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A decline in normal physiological functions characterizes the aging process. While some

of these changes are benign, the decrease in the function of the cardiovascular system

that occurs during aging leads to the activation of pathological processes associated

with an increased risk for heart disease and its complications. Imbalances in endocrine

function are also common occurrences during the aging process. Glucocorticoids are

primary stress hormones and are critical regulators of energy metabolism, inflammation,

and cardiac function. Glucocorticoids exert their actions by binding the glucocorticoid

receptor (GR) and, in some instances, to the mineralocorticoid receptor (MR). GR

and MR are members of the nuclear receptor family of ligand-activated transcription

factors. There is strong evidence that imbalances in GR and MR signaling in the heart

have a causal role in cardiac disease. The extent to which glucocorticoids play a role

in the aging heart, however, remains unclear. This review will summarize the positive

and negative direct and indirect effects of glucocorticoids on the heart and the latest

molecular and physiological evidence on how alterations in glucocorticoid signaling lead

to changes in cardiac structure and function. We also briefly discuss the effects of other

hormones systems such as estrogens and GH/IGF-1 on different cardiovascular cells

during aging. We will also review the link between imbalances in glucocorticoid levels and

the molecular processes responsible for promoting cardiomyocyte dysfunction in aging.

Finally, we will discuss the potential for selectively manipulating glucocorticoid signaling in

cardiomyocytes, which may represent an improved therapeutic approach for preventing

and treating age-related heart disease.
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INTRODUCTION

Aging is characterized by a gradual decline in all physiological functions, a decrease in repair
mechanisms, senescence, and eventually death. The endocrine system is a complex network
system that regulates virtually all of an organism’s biological processes, including development,
growth, reproduction, metabolism, blood pressure, and responses to stressors (1, 2). Aging leads
to significant alterations in the endocrine system, but imbalances in the endocrine system also
affect the aging process (1–3). For example, the secretory patterns of hormones produced by
the hypothalamic–pituitary axis are altered in the elderly population as well as the sensitivity
to hormones by their target organs. Conversely, imbalances in the production of hormones or
alterations in their negative feedback loops have been shown to accelerate the aging process by
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leading to disturbances in metabolism, cardiovascular function,
and cognition (1, 2). Therefore, there is increasing interest in
understanding the association between aging and endocrine
function so that novel therapies can be developed to prevent/treat
age-related endocrine disorders and the deleterious effects of
endocrine imbalances during the aging process.

Aging is closely associated with alterations in cardiovascular
function. Structural and functional changes in the heart and
vasculature during aging are characterized by vascular stiffening,
increased left ventricular wall thickness, hypertrophy, fibrosis,
changes in maximal heart rate, and alterations in cardiac
diastolic function (4–6). Age-related cardiac changes result
from molecular alterations in the expression and function
of proteins involved in maintaining cardiomyocyte structure,
survival, calcium handling, redox balance, and metabolism
(7). Additionally, changes in the expression profile of cardiac
interstitial cells, including endothelial cells and fibroblasts,
contribute to phenotypic changes in the aging heart (8). Although
these alterations are not necessarily pathological in nature by
themselves, they do increase the risk for cardiac damage and
heart failure in the elderly population. There are several factors
that further exacerbate the aging effect and make the “old heart”
more likely to fail. For example, aging-associated alterations
in inflammatory and fibrogenic pathways are exacerbated by
metabolic imbalances, which are intertwined with a decline in
endocrine function (9).

The relationship between the endocrine system, aging, and
the cardiovascular system has been illustrated by the increased
incidence of cardiovascular complications associated with the
decline in gonadal hormone production. The risk of heart disease
in women undergoing menopause is significantly higher than
that in younger women (6, 10). Studies have suggested that the
increased risk of heart disease in post-menopausal women is
associated with a decline in ovarian hormone (estrogen and
progesterone) production (11). Decreased ovarian function
correlates with an elevation in the serum concentrations
of atherogenic lipids (low-density lipoproteins and total
cholesterol) and a decrease in the levels of cardioprotective
lipids (high-density proteins) (12, 13). A decline in androgen
production in males during aging has also been associated with
higher cardiovascular risk due to increases in fat mass and
the development of insulin resistance (12–14). The age-related
decline in sex hormones has been considered one of the most
clinically significant associations between the endocrine and
cardiovascular systems. However, aging clearly influences other
endocrine systems, and conversely, these endocrine alterations
further influence the aging process. For example, with aging,
glucose homeostasis is altered, which leads to an increased
risk for metabolic complications such as type 2 diabetes that
significantly elevate the risk for vascular and heart disease
in the elderly population (2). Additionally, aging leads to
changes in growth hormone (GH) and insulin growth factor
1 (IGF-1) levels. Alterations in GH and IGF-1 have profound
effects on body composition and muscle strength, bone density,
metabolism and the lipid profile, which in turn contribute to the
deterioration of cardiac function (15–17). Therefore, a deeper
understanding of the interactions between the endocrine system,

aging, and the cardiovascular system is of great clinical interest,
since it is estimated that more than 70% of individuals over
60 years of age suffer from cardiovascular diseases (3), and
by 2050, ∼17% of the population worldwide will be over 65
years of age. In the present review, we will discuss the effects
of aging on the production and biological function of the
primary stress hormones glucocorticoids and how alterations
in glucocorticoid signaling affect the aging heart. We will
also review the potential contribution of GR signaling to the
vasculature morphological and functional changes that occur
during the aging process. In addition, we will briefly review
the cardiac effects of glucocorticoids signaling via MR in the
heart. Finally, we will discuss whether the manipulation of
glucocorticoid signaling in cardiomyocytes could prevent/revert
aged-related heart disease.

MECHANISMS REGULATING
GLUCOCORTICOID SECRETION AND
PHYSIOLOGICAL EFFECTS

Regulation of Glucocorticoid Secretion
Glucocorticoids (cortisol in humans; corticosterone in rodents)
are steroid hormones produced by the zona fasciculata of
the adrenal cortex in a circadian manner and in response
to stress (Figure 1). Glucocorticoid secretion is regulated
by the hypothalamic-pituitary axis (18, 19). Exposure to
physical, psychological, and environmental stressors stimulates
parvocellular neurons within the paraventricular nucleus of
the hypothalamus to release corticotropin releasing hormone
(CRH) at the median eminence into the capillary plexus of
the hypothalamo-hypophyseal portal system (Figure 1). CRH is
then carried to the anterior lobe of the pituitary gland, where it
stimulates the production and secretion of adrenocorticotropic
hormone (ACTH) by corticotroph cells (Figure 1). Once in
circulation, ACTH binds G protein-coupled receptors located
on the extracellular membranes of the zona fasciculata and
zona reticularis of the adrenal cortex (20). ACTH binding to
its receptors leads to the activation of adenylyl cyclase and
the production of intracellular cyclic adenosine monophosphate
(cAMP). Increased formation of cAMP triggers the activation
of protein kinase A (PKA), which then phosphorylates and
induces hormone-sensitive lipase to hydrolyze cholesteryl esters
into cholesterol (21, 22). PKA also leads to the activation
of the steroidogenic acute regulatory protein (StAR) (23),
which then transports cholesterol into the mitochondria, where
glucocorticoids are synthesized (steroidogenesis) by the action
of mitochondrial and smooth endoplasmic reticulum enzymes
(Figure 1).

Following synthesis, glucocorticoids are released from the
adrenal glands and are bound to plasma proteins, in particular
to corticosteroid-binding globulins (CBGs). Approximately
80% of circulating glucocorticoids are bound to CBG (24, 25).
Glucocorticoids are released from their binding proteins by the
action of neutrophil elastases at sites of inflammation (25, 26).
Free glucocorticoids then diffuse through cell membranes.
The cellular levels of glucocorticoids are controlled by 2
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FIGURE 1 | Regulation of glucocorticoid synthesis and secretion by the hypothalamic-pituitary-adrenal axis. Exposure to stressors and changes in our daily cycle

(circadian rhythms) stimulate the parvocellular neurons within the paraventricular nucleus of the hypothalamus to release corticotropin releasing hormone (CRH). CRH

then triggers the secretion of the adrenocorticotropic hormone (ACTH) from the anterior pituitary gland. ACTH then binds to its receptors (melanocortin receptor 2,

MC2R) located on the cortex of the adrenal gland. ACTH binding to MC2R leads to the activation of adenylyl cyclase (AC) and the production of intracellular cyclic

adenosine monophosphate (cAMP). cAMP then activates protein kinase A (PKA), which then phosphorylates cAMP response element-binding protein (CREB), which

then promotes steroidogenic gene expression (Cytochrome P450 Family 11 Subfamily B Member, CYPB2, and the steroidogenic acute regulatory protein, StAR) that

leads to the transport of cholesterol (imported from the blood into the cortical cells via the scavenger receptor type B class 1, SARB1) into the mitochondria, where

glucocorticoids are synthesized (steroidogenesis) by the action of mitochondrial and smooth endoplasmic reticulum enzymes. The biologically active form of the

glucocorticoid is the unbound cortisol that can be converted to the inactive form, cortisone by type 2 11β-hydroxysteroid dehydrogenase. Type 1 11β-hydroxysteroid

dehydrogenase converts the cortisone to cortisol. Homeostasis in glucocorticoids synthesis and secretion is maintained by the negative feedback loop suppressing

ACTH levels in the anterior pituitary and CRH levels in the hypothalamus.

enzymes working in an opposing manner: 11β-hydroxysteroid
dehydrogenase type 2 (11βHSD2) oxidizes cortisol into the
inactive metabolite cortisone whereas 11β-hydroxysteroid
dehydrogenase type 1 (11βHSD1) converts cortisone to cortisol
(27). Once inside the cell, glucocorticoids bind their receptor,
the glucocorticoid receptor (GR, NR3C1). GR is a member of
the nuclear receptor family of ligand-activated transcription
factors and is ubiquitously expressed in all nucleated cells
throughout the body. Glucocorticoids can also bind the closely
related mineralocorticoid receptor (MR, NR3C2) which has
a more restricted tissue distribution than GR (28). In most
cell types, MR appears to be principally bound by aldosterone
due to the action of 11βHSD2. However, glucocorticoid
occupancy of MR can occur in certain tissues, such as the
heart, that are deficient in this enzyme. In the face of an
acute stressor, the increase in glucocorticoid levels and their
signaling via GR is beneficial and aids the body in restoring
homeostasis by modulating the immune response, metabolism,
and cardiovascular function (Figure 1). However, exposure to

chronic stress or imbalances in glucocorticoid synthesis and
secretion (e.g., Cushing’s disease or Addison’s disease) leads
to an array of pathologies, ranging from immune disorders to
metabolic and cardiovascular complications (29). Therefore, in
normal physiology, glucocorticoid levels are tightly regulated
by a negative feedback loop at the level of the hypothalamus
and pituitary gland, the availability of CBG in circulation and at
target tissues by the action of 11βHSD1 and 11βHSD2 (26).

As elegantly discussed by McEwen BS (30), depending on the
context, glucocorticoids can exert both protective and deleterious
effects on the body. An acute increase in glucocorticoids in
response to stress is critical to maintaining homeostasis and
allostasis (survival) (30). However, imbalances in glucocorticoid
secretion patterns and levels due to exogenous administration
(increased levels) or pathological states (overproduction or
deficiency) can lead to or accelerate disease processes, including
metabolic and cardiovascular complications (30), which are
commonly found in the elderly. During the aging process,
glucocorticoid secretion patterns undergo several modifications
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characterized by impairments in their circadian profile. While
cortisol increases early during the day in the young, a flattening
in glucocorticoid rhythm is seen in a subpopulation of the
elderly in particular on those suffering from chronic disease,
including cognitive impairments such Alzheimer’s disease (2,
31, 32). This dysregulation in natural glucocorticoid rhythm
seems attributable to a reduction in sensitivity to hypothalamic-
pituitary-adrenal (HPA) axis negative feedback control due to
an increased glucocorticoid level (32). However, there is no
cause and effect relationship established between HPA axis
dysregulation and cognitive impairments, dementia, depression,
anxiety, as well as an increased risk of Alzheimer’s disease,
diabetes, and hypertension in the elderly (33–36). Studies
are needed to fully establish if there is a physiological
effect between the HPA axis dysregulation and increased
glucocorticoid levels and the risk for cognitive impairments,
anxiety, depression, and chronic inflammatory disorders in
the elderly.

Glucocorticoid Receptor Signaling and
Physiology
The GR is encoded by the NR3C1 gene located on chromosome
5 (5q31) in humans and chromosome 18 in mice. The GR gene
is composed of 9 exons, and three domains comprise the GR
protein: (1) an amino-terminal transactivation domain (NTD),
encoded by exon 2, which mediates some interactions with co-
regulators and the transcriptional machinery; (2) a DNA binding
domain (DBD), encoded by exons 3 and 4, which contains two
zinc-finger motifs involved in genomic interactions; and (3)
a ligand-binding domain (LBD), encoded by exons 5–9, that
contains a hydrophobic pocket for glucocorticoid binding and
an activation function (AF2) that interacts with transcriptional
coregulators. The DBD and LBD are separated by a region known
as the hinge region that is involved in receptor dimerization.
Additionally, there are two nuclear localization signals, NL1
and NL2, located in the DBD/hinge region junction and within
the LBD, respectively. Although only one gene encodes GR,
alternative splicing in exon 9 results in two receptor isoforms,
GRα and GRβ. GRα is thought to mediate the majority of
physiological actions of glucocorticoids; however, recent studies
suggest that GRβ can also regulate the expression of numerous
genes involved in inflammation (37) at the level of transcription.
In addition to these most abundant isoforms, the GR gene can
also give rise to three additional splice isoforms known as GRγ,
GR-A, and GR-P. Furthermore, GRα can also undergo alternative
translation in exon 2, leading to the formation of eight additional
GR isoforms, GRα: GRα-A, GRα-B, GRα-C1, GRα-C2, GRα-
C3, GRα-D1, GRα-D2, and GRα-D3. These isoforms exhibit
unique expression patterns and gene regulatory profiles and are
thought to play an important role in the tissue-specific actions of
glucocorticoids (38).

An inactive GR is located in the cytoplasm in complex
with chaperone proteins (hsp90, hsp70, and p23) and
immunophilins of the FK506 family (FKBP51 and FKBP52) (38–
40). Upon hormone binding, GR undergoes a conformational
rearrangement that results in the dissociation of the associated

proteins and the exposure of two nuclear localization signals
that trigger GR rapid translocation into the nucleus (38). Once
in the nucleus, GR exerts effects on the expression of target
genes by directly binding to DNA or by interacting with other
transcription factors (genomic mechanisms) (29, 38, 41, 42).
Additionally, GR can act via protein-protein interactions in the
cytoplasm (non-genomic mechanisms) that lead to rapid cellular
responses that trigger the activation of various kinases, including
PI3K, AKT, and MAPKs (43–45).

In addition to the different GR isoforms and genomic
and non-genomic mechanisms of action, post-translational
modifications (PTMs) affect the transcriptional and physiological
activity of GR. The effects of phosphorylation have been
extensively characterized and have been found to be critical
for GR genomic and non-genomic interactions, including
cellular localization, half-life, and interaction with DNA and
coregulators. Additional PTMs, including ubiquitination,
acetylation, and sumoylation, have been shown to influence
GR activity. The GR gene and protein structure, isoforms,
PTMs, and mechanisms of signaling are described in detail
in recent reviews by Oakley et al. (38) and Scheschowitsch
et al. (46).

Further complexity and diversity in the physiological
responses of glucocorticoids are achieved by these hormones
acting in a sex- and tissue-specific manner (47–50), and
by glucocorticoid activation of MR in cells deficient in
11βHSD2 Like GR, MR is comprised of an NTD that regulates
transcriptional activity, a DBD for interacting with specific
genomic sequences, and a LBD that binds glucocorticoids (or
aldosterone) (51). The DBD of MR is 94% identical to the DBD
of GR. Therefore, in response to glucocorticoids, GR andMR can
bind the same DNA response element but these receptors elicit
distinct transcriptional effects on target genes (52, 53). Figure 2
summarizes some of the effects of glucocorticoids and GR in
different organ systems.

How aging alters the molecular mechanisms of glucocorticoid
signaling remains largely unknown. A study by Murphy et al.
(54) found that intracellular GR trafficking is impaired in the
aging hippocampus due to a deficit in chaperone proteins, which
diminish GR signaling within this area of the brain. A later study
showed that GR mRNA levels in the cortex of the brain rise
between infancy and adolescence and decline between adulthood
and advanced age (55). The same study found that GR mRNA
levels remain stable across the life span in the hippocampus (55).
However, the mechanism that causes this aged-related change in
GR expression in the cortex is unknown.

Little is also known about the effects of aging on GR signaling
in the cardiovascular system. For example, no studies have been
performed to test whether the expression of GR isoforms changes
with age or whether there are alterations in GR phosphorylation
or in other PTMs that affect GR cellular signaling. Additionally,
no data exist on how activation of GR signaling by exposure
to acute or chronic stressors alters the gene expression profile
of the aging heart. In the next section, we will discuss the
latest research on glucocorticoids and GR signaling in the
heart and the potential interplay between age and stress in
cardiac health.
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FIGURE 2 | Physiological glucocorticoid effects. Glucocorticoids exert direct actions in major organ systems of the human body. Their effects range from modulation

of the inflammatory and immune response to the regulation of glucose and lipid metabolism in different tissues. Glucocorticoid signaling plays an essential role on the

cardiovascular system. In normal physiology, glucocorticoids exert cardioprotective and anti-inflammatory effects, and have an essential role in controlling blood

pressure and cardiac function.

GLUCOCORTICOID SIGNALING AND THE
AGING CARDIOVASCULAR SYSTEM

Glucocorticoids and the Vasculature in
Aging
Several mechanisms have been shown to contribute to vascular
pathology in aging. However, oxidative stress [increased reactive
oxygen species (ROS) production] is a significant contributor
to coronary artery disease, myocardial ischemia, and stroke
in the elderly (56). There is strong evidence that endothelial
dysfunction caused by ROS leads to both impaired dilation
of coronary arteries and a pro-atherogenic vascular phenotype
in aging (57–61) by altering endothelium nitric oxide (NO)
production (62), which is a major endogenous vasodilator,
anti-inflammatory, and anti-thrombotic molecule (59–61). The
decreased in NO synthesis has been proposed to be responsible
for many of the age-associated vasoconstriction and reduced
tissue perfusion (63–66). NO bioavailability during aging is
also affected by alterations in endothelial nitric oxide synthase
(eNOS) activation status, concentrations of L-arginine (NO

substrate) and decreasing expression of guanosine triphosphate
cyclohydrolase 1 (GTPCH1) mRNA, which is the rate-limiting
enzyme in the production of the cofactor tetrahydrobiopterin
(BH4) (59–61, 67). Glucocorticoids exert effects on the
vasculature by GR regulation of a vast array of signaling pathways
that are involved in development, angiogenesis, oxidative stress,
and inflammation in vascular smooth and endothelial cells (59,
68). Among themost well-characterized effects of glucocorticoids
on the vasculature are those mediated by GR modulation of
NO biosynthesis (68, 69). NO production is elevated in the

early response to glucocorticoids, but its levels are significantly
repressed at later phases of the stress response, or when exposed
to sustained increases in systemic glucocorticoids (70). Studies
using mouse models have shown that systemic glucocorticoid
administration leads to hypertension by a mechanism involving
inhibition of NO metabolites, NO2–, and NO3– (indicators of
total NO levels), and by downregulating the gene expression of
NO synthase III in endothelial cells (71). More recent studies on
transgenic mouse models showed that these effects are mediated
directly by vascular smooth muscle and endothelial cells GR
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expression (72, 73). Although mice lacking GR in vascular
smooth muscle cells displayed a normal phenotype under basal
physiology, when glucocorticoids were acutely administered,
the smooth cell-specific knockout mice were protected from
glucocorticoid-induced hypertension as compared to their
littermate controls (72). These results suggest a role for smooth
cells-GR in regulating the hypertensive response in vivo (72).
An intact GR signaling seems to play a more critical role in
vascular endothelial cells. Mice lacking GR in endothelial cells
were relatively resistant to dexamethasone-induced hypertension
(74) and displayed increased expression of eNOS and inducible
nitric oxide synthase (iNOS), which are critical enzymes in NO
synthesis (73, 74). Endothelial cell GR knockoutmice also have an
exacerbated hypotensive response after lipopolysaccharide (LPS)
administration due to increase NO production by endothelial
cells (74).

In addition to the effects of glucocorticoids on NO
biosynthesis, glucocorticoids can increase the expression of
angiotensin II type I receptors in smooth muscle cells affecting
blood pressure (75). Moreover, glucocorticoids can influence
the influx of Na+ and Ca2+ into vascular smooth muscle
affecting contractility and therefore leading to alterations
in blood pressure. However, this effect could be mediated
by the closely related mineralocorticoid receptor (MR). In
addition, glucocorticoids exert effects on the vascular tone
regulation by inhibiting angiogenesis, cell proliferation, viability,
and cell migration via GR regulation of the anti-angiogenic
thrombospondin-1 (74, 76). Moreover, glucocorticoids have
indirect effects on the vasculature throughout their actions
on inflammatory cells within the vasculature that contribute
to endothelial cell responses and function. In the context of
aging, the role of GR signaling in the vasculature has not been
studied or characterized. However, based on the data discussed
above, glucocorticoid signaling is most likely influencing the
aged vasculature, and depending on the context, the effects may
be beneficial or detrimental. Future studies are needed to fully
elucidate the role of GR signaling in the vasculature in aging, and
whether pharmacological regulation of this signaling pathway
can be potentially used to control hypertension in the elderly.

Glucocorticoids and the Heart
In the last decade, studies have shown that depending on the
physiological context (e.g., sex, disease state, etc.), type and
duration of the stress (e.g., environmental, psychological, acute
or chronic), and mechanisms of signaling (via GR or the closely
related MR) glucocorticoids have many effects on the heart.
Some of these effects are positive and essential for life, whereas
other effects can be detrimental for cardiac health. Clinical data
suggest that decreased systemic GR signaling is associated with
a reduction in cardiac contractile force, systolic dysfunction,
coronary artery disease, dilated cardiomyopathy, and progression
to heart failure (77–81). Similarly, overactivated glucocorticoid
signaling has been shown to lead to negative cardiac outcomes.
For example, prenatal exposure to glucocorticoids due to
increased stress levels during pregnancy increases the risk
for developing cardiovascular disease in adulthood (82).
Additionally, excessive glucocorticoid levels due to endocrine

disorders or pharmacological treatment are linked to major risk
factors for cardiovascular disease, including metabolic syndrome
and hypertension, and to pathological cardiac hypertrophy and
failure (83–86). A limitation of many these studies is that they
do not distinguish between systemic actions of glucocorticoids
and direct local actions of glucocorticoids on the heart and
the vasculature.

Both in vitro and in vivo models have provided significant
insights into the direct role played by cardiomyocyte GR. Since
global deletion of GR leads to death soon after birth (87), Rog-
Zielinska et al. performed prenatal studies on mice with global
knockout of GR and on mice with conditional knockout of GR in
cardiomyocytes and vascular smooth muscle cells to investigate
the role of glucocorticoid signaling in fetal heart maturation
(88). Their studies showed that prenatal inactivation of global
GR decreases the size of the heart, impairs diastolic function,
and alters cardiomyocyte structure and fibril organization. Hearts
from these mice also presented with defects in the levels of alpha
myosin heavy chain (Myh6), the major contractile protein in
adult hearts, and in calcium handling proteins, including the
cardiac ryanodine receptor (Ryr2), sodium calcium exchanger
(NCX1), and the sarcoplasmic/endoplasmic reticulum calcium
ATPase (SERCA2a) (88). These findings highlight the role
of glucocorticoid signaling in the development of the heart,
particularly in regulating the maturation and expression of genes
critical for cardiomyocyte architecture and function (88).

The role of GR signaling in the postnatal heart has also been
demonstrated with transgenic mouse models. An elegant study
by Sainte-Marie et al. (89) demonstrated that cardiomyocyte
overexpression of human GR in the mouse heart leads to an
abnormal heart rhythm (bradycardia) and electrical deficits in
the heart, including an extended PQ interval, long QRS duration,
and increased QTc dispersion (89). In vitro studies using
cardiomyocytes isolated from the heart of these transgenic mice
showed that the observed phenotype resulted from defects in
sodium and potassium currents and increases in L-type calcium
currents, calcium transient amplitudes, and the sarcoplasmic
reticulum (SR) calcium content (89). These results suggested
that overactivation of GR signaling in cardiomyocytes leads to
abnormalities in the cardiac conduction system, but no structural
abnormalities were found in this mouse model.

Studies by Oakley et al. (90) on mice lacking GR only
in cardiomyocytes showed that inactivation of cardiomyocyte
GR leads to premature death (median survival age is ∼7
months) due to the development of systolic dysfunction and
dilated cardiomyopathy. In agreement with the prenatal and
overexpression findings, this study also found that cardiomyocyte
GR plays a role in the regulation of genes involved in cardiac
structure and calcium handling (90). Interesting the deleterious
effects of GR inactivation occur earlier and exacerbated in males
compared to females (91).

Recent studies by the same group using a transgenic
mouse model lacking both GR and MR in cardiomyocytes
showed that inactivation of MR rescued the left ventricular
dysfunction and premature mortality observed in the absence
of GR (92). Despite exhibiting a reduction in several Ca2+
handling genes as well as increased expression of pathological
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FIGURE 3 | Schematic representation of the phenotypes of transgenic mice targeting GR in cardiomyocytes. Shown are the major morphological and functional

phenotypes associated with GR overexpression (GR+), GR inactivation (GR–), and GR and MR inactivation (GR/MR–) in the whole heart, vascular smooth muscle

cells (VSMC), and cardiomyocytes.

cardiac hypertrophy markers, the double knockout mice have
normal heart morphology and function compared to the single
GR knockout mouse model (92). These data suggest that
under conditions of myocardial stress, such as that triggered
by inactivation of cardiomyocyte GR, MR signaling becomes
deleterious and promotes cardiac disease (93–96). Cardiac MR
signaling has also been shown to be harmful in other models of
heart dysfunction. Evidence suggests that pathological conditions
resulting in the accumulation of reactive oxygen species may
be responsible for the inappropriate gene regulatory activity of
glucocorticoid occupied MR in the heart (97–99). Currently,
there is much interest in cardiac MR signaling since treatment
with the MR antagonists eplerenone or spironolactone leads to
a reduction in morbidity and mortality in heart failure patients
(100). The role of MR signaling in the heart is described in detail
in recent reviews by Oakley et al. (78) and Young et al. (101).
Figure 3 summarizes some of the effects of glucocorticoids on
the heart.

Regarding the role of glucocorticoids in the aging process,
some studies show that an increase in glucocorticoid levels
accelerates the aging process and increases the risk of premature
mortality due to negative effects on vasculature, adipose tissue,

and lipid and carbohydrate metabolism (102–104). There are
no studies, however, on the direct effects of glucocorticoid
signaling on aging cardiomyocytes and the heart. Therefore, it
is still unclear whether increased glucocorticoid levels directly
contribute to cardiovascular complications during aging or
whether the interplay of glucocorticoid signaling with additional
risk factors, such as obesity, hypertension, and diabetes, drives the
negative systemic actions of these hormones on the heart. In the
next section, we will discuss the potential role of glucocorticoids
and GR signaling in cardiomyocyte dysfunction in aging and
whether manipulation of this system could be potentially used
to maintain a healthy heart.

Glucocorticoids and Cardiomyocyte
Dysfunction in Aging
Cardiac hypertrophy is a hallmark of aging and a major cause of
heart failure (3, 4, 105, 106). Increased glucocorticoid levels have
been associated with pathological cardiac hypertrophy (107). In
vitro and in vivo studies show that glucocorticoid administration
under non-stress conditions leads to cardiomyocyte hypertrophy
characterized by cellular structural and morphological changes
and an increase in the levels of the cardiac hypertrophy
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markers atrial natriuretic factor (ANF), β-myosin heavy chain
(MHC), and skeletal actin (SKA). Additionally, changes in
the expression of the pro-hypertrophic genes α1b-adrenergic
receptor (ADRα1b), insulin growth factor (IGF)-IR), and
interleukin (IL)-6R were found in response to glucocorticoid
treatment (108–110). IGF-I signaling is one of the best
characterized pathways that is known to be involved in regulating
lifespan in animal models (111). Decreased activation of this
signaling has been associated with improved cardiomyocyte
performance and an attenuation of age-related structural changes
in cardiomyocytes (112, 113); however, studies in humans have
shown a correlation between low IGF-I levels and an increased
risk for heart failure in elderly patients (114). Additionally, an
increase in circulating levels of IGF-I resulting from growth
hormone (GH) therapy has been shown to be beneficial for the
treatment of heart failure patients (115–117). IGF-I signaling
has been proposed to exert this cardioprotective effect on
aging by decreasing reactive oxygen species production by the
mitochondria and thereby reducing cellular oxidative stress (118,
119). Therefore, some of the effects of glucocorticoids on the
aging heart may be mediated by GR-dependent regulation of
this pathway. Future studies are needed to further elucidate the
relevance of the crosstalk between GR and IGF-I signaling in the
context of heart aging and heart failure.

Under stressful conditions (e.g., starvation), studies show
that glucocorticoids protect cardiomyocytes from cell death
through GR-dependent upregulation of anti-apoptotic proteins
such as Bcl-xL and repression of pro-apoptotic proteins,
such as Gas2 (108). These results suggest that the elevation
in glucocorticoid levels during aging may have a direct
protective role in the heart by preventing cardiomyocyte death
triggered by age-related changes in the levels of proteins
associated with cardiomyocyte architecture and mechanical
properties (e.g., myosin heavy chain and sarcomeric actin
isoforms), calcium handling [e.g., SERCA2 [SR (sarcoplasmic
reticulum)/ER (endoplasmic reticulum) Ca2+-ATPase 2]], and
DNA repair mechanisms (120).

Collectively, these findings suggest that glucocorticoids can
both positively and negatively influence the function of the
heart through direct effects on cardiomyocytes. Future research
needs to be focused on elucidating the mechanisms by
which glucocorticoids exert these positive/negative actions on
cardiomyocytes, in which context glucocorticoids signal through
GR and/or MR, and whether the majority of their beneficial
effects on the heart are mediated by cardiomyocyte GR signaling
or MR signaling.

CONCLUSIONS AND FUTURE
PERSPECTIVES

Aging has a significant impact on the endocrine system, affecting
hormonal secretion patterns and hormone sensitivity, but the
endocrine system also modulates aging by triggering changes
in gene expression and the cellular structure of different organ
systems. There is a clear connection between the endocrine
system and cardiac health in aging. Whether this connection
leads to positive or negative effects depends on the influence of
intercurrent chronic diseases, nutritional status, and other age-
related changes. In the context of the heart, the aging process
is associated with significant morphological and functional
alterations, including cardiac hypertrophy and fibrosis, and
changes in end-systolic and diastolic volume, and cardiac filling
pressure and diastolic relaxation, among other parameters. The
aging heart also displayed marked abnormalities in the cardiac
conduction system that impacts the heart electrical properties (6,
121). Given the role of GR signaling in regulating the expression
of key genes involved in Ca2+ handling, cell death pathways, and
cardiac hypertrophy and fibrosis, future studies are needed to
test if targeting cardiomyocyte activation of GR with high affinity
agonists holds promise for the development of new therapies for
combatting cardiac disease in the elderly.
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