information were obtained and 
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captured in the electronic medical records. For all other research subjects, information will also be disclosed by 
posting a document approved by the Ethics Committee on the Tokyo Women’s Medical University website; this 
posting will also mention the possibility to refuse to participate as a research subject.

Datasets.  The colorectal surgical videos used for annotation were recorded during surgeries conducted at 
the Tokyo Women’s Medical University. A total of 1173 images were extracted from 11 surgical videos for model 
training, and another 500 images were extracted from 6 additional videos for validation. The following 5 types 
of forceps in the videos were selected for annotation: grasping, ultrasonic, clip, angled (Maryland and right-
angled), and spatula forceps. A surgical video with a 60 s run time was extracted from the other videos and used 
to verify the model.

Analysis.  The software IBM Visual Insights20 (Power SystemAC922; NVIDIA Tesla V100 GPU, 32 GB) was 
used for the CNN for deep learning. It includes the most popular open-source deep-learning framework and 
tools, and is built for easy and rapid deployment. The modeling types included in the software are GoogLeNet, 
Faster R-CNN, tiny YOLO V2, YOLO V3, Detectron, Single Shot Detector (SSD) and Structured segment net-
work (SSN). Detecrton was selected for use in this study. IBM Visual Insights automatically splits the dataset for 
internal validation of the model’s performance during training. The default value of 80/20 will result in the use 
of 80% of the test data (at random) for training and the use of the remaining 20% for measurements/validation.

Imaging data and model deployment.  Abdominal endoscopic images were extracted from surgical 
videos (Fig. 1). In total, 1173 images were extracted to train a forceps-type recognition model. Five types of 
forceps were selected for manual annotation by only 1 researcher. The selected types of forceps were grasping 
forceps, ultrasonic scalpel, clip forceps, angled forceps, and spatula forceps (Table 1 and Fig. 2). The model was 

Figure 1.   Extraction of still images from surgical videos for data labeling. Five types of forceps, namely, 
grasping forceps, ultrasonic scalpel clip forceps, angled forceps (Maryland and right angle), and spatula forceps, 
were annotated in these images.

Table 1.   Number of annotated forceps.

Forceps Number of annotated forceps

Grasping forceps 903

Ultrasonic scalpel 311

Clip forceps 138

Angled forceps 185

Spatula forceps 281

Total 1818
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deployed, and the other 500 test images of various different angles of forceps with different patterns were input 
into the deployed model to verify its diagnostic accuracy (Fig. 3).

Performance metrics.  Accuracy: percentage of correct image labels.
Mean average precision (mAP): calculated mean of precision for each object.
Precision: percentage of images with a correctly labeled object out of all labeled images that contain an object.
Recall: percentage of images that are labeled to contain an object out of all tested images that contain an object.
Intersection over Union (IoU): location accuracy of the image label boxes.
Confidence score: event probability.

Results
The accuracy, mAP, precision, recall, and IoU of the model were 90%, 100%, 92%, 100%, and 77%, respectively 
(Fig. 4).

The total number of forceps identified in 500 test images was 1062. Of these, the number of correctly detected 
forceps was 1039 (97.8%). The number of false positives was 31. The recall and precision of each type of forceps 
calculated from the outcome values were as follows: grasping forceps, 98.1% and 98.0%; ultrasonic scalpel, 

Figure 2.   Representative images of labeled forceps. Five types of forceps, namely, grasping forceps, ultrasonic 
scalpel, clip forceps, angled forceps, and spatula forceps, were selected and labeled in the extracted images to 
create a forceps-type recognition model. The images on the left side are original, and the images on the right side 
show the annotated forceps.
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99.4% and 93.9%; clip forceps, 96.2% and 92.7%; angled forceps, 94.9% and 100%; and spatula forceps, 98.1% 
and 94.5%, respectively (Table 2).

A surgical video with a 60 s run time was used to test the model, with the results indicating that the object 
was detected accurately (Supplementary Information).

Discussion
In the field of surgery, AI-based decision support systems have provided a broad range of technological 
approaches to augment the information available to surgeons that have accelerated intraoperative pathology 
and surgical step recommendations19. Accurate and efficient object representation and segmentation are neces-
sary for multilabel object classification in surgery based on the annotation of objects and frameworks21. Further, 
skill and motion assessments in surgical videos using CNN have been reported in recent years22–24.

In this study, we demonstrated the recognition of forceps (including type of forceps) from surgical images 
using CNN. In most test results, all 5 types of forceps were detected correctly with high confidence scores. Cor-
respondingly, we obtained positive results in terms of the corresponding recall and precision values. The trained 
model was able to accurately detect the forceps at various angles (Fig. 4a–i). These results indicate that the model 
recognized the shapes and colors of each type of forceps with high precision.

Although small in number, some forceps were not detected, or the outcomes yielded false positives. Based 
on the incorrect outcome images, we found that errors arose when only part of the forceps was observed in the 
images (Fig. 5a,b) or when the shapes of the forceps were similar to those of other types of forceps (Fig. 5c,d). 
Additionally, the results suggest that image resolution affects the validation outcome considerably. Because the 
forceps are in motion during surgeries, they are sometimes blurred in surgical videos or are closed in the cutout 
images. As a result, the model could not identify them or would recognize them as another type of forceps.

The potential of automatic video indexing and surgical skill assessment has been reported with the use of 
300 laparoscopic sigmoidectomy videos from multiple institutions in Japan25. In the present study, the recall 
and precision values were good despite the limited learning because of the mixed frameworks of deep learning 
based on the use of the commercial software IBM Visual Insights.

The results of our study will aid the development of a system that will manage, deliver, and retrieve surgical 
instruments for surgeons upon request. The object recognition model in surgery has reached feasible performance 
levels for widespread clinical use. The object recognition of forceps could be used to provide real-time object 
information during surgeries upon further development based on the results of this study. By integrating and 
developing these technologies, the digitalization of surgical scenes and techniques becomes possible. The ability to 
evaluate how and what procedure was performed is significant. Moreover, these innovations will enable surgical 
technique evaluation and surgical navigation. Utilization of AI is largely expected not only in medical treatments, 
such as the prevention and diagnosis of diseases, but also in cases associated with insufficient resources and in 
risk management to prevent medical accidents.

This study had some limitations. First, it is difficult to modify the model itself via tuning other than by chang-
ing the training data, because the model was made using IBM Visual Insights. Further, there were only limited 
types of forceps created from colorectal cancer videos of a single facility.

Figure 3.   Flow of analysis using IBM Visual Insights. The five selected types of forceps were labeled in 1173 
extracted images to create a forceps-type recognition model. Another 500 cutout images used for validation 
were input in the model to verify whether each type of forceps was recognized accurately.
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Figure 4.   Representative images demonstrating accurate results. The images on the right side are original. The 
images in the middle are test results. The images on the right side show the confidence scores of each result.
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Conclusion
In this study, we evaluated the recognition of different types of forceps using CNN and obtained positive results 
with high accuracy. Results of this study demonstrate the opportunity to evaluate use and navigation of forceps 
in surgeries.

Table 2.   Test results for each type of forceps, and corresponding recall and precision.

Forceps Number of forceps in images
Number of forceps identified 
correctly

Number of forceps not 
identified False positive Recall (95% CI) Precision (95% CI)

Grasping 648 636 12 13 98.1% (97.1–99.2) 98.0% (96.9–99.1)

Ultrasonic scalpel 170 169 1 11 99.4% (98.3–100.6) 93.9% (90.4–97.4)

Clip 53 51 2 4 96.2% (91.1–101.4) 92.7% (85.9–99.6)

Angled 138 131 7 0 94.9% (91.3–98.6) 100% (100–100)

Spatula 53 52 1 3 98.1% (94.5–101.8) 94.5% (88.5–100.5)

Total 1062 1039 23 31 97.8% (97.0–98.7) 97.1% (96.1–98.1)

Figure 5.   Representative images demonstrating inaccurate results. The images on the right side are original. 
The images in the middle are test results. The images on the right show the confidence scores of each result. 
(a) A grasping forceps and 1 spatula forceps were detected accurately, but 1 of the 2 grasping forceps in the 
image was not detected correctly; (b) the clip forceps was not identified correctly; (c) the angled forceps was 
recognized as an ultrasonic scalpel incorrectly; and (d) the clip forceps was identified correctly but was also 
recognized as an ultrasonic scalpel.
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