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Abstract: The evaluation of liquid chromatography high-resolution mass spectrometry (LC-HRMS)
raw data is a crucial step in untargeted metabolomics studies to minimize false positive findings.
A variety of commercial or open source software solutions are available for such data processing.
This study aims to compare three different data processing workflows (Compound Discoverer 3.1,
XCMS Online combined with MetaboAnalyst 4.0, and a manually programmed tool using R) to
investigate LC-HRMS data of an untargeted metabolomics study. Simple but highly standardized
datasets for evaluation were prepared by incubating pHLM (pooled human liver microsomes)
with the synthetic cannabinoid A-CHMINACA. LC-HRMS analysis was performed using normal-
and reversed-phase chromatography followed by full scan MS in positive and negative mode.
MS/MS spectra of significant features were subsequently recorded in a separate run. The outcome of
each workflow was evaluated by its number of significant features, peak shape quality, and the results
of the multivariate statistics. Compound Discoverer as an all-in-one solution is characterized by its
ease of use and seems, therefore, suitable for simple and small metabolomic studies. The two open
source solutions allowed extensive customization but particularly, in the case of R, made advanced
programming skills necessary. Nevertheless, both provided high flexibility and may be suitable for
more complex studies and questions.

Keywords: untargeted metabolomics; LC-HRMS; data processing; feature detection; A-CHMINACA

1. Introduction

Metabolomics is defined as the analysis of the whole metabolome of a biological system and therefore,
aims to detect as many metabolites as possible in a biological sample [1,2]. However, the metabolic profile
is not limited to endogenous metabolites but also metabolites of exogenous sources like drugs, diet, and gut
microbiota may be added in. Furthermore, metabolomic studies can be divided into two major strategies,
untargeted and targeted approaches. Targeted metabolomics usually aims to detect and quantify specific
metabolites of known structures. The untargeted or global approach usually aims to identify as many
metabolites as possible without having any previous knowledge about them [1,3].

Due to its high selectivity and sensitivity, liquid chromatography coupled to high-resolution
mass spectrometry (LC-HRMS) is currently the most commonly applied analytical technique in
metabolomics [4–6]. To correctly interpret differences in specific metabolites and to gain a proper
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biological interpretation, a reliable and suitable entire approach is necessary [4,5]. The part of data
processing includes a series of steps such as peak detection, peak alignment, baseline correction,
and annotation [7–9]. Data processing of LC-HRMS raw data is a key step in untargeted
metabolomic studies, which establishes a sound basis to accurately identify significant changes.
It involves reducing the complexity of raw data by extracting features, and usually transforming them
in order to subsequently perform adequate statistical tests [9,10].

A variety of software solutions are available for untargeted data processing, such as the
open source software XCMS, MZmine, OpenMS [11], MetAlign, MetaboAnalyst [12] and the
commercial software MarkerView, Compound Discoverer (CD), MetaboScape etc. In the case of
open source software, modules are often based on the programming language R [7].

Since the underlying algorithms differ, it is very likely that the outcome of a metabolomic study might
vary upon the tools used. Li et al. compared the performance of five software solutions (MS-Dial, MZmine,
XCMS, MarkerView, and CD) on a benchmark dataset from standard mixtures. All five software solutions
revealed similar performance in detecting true features. Nevertheless, to select true discriminating markers,
they recommended the combination of MZmine 2 and XCMS [13]. Fernández-Ochoa et al. determined that
Agilent Profinder showed good quality of the graphs and was characterized by its ease of use, whereas the
R pipeline seemed to be better suited for studies with a large number of samples [7].

Since further studies are missing and the selection of an appropriate tool is essential for the
quality and outcome of the statistical evaluation, the present study aimed to compare three different
data processing workflows to investigate LC-HRMS data of an untargeted metabolomics study,
namely the commercially available software CD 3.1, the open source online tool XCMS Online
in combination with MetaboAnalyst 4.0 (XCMS/MetaboAnalyst), and a manually programmed
tool using the language R based on different R packages [14]. XCMS, MetaboAnalyst, and the
R script were chosen as they were identified as suitable and were successfully used in previous
studies [15–17]. Simple but highly standardized datasets for evaluation should be used by
incubating pooled human liver microsomes (pHLM) with the synthetic cannabinoid A-CHMINACA
(1(-cyclohexylmethyl)-N-tricyclo[3.3.1.13,7]dec-1-yl-1H-indazole-3-carboxamide). The outcome of each
workflow should be evaluated by its number of significant features, the quality of the peaks, and
the results of multivariate statistics. Additionally, the metabolite profile of A-CHMINACA in pHLM
should be elucidated.

2. Results and Discussion

2.1. Study Design

Due to the ease of use and low variability of individual pHLM incubations and the fact that
it is a very well characterized in vitro model for drug metabolism studies, incubations of pHLM
with the synthetic cannabinoid A-CHMINACA were prepared to generate simple datasets [18].
The incubation mixtures were then analyzed using LC-HRMS/MS and finally, three different software
tools for untargeted data processing were applied to identify significant features. Software evaluation
in this study included the commercial software CD 3.1, which was developed for the used type
of MS instrument; open source software workflows including a combination of XCMS Online and
MetaboAnalyst 4.0; and a manually programmed tool using R. While XCMS-based software tools
might be one of the best solutions for LC-HRMS/MS untargeted metabolomics, XCMS was used as a
preprocessing tool in the case of the two open source workflows [15,19–22]. After data processing,
significant features were identified and the metabolic fate of A-CHMINACA in pHLM was elucidated.
The three untargeted data processing workflows were extensively evaluated with regards to their
number of significant features, the peak quality of the significant feature, their false positive rate,
and the results of the multivariate statistics.
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2.2. Untargeted Metabolomics

2.2.1. Parameter Optimization for the Three Different Workflows of Untargeted Metabolomics

In untargeted data processing, the optimization of various parameters is important to allow for the
detection of chromatographic peaks, construct extracted ion chromatograms (EICs), annotate features, and
for chromatogram alignment [19]. Since the two open source software tools XCMS/MetaboAnalyst and R are
not already optimized, peak picking and alignment parameters were optimized using a previously optimized
workflow [15]. The optimized XCMS parameters are summarized in Table S1. Using the R workflow,
all eight parameters could be transferred in exactly the same way. For XCMS Online, prefilter 1 was limited
up to 10. If this parameter was greater than 10, 10 was used for XCMS Online. Additionally, the parameter
bandwidth could only be specified in positive integer numbers in XCMS Online, so if this parameter was less
than 1, 1 was used. Since the commercial software CD was developed specifically in combination with the
used MS instrument type, an already existing workflow for untargeted metabolomics, namely “Untargeted
Metabolomics with statistics detect unknowns with ID using Online Database and mzLogic”, was chosen
without changing any parameters.

2.2.2. Comparison of Significant Features of the Three Different Workflows

Univariate statistics was done using one-way analysis of variance (ANOVA) for all three workflows
(Figure S1). False positive results were prevented using Bonferroni correction as a multiple testing
correction technique [23]. Since the settings of XCMS Online did not allow a change from the
Kruskal–Wallis test to ANOVA in multi-group comparisons for no evident reason, XCMS Online was
only used for peak picking and alignment. The resulting table was then reduced to the peak areas
and retention times between 1 and 10 min. The entire statistical evaluation was performed using
MetaboAnalyst 4.0. Visual inspection of the plotted ANOVA results (Figure S1) of the two open source
workflows revealed that they were similar to each other concerning significant features and their
corresponding p-values. In contrast to this, differential analysis over all three groups was not possible
using CD, because the software does not allow one to do a statistical evaluation of more than two groups.
Thus, statistical evaluation using a Welch t-test in combination with the corresponding fold change
had to be performed for blank vs. low, blank vs. high, and low vs. high. A feature was considered
significant if it was significant between one of the two groups. In terms of number of significant features,
15 significant features were obtained for CD, 32 for the XCMS/MetaboAnalyst solution, and 28 for R
using normal phase chromatography and positive ionization mode. In the case of using a reversed
phase chromatography and positive ionization mode, 5 significant features were received for CD, 13 for
XCMS/MetaboAnalyst, and 11 for R. None of the analyses indicated significant features using negative
ionization mode. The Venn diagram in Figure 1A shows the composition of all significant features
obtained after using the three data processing workflows and the two analytical columns. In total, 11 of
the significant features were detected after using each of the three workflows, 31 significant features
were determined after using both open source workflows, and 17 after using CD. While the manually
programmed R tool used the R package CAMERA to identify isotopes and adducts in the dataset,
CD annotated neither isotopes nor adducts. In CD, isotopes and adducts were merely labeled in the
spectrum of the related compound, but not listed in the compound list and therefore, not annotated as
significant features. Taking this into account, the number of significant features identified by the two
open source workflows that are neither isotopes nor adducts could be reduced to 9 (Figure 1B).
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Figure 1. Comparison of the significant features of the three data processing workflows R (red),
XCMS Online combined with MetaboAnalyst (green), and Compound Discoverer (CD, blue) displayed
as Venn Diagram; (A = with isotopes and adducts; B = without isotopes and adducts).

In addition to the number of significant features, the three workflows were also evaluated
according to the peak shape quality of these features. Since the extracted ion chromatogram (EIC)
of some detected significant features appeared to be false positive hits, the significant features were
divided into true and false features based on the peak shape quality of their EIC. Therefore, peak quality
was divided into two main categories. The first category included non-existent group differences,
which means that in the EIC of the respective significant features, there was no clear separation of
peak intensity between the four groups Blank, Low, High, and QC. The second category included
the non-correct peak integration, which means that in the EIC, the integrated peak could not be
separated from the baseline. By comparing the quality of the peaks based on the two categories
mentioned above, the overall true features for the three different workflows were 17 for CD, 28 for
XCMS Online/MetaboAnalyst, and 24 for R. The significant features detected by CD were all identified
as true features, which can be explained by the fact that this workflow does not show isotopes or adducts
as significant features. Furthermore, in comparison to the two open source workflows, CD used a fold
change of 1 in addition to the p-value in order to filter the features in one of the group comparisons.
The true features are listed in Tables 1 and 2.

Table 1. Overview of significant features of A-CHMINACA after untargeted analysis using
reversed-phase chromatography in positive mode of all three workflows.

Feature Measured Mass, m/z Retention Time, s Found with Identity

M296T431 296.1768 431 XM, CD A-CHMINACA-M (N-dealkyl-)
M424T443 424.2610 443 R, XM A-CHMINACA-M (di-HO-)
M408T474 408.2661 474 R, XM, CD A-CHMINACA-M (HO-)
M409T474 409.2693 474 R, XM A-CHMINACA-M (HO-) 13C isotope
M430T474 430.2481 474 R, XM A-CHMINACA-M (HO-) adduct [M + Na]+

M392T547 392.2710 547 R, XM, CD A-CHMINACA
M393T547 393.2743 547 R, XM A-CHMINACA 13C isotope
M394T547 394.2775 547 R, XM A-CHMINACA 13C2 isotope
M414T547 414.2530 547 R, XM, CD A-CHMINACA adduct [M + Na]+

M415T547 415.2562 547 R, XM A-CHMINACA adduct [M + Na]+ 13C isotope
M430T547 430.2270 547 R, XM, CD A-CHMINACA adduct [M + K]+

M437T547 437.3290 547 R, XM A-CHMINACA adduct
M438T547 438.3320 547 XM A-CHMINACA adduct 13C isotope

Features are ordered by retention time and m/z. Isotopes were annotated by the R package CAMERA and
not further identified. Metabolites are indicated by bold font. XM = XCMS Online/MetaboAnalyst, CD =
Compound Discoverer.
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Table 2. Overview of significant features of A-CHMINACA after untargeted analysis using a normal
phase (HILIC) column in positive mode of all three workflows.

Feature Measured Mass, m/z Retention Time, s Found with Identity

M355T70 355.2392 70 R, XM Unknown
M430T71 430.2270 71 XM A-CHMINACA adduct [M + K]+

M392T72 392.2710 72 R, XM, CD A-CHMINACA
M393T72 393.2743 72 R, XM A-CHMINACA 13C isotope
M394T72 394.2775 72 R, XM A-CHMINACA 13C2 isotope
M395T72 395.2809 72 R, XM A-CHMINACA 13C3 isotope
M356T74 356.1802 74 XM Unknown
M135T76 135.1174 76 CD A-CHMINACA artifact (adamantyl-ring)
M408T83 408.2661 83 R, XM, CD A-CHMINACA-M (HO-)
M409T83 409.2693 83 R, XM A-CHMINACA-M (HO-) 13C isotope
M296T86 296.1768 86 R, XM, CD A-CHMINACA-M (N-dealkyl-)
M297T86 297.1800 86 XM A-CHMINACA-M (N-dealkyl-) 13C isotope
M408T88 408.2661 88 CD A-CHIMINACA-M (HO-)
M422T92 422.2453 92 R, XM A-CHIMINACA-M (HO, Oxo)
M424T93 424.2610 93 CD A-CHMINACA-M (di-HO-)
M424T96 424.2610 96 R, XM, CD A-CHMINACA-M (di-HO-)
M425T96 425.2644 96 R, XM A-CHMINACA-M (di-HO-) 13C isotope
M274T113 274.1559 113 R, XM A-CHMINACA-M (HO-) (N-dealkyl-)
M312T115 312.1715 115 R, XM, CD A-CHMINACA-M (HO-) (N-dealkyl-)
M146T116 146.0819 116 CD A-CHMINACA artifact (indazole-core)
M440T117 440.2561 117 CD A-CHMINACA-M (tri-HO-)
M440T122 440.2565 122 CD A-CHMINACA-M (tri-HO-)
M176T135 176.0924 135 R, XM, CD Unknown
M158T135 158.0818 135 R, XM, CD [M + H − H2O]+175.086
M188T170 188.1288 170 R, XM, CD Unknown
M158T174 158.0818 174 R, XM [M + H − H2O]+175.086
M176T174 176.0924 174 R, XM, CD Unknown
M341T219 341.2447 219 R, XM Unknown
M313T253 313.2649 253 R, XM Unknown
M248T270 248.2382 270 XM Unknown

Features are ordered by retention time and m/z. Isotopes were annotated by the R package CAMERA and
not further identified. Metabolites are indicated by bold font. XM = XCMS Online/MetaboAnalyst, CD =
Compound Discoverer.

2.2.3. Comparison of Multivariate Statistics of the Three Different Software Workflows

In addition to univariate statistics, datasets are usually also analyzed using multivariate methods
to identify the largest changing features and specific signatures in the data [2]. In this study,
principal component analysis (PCA) and hierarchical clustering were used to evaluate differences
between the three workflows.

PCA, as a non-supervised method, does not use any group information to find the
principal component. It is a data reduction technique, which enables high dimensional datasets to be
reduced to a few major principal components (PC) [24]. The scores of these components, which are
the weighted sum of the contribution of each metabolite to a principal component, are plotted.
It can be seen that each incubation group is distinct from another one. In addition to the score plot,
the loading plot provides information on which metabolites are contributing the most to the separations
between groups [24]. The results of the scores of PCA of all three workflows are shown in Figure 2.
The corresponding scree plots are shown in Figure S2. Regarding the variance of the first principal
component (PC1), differences between the three workflows became visible. While PC1 accounts
for 97% of variance in R, it dropped to 60.6% in CD when using a PhenylHexyl column in positive
ionization mode. One explanation for this difference could be the different peak picking parameters.
While the two open source workflows are highly adaptable methods regarding the optimization
of parameters, CD is a black box with limited possibilities for optimization. Another explanation for
the different PC1 could be that R and CD revealed a different amount of significant features. In contrast
to the two open source workflows, CD did not detect any isotopes or adducts of the parent compound
and its metabolites as significant features. This led to a low amount of compounds in relation to other
substances within the incubation mixture and therefore, the variability between the group Blank and
the groups Low and High are much higher. Figure S3 shows an example of the scores of PCA of the
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two open source workflows without isotopes and adducts using a PhenylHexyl column and ESI in
positive ionization mode.

Figure 2. Scores of principal component analysis. (A = XCMS Online/MetaboAnalyst, HILIC column,
positive mode; B = XCMS Online/MetaboAnalyst, PhenylHexyl column, positive mode; C = R,
HILIC column, positive mode; D = R, PhenylHexyl column, positive mode; E = Compound Discoverer,
HILIC column, positive mode; F = Compound Discoverer, PhenylHexyl column, positive mode).

Another technique for statistical data analysis, which was used to assess the difference of the
three workflows, was hierarchical clustering. Hierarchal cluster analysis refers to a specific family of
distance-based procedures for cluster analysis. Clusters consist of objects that are less distant from
each other than objects in other clusters. In untargeted metabolomic studies, heat maps of hierarchical
clustering can be used to discover clustering patterns in the datasets. Figure 3 shows the resulting
heatmaps for all three workflows. Except for the heatmap of CD when using a PhenylHexyl column,
all other heatmaps showed a clear discrimination between samples from the group Blank and groups
Low and High. Blank samples appear very close or within the cluster of samples from group Low.
This could be explained by the concentration of the parent compound that was very low in group Low
and therefore, this concentration could not sufficiently form as many metabolites as in group High.
QC samples belonged to the cluster of samples from group High. Since pooled sample QC consisted
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of a mixture of every incubation sample, it contained the parent compound and its metabolites in a
concentration of the samples from group High and Low. As shown in Figure 3F, only two samples of
group High showed a clear discrimination between the other samples. The most likely explanation
could be the low number of significant features. In comparison to the two open source workflows,
CD detected only five significant features including the parent compound and four metabolites of
A-CHMINACA, which showed their highest intensity in sample group High.

Figure 3. Heat map of hierarchical clustering. (A = XCMS Online/MetaboAnalyst, HILIC column,
positive mode; B = XCMS Online/MetaboAnalyst, PhenylHexyl column, positive mode; C = R,
HILIC column, positive mode; D = R, PhenylHexyl column, positive mode; E = Compound Discoverer,
HILIC column, positive mode; F = Compound Discoverer, PhenylHexyl column, positive mode).

2.3. Targeted Metabolomics

2.3.1. Identification of Significant Features

The results of the identification of significant features are summarized in Tables 1 and 2. Annotated
isotopes by CAMERA were not further analyzed. All other features were analyzed using the parallel
reaction monitoring (PRM) method described below and the mass spectra are shown in Figure S4.
Proposed structural formulas of the metabolites were deducted by comparing their spectra with
those of the parent compound or reference spectra using the METLIN and Human Metabolome
Database (HMBD) [25,26]. According to the Metabolomics Standards Initiative, this approach referred
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to category two, which means a putatively annotated compound [25]. It applies to all of the identified
compounds except for 10 significant features, which are yet unknown and therefore, belongs to
category four. Concerning the incubations using A-CHMINACA, significant features consisted of
eight isotopes, two artifacts, nine metabolites, and four adducts.

2.3.2. Metabolism of A-CHMINACA in pHLM

From here onwards, only exact masses will be used for characterization of the parent compound and
its respective metabolites. The proposed phase I metabolic pathways of A-CHMINACA in pHLM are
summarized in Figure 4. After incubation with pHLM, nine metabolites were found in total. The main
metabolic reaction was the hydroxylation of the adamantyl-ring, which has already been described for
other synthetic cannabinoids containing such structure [27,28]. Protonated ions for hydroxylation were
observed with m/z 408.2661 (C25H34N3O2), m/z 424.2610 (C25H34N3O3), and m/z 440.2565 (C25H34N3O4)
corresponding to mono-, di-, and trihydroxylated derivates, respectively. Monohydroxylation of the
adamantyl-ring concerning M408T83 (PH: M408T474) was identified by the occurrence of the highly
abundant fragment ion with m/z 151.1117 (C10H15O) (Figure S4). Additionally, the occurrence of
the fragment ion with m/z 133.1012 (C10H13), which resulted from water loss on the adamantyl-ring,
supported this theory. M424T96 revealed an unmodified indazole-3-carbaldehyde moiety by the
occurrence of the fragment ion with m/z 241.1335 (C15H17N2O), suggesting that this molecule was
hydroxylated twice at the adamantyl-ring. The fragment ion with m/z 167.1067 (C10H15O2) also
strongly indicated that both hydroxylations occurred at the adamantyl-ring. Since M440T117 and
M440T122 had the same MS2 spectra, both gave rise to a fragment ion with m/z 422.2438 (C25H32N3O3)
indicating the loss of water from the species with m/z 440.2544 (C25H34 N3O4). The observed
fragment ion with m/z 167.1067 (C10H15O2) corresponded to the dihydroxylation at the adamantyl-ring.
The loss of water at the adamantyl-ring resulted in a fragment ion with m/z 149.0961 (C10H13O).
Whereas the monohydroxylation and dihydroxylation could be found significant by all three workflows,
trihydroxylation was only found by CD. In comparison to M424T96 (PH: M424T434), the feature
M424T93 gave rise to a fragment ion with m/z 151.1117 (C10H15O), indicating that hydroxylation
occurred once at the adamantyl-ring. Hydroxylation and oxidation at the adamantyl-ring of M422T92
were identified by the occurrence of fragmentation with m/z 165.0910 (C10H13O2), while the fragment
ion with m/z 404.2332 (C25H30 N3O2) resulted from water loss on the adamantyl-ring. Features
M296T86 (PH: M296T431), M274T113, and M312T115 were formed after N-dealkylation of the
indazole-3-carbaldeyde moiety, which was also described by Erratico et al. [29] in the in vitro metabolism
of AB-CHMINACA. Using the current incubation conditions, no phase II metabolites were expected to
be formed and were thus, not detected.

2.4. Comparison of the Three Software Workflows

Based on the usage of the three software workflows during this study and the results in the
previous sections, an overview of the pros and cons concerning important criteria is given in Table 3.

In comparison to the two open source workflows, the commercial software CD is characterized by its
ease of use as a user-friendly black box. Thermo Fisher LC-HRMS/MS RAW files can be uploaded directly,
and the desired workflow can be selected. The first results are available after a few mouse clicks.
For statistical evaluation, only p-value and fold change have to be specified. Limitations for this
kind of workflow are given by the preprocessing parameters, the normalization techniques, and the
statistical analysis. Looking at the results in this study, this commercial software showed a low false
positive rate for significant features, but neither isotopes nor adducts were detected that usually help
in identifying significant features. Since CD is limited to its statistical test of Welch’s t-test, it does not
allow one to do statistical evaluation of more than two groups and therefore, it is not a suitable workflow
for complex datasets. The open source combination of XCMS Online and MetaboAnalyst 4.0 allowed
for more intervention in the processing steps than CD. In XCMS Online, almost all parameters could be
taken over with a few exceptions and MetaboAnalyst allowed a wide range of statistical tests. The report
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of MetaboAnalyst allowed an interpretation of the results. Both online tools were also based on the
programming language R, but in contrast to the manually programmed R tool, less programming skills
were required. The disadvantage is that due to the limited statistical test equipment of XCMS Online,
a combination of these two online platforms was necessary. When comparing the results of the two
open source workflows, both showed an almost identical false positive rate. The difference between
the two workflows can only be seen in the user handling and the minimal difference in the number of
significant features. The latter can be attributed to the not quite perfectly adjusted peak picking parameters
using XCMS Online.

Figure 4. Metabolic pathways of A-CHMINACA in incubations with pooled human liver microsomes.
Undefined hydroxylation position is indicated by unspecific bonds. Metabolites are annotated with their
feature identity from untargeted metabolomics analysis. PH = PhenylHexyl column, HI = HILIC column.

Table 3. Overview of important criteria by which the three workflows can be classified.

Criteria Compound
Discoverer

XCMS Online/
MetaboAnalyst 4.0

Manually Programmed
R Tool

Open source - + +
Low false-positive rate + - +

Flexibility - -/+ +
Complex datasets - + +

Using raw data + - -
Required prior

knowledge - - +

Annotation of isotopes
and adducts - + +

Evaluation criteria: + = available/good; - = not available/bad.

In the case of complex datasets, the manually programmed R tool should be the best option. Due to
its high number of packages, functions, and methods, it offers a great adaptability also with regard to
statistical analysis. However, this open source workflow requires advanced programming skills.

Regarding the results, the most relevant difference between the two open source workflows and
the commercial software might be the optimization of the peak picking parameters. In contrast to the
two open source workflows, the vendor-based software CD was used without changing any parameter
(used as a black box as intended by the manufacturer). On the other hand, the two XCMS-based



Metabolites 2020, 10, 378 10 of 15

workflows are neutral for a broad range of data and therefore, they need parameter optimization
because they are not usable under standard settings [15,19–21].

In summary, all three workflows have found the most important metabolites,
but (toxico-)metabolomics includes not only exogenous metabolites but also endogenous ones.
However, it must also be said that the investigated set was rather simple and less complex. Due to
the minimal fluctuations, it was not necessary to normalize the dataset, for example, using an
internal standard. This might be necessary when analyzing plasma or urine samples. The choice
of the appropriate method should therefore depend on the complexity of the dataset and on
previous knowledge. Complex datasets in this context mean that there are more than two groups in
one study and that due to the complexity of the matrix, normalization to an endogenous biomarker
is necessary. Previous knowledge basically means that the user has previously programmed with R or
other programming languages. The manually programmed R tool required far more programming
skills than the open source combination of XCMS Online and MetaboAnalyst 4.0. The commercial
software CD on the other hand required almost no prior knowledge of metabolomics data processing.

3. Materials and Methods

3.1. Chemicals and Reagents

A-CHMINACA was provided by the EU project ADEBAR/State Bureau of Criminal Investigation
Schleswig-Holstein (Kiel, Germany) for research purpose. The chemical purity and identity of the
compound were verified by MS and nuclear magnetic resonance analysis. Ammonium formate,
ammonium acetate, formic acid, isocitrate dehydrogenase, isocitrate, dipotassium phosphate,
tripotassium phosphate, magnesium chloride, and superoxide dismutase were obtained from Sigma
(Taufkirchen, Germany). Acetonitrile (LC-MS grade), methanol (LC-MS grade), and NADP-Na2 were
from VWR (Darmstadt, Germany). pHLM (20 mg microsomal protein mL−1) was obtained from
Corning (Amsterdam, The Netherlands). After delivery, pHLM were thawed at 37 ◦C, aliquoted,
snap-frozen in liquid nitrogen, and stored at −80 ◦C until use.

3.2. pHLM Incubation

According to published procedures [16,30,31], incubations using pHLM were prepared as follows.
A-CHMINACA was freshly dissolved in methanol and subsequently diluted with 100 mM phosphate
buffer to obtain the required concentrations. Incubations were performed at 37 ◦C using final
A-CHMINACA concentrations of 0 (Blank group), 5 (Low group), or 50 µM (High group) and
1 mg protein mL−1 pHLM. Final incubation mixtures also contained 90 mM phosphate buffer,
5 mM isocitrate, 5 mM Mg2+, 1.2 mM NADP+, 200 U mL−1 superoxide dismutase, and 0.5 U mL−1

isocitrate dehydrogenase. The final incubation volume was 50µL. The reaction was stopped after 60 min
by adding 50 µL of ice-cold acetonitrile and then, centrifugated for 2 min at 18,407× g. Every group
consisted of five replicates. Pooled quality samples (QC group) were prepared by transferring 10 µL of
each incubation into one MS vial. These were also used for optimization of the peak picking parameters,
batch correction, and identification of significant features, as described below. An aliquot of 70 µL of
the remaining supernatant was transferred into separate MS vials and used for metabolomics analysis,
as described below.

3.3. LC-HRMS/MS Apparatus

In accordance with Manier et al. [16], analyses were performed by using a Thermo Fisher Scientific
(TF, Dreieich, Germany) Dionex UltiMate 3000 RS pump consisting of a degasser, a quaternary pump, and an
UltiMate Autosampler, coupled to a TF Q-Exactive Plus system including a heated electrospray ionization
(HESI)-II source. Prior to every experiment, the performance of the columns and mass spectrometer was
tested using a test mixture as described by Maurer et al. [32,33]. Gradient normal phase elution was
performed on a Macherey-Nagel (Düren, Germany) HILIC Nucleodur column (125 mm × 3 mm, 3 µm) and
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reversed phase elution using a TF Accucore PhenylHexyl column (100 mm × 2.1 mm, 2.6 µm). The mobile
phase and gradient for the PhenylHexyl column consisted of 2 mM aqueous ammonium formate containing
acetonitrile (1%, v/v) and formic acid (0.1%, v/v, pH 3, eluent A), as well as 2 mM ammonium formate
solution with acetonitrile:methanol (1:1, v/v) containing water (1%, v/v) and formic acid (0.1%, v/v, eluent B).
The flow rate was set from 1–10 min to 500 µL min−1 and from 10–13.5 min to 800 µL min−1 using the
following gradient: 0–1.0 min hold 99% A, 1–10 min to 1% A, 10–11.5 min hold 1% A, 11.5–13.5 min hold
99% A. The gradient elution for normal phase chromatography was performed using aqueous ammonium
acetate (200 mM, eluent C) and acetonitrile containing formic acid (0.1%, v/v, eluent D). The flow rate was
set to 500 µL ×min−1 using the following gradient: 0–1 min hold 2% C, 1–5 min to 20% C, 5–8.5 min to
60% C, 8.5–10 min hold 60% C, 10–12 min hold 2% C. For preparation and cleaning of the injection system,
isopropanol:water (90:10, v/v) was used. Due to the lipophilic properties of A-CHMINACA, eluent D was
used for the flushing of both columns. The following settings were used: wash volume, 100µL; wash speed,
4000 nL s−1; loop wash factor, 2. Column temperature for every analysis was set to 40 ◦C, maintained by
a Dionex UltiMate 3000 RS analytical column heater. Injection volume was set to 1 µL. HESI-II source
conditions were as follows: ionization mode, positive or negative; sheath gas, 60 AU; auxiliary gas, 10 AU;
sweep gas, 3 AU; spray voltage, 3.5 kV in positive and−4.0 kV in negative mode; heater temperature, 320 ◦C;
ion transfer capillary temperature, 320 ◦C; and S-lens RF level, 50.0. Mass spectrometry for untargeted
metabolomics was performed according to a previously optimized workflow [15,16]. The settings for full
scan (FS) data acquisition were as follows: resolution, 140,000 fwhm; microscan, 1; automatic gain control
(AGC) target, 5× 105; maximum injection time, 200 ms; scan range, m/z 50–750; spectrum data type; centroid.
Significant features were subsequently identified using PRM. Settings for PRM data acquisition were
as follows: resolution, 70,000 fwhm; microscans, 1; AGC target, 5 × 105; maximum injection time, 200 ms;
isolation window, 0.4 m/z; collisions energy (CE), 10, 20, 30, or 40 eV; spectrum data type, centroid.
The inclusion list contained the monoisotopic masses of all significant features and a time window of their
retention time ±60 s. TF Xcalibur software version 3.0.63 was used for data handling. Due to the carry-over
effect of A-CHMINACA, the analysis was performed using the following sequence order: five injections of
eluent D samples at the beginning of the sequence for apparatus equilibration, followed by five injections
of pooled QC samples, five blank groups, five low groups, and five high groups. Additionally, one QC
injection was performed every five samples to monitor batch effects, as described by Wehrens et al. [34].

3.4. Dataset Processing with Different Software

For the two open source software workflows, Proteo Wizard was used to convert Thermo Fisher
LC-HRMS/MS RAW files into mzXML files [35]. Optimization of the XCMS parameters was done by
using a comprehensive parameter sweeping approach [15]. Table S1 summarizes the peak picking and
alignment parameters used for the two open source workflows.

In the case of using R, peak picking was performed using XCMS in an R environment [14,36]
and the R package CAMERA [37] was used for the annotation of isotopes, adducts, and artifacts.
The dataset was filtered keeping merely those features with a p-value using Bonferroni correction [23].
Feature abundances with a value of zero were replaced by the lowest measured abundance as a surrogate
limit of detection and the whole dataset was subsequently log10 transformed [34]. Batch correction
was performed for those features that were detected in every QC sample. Corresponding feature
abundances were corrected using a linear model to extrapolate abundance drift between QC samples [34].
Principal component analysis (PCA) and hierarchical clustering were used to investigate patterns in
the dataset. Names for the features were adopted from XCMS using “M” followed by rounded mass
and “T” followed by the retention time in seconds. The R script and the mzXML files can be found at
https://github.com/sehem/HLM_Metabolomics.git.

For the combination of XCMS Online and MetaboAnalyst 4.0, first, XCMS Online was used for
peak picking and alignment using the optimized parameters listed in Table S1. The resulted table of
XCMS Online was then processed by removing all features under a retention time of 1 min and above
10 min and all columns were removed except the peak areas of each feature in each sample. The modified
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table was then uploaded to MetaboAnalyst 4.0 for statistical analysis. For normalization of the dataset,
the following settings were used: sample normalization, none; data scaling, none; and data transformation,
log transformation. Subsequently, one-way ANOVA was selected using Bonferroni correction for p-value.
To investigate patterns in the dataset, PCA and hierarchical clustering using heat maps and dendrograms
were selected. For hierarchical clustering, distance measures using Euclidean distances and clustering
algorithms using complete were chosen.

In the case of CD, Thermo Fisher LC-HRMS/MS RAW files were uploaded and definitions of study
factors in the form of categorical factors were entered. Subsequently, the ratios blank/low, blank/high,
and low/high were defined. Afterwards, a predefined untargeted workflow named “Untargeted
Metabolomics with statistics detect unknowns with ID using Online Database and mzLogic” was used.
This workflow included findings and identified the differences between samples, performed retention
time alignment, identified compounds using mzCloud, ChemSpider, and calculated differential
analysis such as ANOVA, determined p-values, and fold changes. Bonferroni correction for p-value
and fold-change of 1 were used for ANOVA.

3.5. Identification of Significant Features

Identification of significant features was done by recording MS/MS spectra using the PRM method
mentioned above. Spectra were imported to NIST MSSEARCH version 2.3, after conversion to mzXML
format using ProteoWizard [35]. According to Manier et al. [17], a library search for identification was
conducted using the following settings: spectrum search type, identity (MS/MS); precursor ion m/z,
in spectrum; spectrum search options, none; presearch, off; other options, none. MS/MS search was
conducted using the following settings: precursor tolerance, ±5 ppm; product ion tolerance, ±10 ppm;
ignoring peaks around precursor, ±m/z 1. The search was conducted by using the following libraries:
NIST 14 (nist_msms and nist_msms2 sublibraries) and Wiley METLIN Mass Spectral Database.
Metabolites of the investigated synthetic cannabinoid A-CHMINACA were tentatively identified by
interpreting their spectra in comparison to that of the parent compound.

4. Conclusions

In this study, a dataset of pHLM incubations of the synthetic cannabinoid A-CHMINACA was
used to evaluate data processing of three different software workflows under their respective optimal
parameter settings. The commercial software CD is a vendor-based software, which was specifically
developed for the type of MS instrument used in this study. The two open source workflows, XCMS
Online/MetaboAnalyst and R, both use the “gold standard” XCMS for peak picking and alignment for
untargeted metabolomics data evaluation after LC-HRMS/MS analysis.

While the two open source workflows were highly adaptable methods regarding the optimization
of parameters, CD is a user-friendly black box with limited possibilities for optimization.
Additionally, the metabolic profile of A-CHMINACA in pHLM was determined to compare the three
software solutions. The main metabolic reactions were the hydroxylation of the adamantyl-ring and
N-dealkylation of the indazole-3-carbaldeyde moiety.

In relation to the results of this study, CD as an all-in-one solution is characterized by its ease of use
and therefore, seems suitable for simple and small metabolomic studies, as the dataset used in this study.
However, it is not possible to use the right statistical test, since the dataset exists of three groups.
Taking this into account, the statistical results of the used dataset can be better represented with the two
open source workflows. Both open source workflows allowed extensive customization but particularly
in the case of R, advanced programming skills are required, while XCMS Online/MetaboAnalyst is an
almost entirely point-and-click experience. Nevertheless, both provided high flexibility and may be
suitable for more complex studies and questions. The metabolic fate of A-CHMINACA in pHLM was
identified best by the two open source workflows.
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