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Abstract
The renin–angiotensin–aldosterone system (RAAS) is a key regulator of systemic blood
pressure and renal function and a key player in renal and cardiovascular disease. However,
its (patho)physiological roles and its architecture are more complex than initially anticipated.
Novel RAAS components that may add to our understanding have been discovered in
recent years. In particular, the human homologue of ACE (ACE2) has added a higher level
of complexity to the RAAS. In a short period of time, ACE2 has been cloned, purified,
knocked-out, knocked-in; inhibitors have been developed; its 3D structure determined;
and new functions have been identified. ACE2 is now implicated in cardiovascular and
renal (patho)physiology, diabetes, pregnancy, lung disease and, remarkably, ACE2 serves
as a receptor for SARS and NL63 coronaviruses. This review covers available information
on the genetic, structural and functional properties of ACE2. Its role in a variety of
(patho)physiological conditions and therapeutic options of modulation are discussed.
Copyright  2007 Pathological Society of Great Britain and Ireland. Published by John
Wiley & Sons, Ltd.
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Introduction

The renin–angiotensin–aldosterone system (RAAS) is
cardinal in renal and cardiovascular physiology and
pathophysiology. Its architecture and functions are
more complex than previously assumed. In the clas-
sical RAAS, the protease renin, which is secreted
from renal juxtaglomerular cells, acts on the circulat-
ing precursor angiotensinogen to generate angiotensin
(Ang) I (Figure 1). Ang I is converted by the dipep-
tidyl carboxypeptidase angiotensin-converting enzyme
(ACE) to Ang II, the main effector substance of the
RAAS, with potent vasoconstrictive, pro-inflammatory,
and pro-fibrotic properties. Consequently, ACE inhibi-
tors (ACEi) and Ang II receptor blockers (ARBs) are
effective in hypertension, heart failure, and progressive
renal damage.

Recently, angiotensin fragments other than Ang
II were also proposed to be relevant, in particu-
lar Ang(1–7), which mediates vasodilatation, anti-
proliferation, and apoptosis, thereby opposing the
effects of Ang II [1]. Further complexity was intro-
duced by the discovery of an ACE homologue, ACE2.
This enzyme cleaves Ang I into Ang (1–9), which
can be converted to Ang(1–7) by ACE (Figure 1).

Furthermore, ACE2 degrades Ang II to Ang(1–7).
It has therefore been suggested that ACE2 acts in a
counter-regulatory manner to ACE by shifting the bal-
ance between Ang II and Ang(1–7), thus acting as a
functional clearance mechanism for Ang II.

High ACE2 gene expression was initially reported
in the testis, kidney, and heart [2,3]. Later studies
showed widespread distribution of both rodent and
human ACE2 in the lung, liver, small intestine,
and brain, albeit much lower than in the kidneys
[4–7]. Diverse roles have emerged for ACE2 since
its identification in 2000 [2,3]. Some 200 papers have
subsequently addressed its structure, functions, and
role in cardiovascular and renal disease, diabetes,
SARS coronavirus infection, and lung injury.

This review covers available information on the
genetic, structural, and functional properties of ACE2.
Its role in a variety of (patho)physiological condi-
tions and therapeutic options of modulation will be
discussed.

The ACE2 gene and protein

The 40 kb ACE2 gene is located on chromosome
Xp22 and contains 18 exons, many of which closely
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Figure 1. Schematic diagram of the renin–angiotensin–
aldosterone system which shows the role of ACE and ACE2
in the metabolism of the various angiotensin peptides. Modified
from Warner et al [101], with permission

resemble exons in the ACE gene [3]. Two alternative
transcripts of the mouse ACE2 gene have been iden-
tified which probably arise by alternative splicing [8].
Recently, an alternative 5′-untranslated exon of human
ACE2 and new polymorphisms have been reported [9].

The human ACE2 protein is a typical zinc metal-
lopeptidase, which comprises 805 amino acids and
is 40% identical in sequence with ACE, although
it only contains a single catalytic domain. Critical
active site residues, including the His-Glu-Met-Gly-
His zinc-binding motif, are highly conserved. ACE2
is a type I integral membrane glycoprotein orien-
tated with the N-terminus and the catalytic site fac-
ing the extracellular space (an ectoenzyme), where
it can metabolize circulating peptides. The small C-
terminal, cytoplasmic domain has a number of poten-
tial regulatory sites. The similarity with ACE relates
only to its topology and much of the extracellu-
lar domain (Figure 2); the juxtamembrane, transmem-
brane, and cytoplasmic domains of ACE2 share simi-
larity with the renal, transmembrane protein collectrin
[10] (Figure 2), which stimulates insulin exocytosis
and pancreatic beta-cell proliferation [11,12]. Targeted
deletion of the collectrin gene in mice suggests that it
also plays a major role in regulating renal amino acid
transport [13].

Substrate specificity of ACE2

ACE2, a strict carboxypeptidase, hydrolyses its sub-
strates by removing a single amino acid from their
respective C-termini, rather than a dipeptide, as does
ACE. ACE2 therefore has the ability to convert the
decapeptide Ang I to Ang(1–9) and the octapeptide
Ang II to Ang(1–7). A kinetic study evaluating the
comparative roles of ACE and ACE2 in angiotensin
metabolism [14] established that Ang II is hydrol-
ysed two orders of magnitude more efficiently by

Figure 2. The domain structure of somatic and testis ACE,
ACE2, and collectrin. Each protein is a type I integral membrane
protein with a cleaved signal peptide (black), an N-terminal
ectodomain, a transmembrane domain (blue in ACE; red in
ACE2 and collectrin), and a C-terminal cytoplasmic domain.
Somatic ACE contains two HEMGH zinc binding active sites,
while testis ACE and ACE2 contain a single HEMGH motif.
Collectrin lacks a HEMGH motif. The ectodomain of ACE2
(yellow) is more similar to the N-terminal domain of somatic
ACE, while its juxtamembrane stalk, and transmembrane and
cytoplasmic domains are more similar to collectrin. The
numbers indicate the amino acid residues in each protein.
Modified from Turner and Hooper [102], with permission

ACE2 than Ang I. Hence, the major role of ACE2
in angiotensin metabolism seems to be the production
of Ang(1–7), whose actions oppose those of Ang II.
Different in vivo studies strongly support the concept
that a major role of ACE2 is indeed the generation
of Ang(1–7) from Ang II and that its conversion of
Ang I to Ang(1–9) is not normally of physiological
importance [15–20], except possibly under conditions
that raise Ang II levels, eg ACEi or ARB treatment
[21].

Although most studies have focused on the role
of ACE2 in angiotensin metabolism, the enzyme
has broad substrate specificity. In addition to Ang I
and Ang II, ACE2 hydrolyses apelin-13, neurotensin-
(1–11), dynorphin A-(1–13), β-casomorphin-(1–7),
and ghrelin [22]. Although the ACE substrate brady-
kinin is not hydrolysed by ACE2, its metabolite des-
Arg [9]-[bradykinin], which is an agonist for the B1
bradykinin receptor, is hydrolysed and a role for ACE2
in bradykinin metabolism cannot yet be dismissed. It
is likely that other potential physiological substrates
for ACE2 will emerge.

Cell biology and shedding of ACE2

Knowledge of the basic cell biology of ACE2 still
remains limited, partly because few cell models
expressing ACE2 at high levels are available [23].
ACE2 is expressed as a cell-surface non-raft protein
with little intracellular localization, and the protein
does not readily internalize. However, binding of the
SARS viral spike protein to ACE2 does trigger enzyme
internalization, down-regulating activity from the cell
surface. In polarized cells, ACE2 is exclusively tar-
geted to the apical surface [23,24], in contrast to ACE
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which distributes equally between apical and baso-
lateral surfaces [23]. Another mechanism for down-
regulating ACE2 at the cell-surface is by proteolytic
shedding of its extracellular domain. This shedding,
which is also undergone by ACE, is stimulated by
phorbol esters and is blocked by inhibitors of the
ADAMs family of zinc metalloproteinases. ADAM17
(TACE) is implicated as the primary enzyme involved
in the regulated shedding of ACE2 [25], resulting
in detectable levels of ACE2 in plasma and urine
[14,23,26].

ACE2 and the heart

The importance of ACE2 in cardiac physiology and
disease was initially suggested by two independent
groups, based on cardiac ACE2 expression, partic-
ularly in endothelial cells [2,3]. Subsequent stud-
ies revealed ACE2 not only in endothelial cells and
smooth muscle cells from intra-myocardial vessels, but
also in cardiac myocytes [27] (Figure 3).

The importance of ACE2 in cardiac function was
strengthened by Crackower et al, who described car-
diac dysfunction in Ace2 knock-out (KO) mice [28].
Specifically, there was a 40% decrease in fractional
shortening with slight ventricular dilatation. Interest-
ingly, there was thinning of the left ventricular (LV)
wall rather than LV hypertrophy and/or cardiac fibro-
sis. These changes progressed with age and were more
prominent in male mice [28]. The hearts of these
Ace2 KO mice showed increased Ang II levels and
up-regulation of hypoxia-inducible genes. The authors
suggest that cardiac function is modulated by the bal-
ance between ACE and ACE2, and that the increase in
local cardiac Ang II was involved in these abnormal-
ities. This is supported by the fact that the cardiac
phenotype and increased Ang II levels were com-
pletely reversible by concomitant deletion of the ACE
gene in Ace2 KO mice. It remains unclear, however,
why, despite elevated Ang II levels, the hearts of these
Ace2 KO mice did not show any cardiac hypertro-
phy or fibrosis. This may partly be related to Ang
II-independent effects of ACE2, such as effects of the

Figure 3. Immunohistochemical staining pattern of ACE2 in several organs. In the healthy human heart (A), ACE2 is expressed
in cardiomyocytes (closed arrow), vascular endothelium (arrowhead), and smooth muscle cells (open arrow). In rat heart (B),
ACE2 is predominantly expressed in vascular endothelium (arrowhead). (C) ACE2 expression in human small intestine (jejunum);
abundant staining can be found in the brush border of enterocytes (arrow). In human aorta (D), ACE2 is expressed in the
endothelium (arrowhead) and vascular smooth muscle cells (open arrow). In healthy human lung (E), ACE2 is present in alveolar
epithelial cells (arrow) and in capillary endothelial cells (arrowhead). In human placenta (F), positive staining for ACE2 is found in
the placental villi [syncytiotrophoblast, cytotrophoblast, vascular endothelium (arrowhead), and smooth muscle cells]
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other substrates described above [22], which also can
influence cardiac contractility.

Gurley et al generated an Ace2 KO mouse [29],
deleting the same exon as the Crackower group
[28], and although demonstrating changes in blood
pressure regulation, particularly in response to Ang
II, these investigators could not detect a specific
cardiac phenotype. In another study, Yamamoto et al
[30] also failed to identify cardiac abnormalities in
their Ace2 KO mice. However, they did demonstrate
reduced cardiac contractility after transverse aortic
constriction (TAC), a model of pressure overload.
TAC was associated, when compared with wild-type
mice subjected to the same procedure, with a marked
increase in cardiac Ang II levels and increased fibrosis,
LV dilation, and myofibrillar disarray. Indeed, in Ace2
KO mice followed for a longer period, this reduction in
myocardial contractility led to pulmonary congestion
and death [30].

Recent studies suggest that ACE2 possibly influ-
ences the electrical pathways of the heart. In ACE2
transgenic mice, cardiac conduction disturbances were
present and some animals developed lethal ventricu-
lar fibrillation [31]. The level of ACE2 up-regulation
correlated with the severity of the conduction distur-
bance.

Accumulating evidence indicates that over-activity
of cardiac RAAS and myocardial Ang II production
contributes to the progression of heart failure. Several
studies characterized ACE2 expression and activity in
heart failure. In experimental myocardial infarction,
increased cardiac ACE2 expression was found in the
infarct zone and the surrounding ischaemic zone [27].
Moreover, local up-regulation of ACE2 was also found
in explanted human hearts with ischaemic cardiomy-
opathy [20,27,32] and idiopathic dilated cardiomyopa-
thy [20,32]. These findings may imply that the up-
regulation of ACE2 is a compensatory response to the
ischaemic insult and that the consequent increase in the
vasodilatory Ang(1–7) may confer cardio-protective
effects in an attempt to counterbalance the effects of
Ang II. Other groups did not observe up-regulation of
ACE2 [33] or demonstrated down-regulation of car-
diac ACE2 in experimental heart failure [21,34], albeit
in different rat strains.

Several studies noted a marked increase in cardiac
ACE2 expression in response to RAAS blockade
by ACEi [21,35], ARB [33–35], or an aldosterone
antagonist [34,36] (a diuretic with specific benefits
in heart failure [37]). This was interpreted as Ang
II receptor blockade conferring cardio-protection not
only by reducing harmful Ang II-mediated effects, but
also by locally increasing Ang(1–7), which, through
binding to a putative Ang(1–7) receptor, Mas 1 [38],
is postulated to have beneficial effects on the heart [1].

The potential for ACE2 to modulate cardiac func-
tion and remodelling is additionally suggested by the
finding that lenti-viral vector encoding mouse ACE2
injected intracardially in Sprague–Dawley rats signif-
icantly attenuated cardiac hypertrophy and myocardial

fibrosis induced by Ang II infusion [39]. Moreover,
ACE2 overexpression after neonatal development pro-
vides protection from high blood pressure and cardiac
pathophysiology in the SHR rat [40].

Altogether, these studies suggest that ACE2 is
important in cardiac function and that ACE2-related
effects contribute to cardio-protective effects of ACE
inhibitors and ARBs. The increased ACE2 gene
expression and activity during RAAS blockade suggest
that at least part of their mode of action results from
hydrolysis of the vasoconstrictor mitogenic Ang II to
the vasodilator anti-proliferative Ang(1–7) through a
feed-forward mechanism within the RAAS. Under-
standing the roles of ACE2 in heart failure may opti-
mize current therapies and ultimately guide the devel-
opment of new therapeutic strategies.

ACE2 and hypertension

It was initially hypothesized that disruption of the del-
icate balance between ACE and ACE2 would result
in abnormal blood pressure control [41]; ACE2 might
protect against increases in blood pressure and, con-
versely, ACE2 deficiency might lead to hypertension.
The localization of ACE2 in vascular endothelial cells
and smooth muscle cells [6] (Figure 3) supports this.

Since hypertension was linked to loci on the X
chromosome [42,43] and ACE2 was mapped to the
X chromosome [3], ACE2 became a candidate gene
underlying the loci linked to hypertension. Crackower
et al [28] were the first to test ACE2 as the gene under-
lying the blood pressure locus on the X chromosome.
They showed reduced expression of renal ACE2 in the
salt-sensitive Sabra hypertensive rat compared with the
normotensive rat. Both hypertensive SHR and SHRSP
rats showed reduced renal ACE2 protein levels com-
pared with the normotensive Sabra and WKY strains.
Two other groups confirmed some of these findings
by showing that SHR rats have lower renal ACE2
mRNA, protein, and activity compared with WKY
rats [44,45]. However, others were unable to detect
any differences in renal ACE2 mRNA, protein, and
activity between adult hypertensive rats and their nor-
motensive controls [46]. On close scrutiny, in SHRSP
rats the allele of the previously identified blood pres-
sure locus on rat chromosome X contributes to a
blood pressure-lowering effect [42], while in the salt-
sensitive Sabra hypertensive rat this allele contributes
to a blood pressure-increasing effect [43], suggesting
that it is not the same gene that underlies the blood
pressure locus. Surprisingly, while the allelic effects
of the blood pressure locus are discordant between
these hypertensive strains, a similar, ie concordant,
reduction in renal ACE2 expression was reported [28],
which reduces the possibility that ACE2 is the candi-
date gene underlying the blood pressure locus.

Additional arguments came from studies in Ace2
KO mice. Ace2 KO mice on a mixed B6/129 back-
ground had normal blood pressure compared with the
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wild type [28]. However, a recent study which also
studied Ace2 KO animals on homozygous B6 and 129
backgrounds showed that Ace2 KO animals with a B6
background have a significantly lower blood pressure
compared with wild-type animals [29], suggesting that
the genetic background with modifier genes present in
the 129 strain may counteract the absence of Ace2, or
that the 129 allele of another gene involved in blood
pressure regulation moved with the KO into the B6
background and caused the difference in blood pres-
sure in these animals.

So far, three human association studies of ACE2
polymorphisms with hypertension have been per-
formed [47–49]. Two of these studies, using Chi-
nese cohorts, reported an association between a SNP
in intron 3 of ACE2 and blood pressure in females
with metabolic syndrome [49] and females with essen-
tial hypertension [48]. However, the use of only one
SNP cannot rule out the possibility of this SNP being
in linkage disequilibrium with SNPs in neighbouring
genes that could cause the difference in blood pressure.

Altogether, the role of ACE2 in hypertension is
not conclusive. Functional studies that show blood
pressure effects after the administration of ACE2
inhibitors or stimulators are needed to further elucidate
its significance in hypertension.

ACE2 and the kidney

ACE2 is highly expressed in the kidney [7]; however,
its role in the kidney has not been fully elucidated.

In the human kidney, ACE2 is predominantly found
in the proximal tubular brush border [50,51], where
it co-localizes with ACE [23,24]. Moreover, ACE2
is found in endothelial and smooth muscle cells
of renal vessels [50,51] and in glomerular visceral
(in podocyte/slit diaphragm complex) and parietal
epithelial cells [51,52] (Figure 4). The distribution
of ACE2 is species-specific. In human kidneys, the
ACE2 expression pattern is comparable to that of
mouse kidneys [5,53], whereas in rat kidneys, ACE2
is predominantly found in glomeruli and to a lesser
extent in tubules (Figure 4).

Several lines of evidence support a role for renal
ACE in renal damage [54]. Individual differences
in renal ACE activity predict the susceptibility for
proteinuria-associated renal damage in experimental
conditions [55,56]. Furthermore, Ang II is increased
in damaged tubules as a possible mediator of further
renal damage in experimental and human renal disor-
ders [57,58]. A disrupted balance between intrarenal
ACE and ACE2 with consequent high levels of Ang
II might therefore contribute to progressive renal dam-
age. Indeed, in experimental hypertension and dia-
betes, renal ACE2 expression is decreased [28,59].
Moreover, Tikellis et al showed that in the kidneys of
SHR rats ACE2 expression follows a developmental
pattern with declining expression during development
and onset of hypertension [45]. In line with the ben-
eficial effects of RAAS blockade on cardiac ACE2
as mentioned earlier, renal ACE2 activity is also
increased in response to ACEi and ARB [59,60]. In

Figure 4. Immunohistochemical staining pattern of ACE2 in the kidney. In the healthy human kidney (A), ACE2 is predominantly
present in the brush border of proximal tubular cells (arrow) and to a lesser extent in the glomerular visceral and parietal
epithelium. In rat kidney (B), ACE2 is predominantly found in glomeruli and to a lesser extent in distal tubules (open arrow). In
mouse kidney (C), the distribution pattern of ACE2 is comparable to human kidney with predominant expression in proximal
tubules (arrow). ACE2 is also expressed during human nephrogenesis (gestational age 16 weeks) (D)
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contrast, further enhancement of the therapeutic effi-
cacy of ACEi resulted in an unexpected reduction in
renal ACE2 expression compared with ACEi alone
[61]. It looks like despite extensive research, the mech-
anisms of the effects of ACEi are still not completely
understood [62]. Further studies on the regulation of
renal ACE2 during RAAS blockade might help to elu-
cidate this.

Initial reports on Ace2 KO mice did not show any
renal structural and functional abnormalities [28,29],
but recent studies showed that male Ace2 −/y mice
develop age-dependent glomerulosclerosis and albu-
minuria, whereas the renal vasculature and interstitium
were relatively protected [63]. The authors hypothe-
sized that the glomerular abnormalities were caused
by chronic exposure to increased circulating and tis-
sue Ang II, as these abnormalities were abolished
by ARB treatment. The glomerulo-protective role of
ACE2 is supported by studies in which chronic infu-
sion of the ACE2 inhibitor MLN4760 increased albu-
minuria in db/db mice, resulting in increased deposi-
tion of glomerular fibronectin [52]. Albuminuria could
be prevented by ARB, indicating Ang II dependency.
Moreover, these diabetic female db/db mice have
decreased glomerular ACE2 staining compared with
db/m heterozygous littermates [52]. The authors sug-
gest that glomerular ACE2, present in the podocyte/slit
diaphragm complex, could normally be reno-protective
by favouring rapid degradation of Ang peptides and
thereby preventing exposure to high levels of Ang II.

Other studies support the assumption that increased
ACE2 activity tied with decreased ACE activity may
reflect a protective mechanism by limiting the renal
accumulation of Ang II and favouring Ang(1–7) for-
mation. Increased ACE2 expression is indeed cou-
pled with profound reduction of ACE expression in
renal tubules of young db/db mice [53]. The authors
speculate that this might be an early reno-protective
response. The kidneys of streptozotocin-induced dia-
betic mice also show increased ACE2 expression at
the post-transcriptional level [64]. In humans, de novo
expression of ACE2 is found in glomerular and per-
itubular endothelium in biopsies in patients with pri-
mary and secondary renal disease, as well as in renal
transplants [51]. In renal biopsies of non-diabetic and
diabetic patients, significant up-regulation of the ACE
gene, and not the ACE2 gene, was found in dia-
betic nephropathy [65]. Moreover, no associations
between polymorphisms in the ACE2 gene and dia-
betic nephropathy could be established [66].

Altogether, ACE2 appears to be involved in the
pathogenesis of renal damage, but its precise role is
unclear and further studies are needed, in particular
during renal disease.

ACE2 and pregnancy

The placenta is an organ with major Ang(1–7) and
ACE2 expression [67] (Figure 3), suggesting that

ACE2 may be involved in mother–fetus interactions,
which is interesting regarding a potential role for
ACE2 in fetal programming and pregnancy. In preg-
nant rats, renal expression of ACE2 is increased com-
pared with virgin controls [15]. A recent study showed
no differences in ACE2 expression between normoten-
sive and pre-eclamptic placentas in the third trimester
[67]. However, pre-eclampsia is determined early in
pregnancy; thus, the role of ACE2 in pre-eclampsia
should be further studied, for example, in animal mod-
els.

ACE2 and lung disease

There is abundant expression of RAS components in
the lung, including ACE and ACE2. Activation of
the intrapulmonary RAS could influence the patho-
genesis of lung injury [68]. Indeed, increased levels
of ACE have been associated with pulmonary hyper-
tension [69,70], sarcoidosis [71,72], idiopathic pul-
monary fibrosis [73], and the acute respiratory distress
syndrome [74,75]. The alleged role for ACE2 as a
counter-regulatory mechanism of ACE may therefore
be crucial in the lung. ACE2 is present in type I and
type II alveolar epithelial cells and to a lesser extent in
bronchiolar epithelial cells (Figure 3) [6,76]. Further-
more, as in other organs, ACE2 is present in endothe-
lial cells and in arterial smooth muscle cells. With
respect to the role of ACE2 in pulmonary hyperten-
sion, it can be envisaged that in particular, the presence
and function in smooth muscle cells of small arterioles
are of relevance, although the actual role in this disease
is unknown [77].

Ace2 KO mice do not have lung abnormalities
when compared with their wild-type littermates [28].
However, it was recently shown that loss of ACE2
expression precipitates severe acute lung failure [76].
Moreover, injection of recombinant human ACE2
attenuates acute lung failure in Ace2 KO as well as
in wild-type mice [76]. With respect to the possible
role of ACE2 in the lung in relation to acute lung
injury in particular, the relationship to the ACE2
expression at the alveolar capillary interface is of
interest. It is tempting to speculate that increased
ACE2 may play a role in reducing the initial leakage
over the alveolar capillary interface. This would then
slow down the vicious circle that often occurs after
a damaging effect to this interface and leads to the
clinical pathological picture of diffuse alveolar damage
with intra-alveolar oedema and fibrin deposits. These
data support a critical role for the intrapulmonary RAS
in the pathogenesis of acute lung injury and show that
ACE2 is a key molecule involved in the development
and progression of acute lung failure.

ACE2 and human coronaviruses

ACE2 acts as a receptor for two coronaviruses (CoV):
severe acute respiratory syndrome (SARS)-CoV and
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human CoV-NL63 [78,79], positive stranded RNA
viruses with a ‘corona’-like appearance [80]. Their
genome is packaged together with several mem-
brane proteins, the RNA binding nucleoprotein and
the receptor binding spike protein that protrudes
through the virion membrane. HCoV-NL63 infec-
tion causes clinical respiratory symptoms resembling
those observed in children infected with common cold
viruses. SARS-CoV causes severe lower respiratory
tract disease including fever, non-productive cough,
myalgia, and dyspnoea [81]. A specific region within
the SARS-CoV spike protein (S1) interacts with ACE2
[79,82,83]. The crystal structure at 2.9 angstrom res-
olution of this receptor binding domain bound with
the peptidase domain of human ACE2 shows that it
presents a gently concave surface, which cradles the N-
terminal lobe of the peptidase [82]. After engagement
with ACE2, SARS-CoV fuses with host cell mem-
branes, by which the conformational changes of the
two heptad regions located in the S2 region, HR-1
and HR-2, cause the formation of an oligomeric struc-
ture, leading to fusion between the viral and target-cell
membranes.

Using soluble ACE2 molecules, peptides derived
thereof, and antibodies directed against ACE2, the
SARS-CoV infection can be blocked [79,84]. Con-
versely, expression of ACE2 in refractory cell lines
resulted in SARS-CoV replication [85]. Experiments
in Ace2 KO mice revealed the importance of ACE2
as a receptor for SARS-CoV [86]. Moreover, autopsy
specimens of patients who died of SARS revealed that
ACE2-expressing cells are a direct target of SARS-
CoV [87].

Besides ACE2, lysosomal proteases such as
cathepsin-L are required for productive SARS-CoV
[88,89], explaining discrepancies observed between
ACE2 expression and absence of SARS-CoV repli-
cation in endothelial cells [6,85]. Members of the
DC-SIGN family of proteins may enhance SARS-CoV
infection but are not sufficient to infect cells [90].

Murine and rat ACE2 less efficiently bound the
S1 domain of late-phase SARS-CoV isolates and
supported less efficient S-protein-mediated infection
[91]. In addition, spike proteins from isolates of palm
civets utilized civet ACE2 more efficiently than human
ACE2, whereas late-phase isolates such as TOR2 uti-
lized both receptors with equal efficiency [92]. Sub-
sequent studies demonstrated that sequence variation
in the spike protein binding sites of ACE2 hindered
efficient binding [92] (Figure 5). The lower affinity of
some of these S proteins could be complemented by
altering specific residues within the S-protein-binding
site of human ACE2 to those of civet ACE2, or by
altering S-protein residues 479 and 487 to residues
conserved during the 2002–2003 outbreak. This indi-
cates that specific molecular interactions are important
in the adaptation process of SARS-CoV to human
cells. Animal precursors of SARS-CoV are thus likely
to be less pathogenic to humans, and exposure to such
viruses may have led to limited clinical symptoms

but antigenic stimulation that results in a serologi-
cal response. This was observed when SARS-CoV
re-emerged in Guangdong in 2003, causing milder
clinical disease [93]. Similarly, animal traders had high
seroprevalence for human and animal SARS coron-
avirus, without having a history of SARS.

ACE2 is down-regulated in the lungs of mice after
acute lung injury, including SARS-CoV infection [86].
The cytokines IL-4 and IFN-γ down-regulated cell-
surface expression of ACE2 (Figure 6), decreased
ACE2 mRNA levels, and also inhibited SARS-CoV
replication in Vero E6 cells [94]. Furthermore, exper-
iments in vitro indicated that ACE2 expression is
dependent on the differentiation state of epithelia [95],
and a role for the GATA family of transcription fac-
tors in regulating the expression of ACE2 has been
suggested [96]. Down-regulation of ACE2 expression
may not only affect SARS-CoV entry, but also hamper
angiotensin II cleavage, causing pathological changes
due to angiotensin II type 1a receptor activation [86].
Therefore, intervention strategies using soluble recom-
binant ACE2 proteins may neutralize SARS-CoV and
dampen lung pathology. However, studies analysing
the role of ACE2 gene polymorphisms in the progres-
sion of SARS have not found evidence that these affect
outcome [9,97].

Conclusions and future perspectives

ACE2 is now implicated in a variety of (patho)
physiological processes. Further understanding of its
role in disease will hopefully lead to the exploration
of novel therapeutic options. Functional studies using
ACE2 inhibitors will be essential to elucidate the reg-
ulatory mechanisms of ACE2. Moreover, relatively
little progress has been made on the development of

Figure 5. Alignment of amino acid sequences of ACE2 from
human, macaque (Mf), cat (Felis), rat (Rn), and mouse (Mumu)
critical to SARS-CoV spike protein interactions
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Figure 6. IFN-gamma down-regulates ACE2 expression in Vero
E6 cells. ACE2 expression was determined by Facs analysis after
treatment with TNF-α (A), IFN-γ (B), and IFN-γ combined
with TNF-α (C), all at 48 h, or Vero E6 cells incubated
for 96 h in the presence of IFN-γ combined with TNF-α
(D). Dotted lines represent cytokine-treated cells, while thick
lines represent mock-treated control cells. The shaded areas
represent background staining. Modified from de Lang et al [94],
with permission

such specific ACE2 inhibitors, largely because of lack
of a clear therapeutic target. MLN4760 is the most
potent and selective ACE2 inhibitor currently avail-
able [98]. Structure-based screening programmes have
been applied to the identification of novel and selective
ACE2 inhibitors with some success [99,100]. Since
ACE2 opposes the vasoactive and proliferative actions
of Ang II, up-regulation of ACE2 expression or activ-
ity is a much more desirable characteristic. Modifica-
tion of ACE2 levels by stimulating its expression or
exogenous administration of recombinant ACE2 may
have beneficial effects in several disease conditions
and should be the scope of future studies.
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