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INTRODUCTION 
 

Stroke is defined as a syndrome of neurological deficits 

induced by local or holistic ischemia and hypoxia of 

brain tissue resulting from an obstruction in 

cerebrovascular circulation [1, 2]. Focal neurological 

deficits are reported as the main characteristics of 

stroke, the clinical symptoms of which include sudden 

inactiveness on one side of the body, language disorder, 

and tactus disorders, such as impaired vision and 

hearing, dizziness, ear irritation, and swallowing 

difficulty [3]. Reports state that stroke is the secondary 

inducer of dementia-related brain injury and death 

amongst the elderly population with more than 60 years 

of age. The cost of treating stroke takes 3–7% of the 

overall medical expenditure in developed countries [4]. 

In China, the mortality of cardiovascular disease has 

remained in the top three for many years and increases 

with aging [5]. Stroke adversely affects the quality of 

life of patients and is also burdensome to the patients' 
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ABSTRACT 
 

Background and purpose: Ischemic/reperfusions are regarded as the clinical consensus for stroke treatment, 
which results in secondary injury of brain tissues. Increased blood-brain barrier (BBB) permeability and 
infiltration of inflammatory cells are responsible for the ischemic/reperfusion injury. In the present study, we 
aimed to investigate the effects of Agomelatine on brain ischemic/reperfusions injury and the underlying 
mechanism. 
Methods: MCAO model was established in mice. The expressions of CD68 and claudin-5 in the cerebral cortex 
were determined using an immunofluorescence assay. Brain permeability was evaluated using Evans blue 
staining assay. A two-chamber and two-cell trans-well assay was used to detect the migration ability of 
macrophages through endothelial cells. The expression levels of claudin-5 and MCP-1 in the endothelial cells 
were determined using qRT-PCR and ELISA. 
Results: CD68 was found to be up-regulated in the cerebral cortex of MCAO mice but was down-regulated by 
treatment with Agomelatine. The expression level of down-regulated claudin-5 in the cerebral cortex of MCAO 
mice was significantly suppressed by Agomelatine. Deeper staining of Evans blue was found in the MCAO 
group, which was however faded significantly in the Agomelatine treated MCAO mice. The migrated 
macrophages were significantly increased by hypoxia incubation but were greatly suppressed by the 
introduction of Agomelatine. The down-regulated claudin-5 by hypoxic incubation in endothelial cells was up-
regulated by treatment with Agomelatine. Furthermore, the increased expression of MCP-1 in endothelial cells 
under hypoxic conditions was significantly inhibited by Agomelatine. 
Conclusion: Agomelatine prevents macrophage infiltration and brain endothelial cell damage in a stroke mouse 
model. 
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families and society at large. It is of great significance 

to investigate the pathological mechanism of stroke and 

explore the potential therapeutic treatments. 

Ischemic/reperfusion was found to be harmful to the 

recovery of the tissues when people noticed that a new 

type of tissue injury could arise from the sudden oxygen 

supply post-long-term hypoxia, which is also verified in 

the aggravation of brain dysfunction after 

ischemic/reperfusion on brain tissues [6, 7]. However, 

currently, quick recovery of the blood supply has been 

regarded as the clinical consensus for the treatment of 

stroke, in which way, ischemic/reperfusion is inevitable. 

Therefore, the injury to brain tissues resulting from 

ischemic/reperfusion has been taken as a tough task post 

clinical stroke treatment. 

 

It is reported that the permeability of the BBB is 

promoted greatly after the ischemic/reperfusion 

treatments for stroke, the mechanism of which is 

currently unknown [8]. With the increase in BBB 

permeability, inflammation is induced by chemical 

mediators and infiltration of inflammatory cells, such 

as macrophages, which further enhances the 

permeability of the BBB [9]. The BBB is a tight 

structure that mainly consists of blood endothelial 

cells, astrocytes, and extracellular matrix [10]. The 

BBB is connected by tight junction proteins on the 

endothelial cell surface. There are three types of 

transmembrane tight junction proteins: claudins, 

occludin, and junctional adhesion molecules. At the 

BBB, claudin-5 is the most highly expressed tight 

junction protein and its dysfunction has been 

implicated in stroke and brain injury [11]. In the early 

stage of permeability increase, a widened endothelial 

gap could be observed instead of any obvious injury. 

However, as the permeation of the BBB proceeded, 

inflammatory and chemotactic factors were produced 

in quantity by astrocytes or infiltrated macrophages 

around endothelial cells and vessels [12]. One of the 

key chemotactic factors is MCP-1, and the high levels 

of MCP-1 have been found in the brain several hours 

after cerebral ischemia [13]. The expressions of 

adhesion molecules in endothelial cells are up-

regulated by chemical mediators, such as interleukins 

and tumor necrosis factors. To recruit the leukocytes to 

the injured location, the metalloprotease (MMP) is 

activated, by which the ligandin and extracellular 

matrix are degraded in endothelial cells [14, 15]. The 

pathological state of brain tissues is further aggravated 

by up-regulated inflammatory factors, chemotactic 

factors, MMP, and adhesion molecules [16, 17]. 

Preventing the infiltration of inflammatory cells, such 
as macrophages, down-regulating the expressions of 

chemotactic factors may be an effective way to 

decrease the permeability of the BBB and protect the 

brain from the injury by ischemic/reperfusion 

treatments. 

 

Agomelatine is the first line medication for the 

treatment of depression. Agomelatine's antidepressant 

actions attribute to its sleep-promoting and modulation 

of circadian rhythm by activating melatonin MT1 and 

MT2 receptors in the suprachiasmatic nucleus and its 

blockage of 5-HT2c receptors in the hippocampus, 

amygdale, and prefrontal cortex [18]. Agomelatine 

treatment inhibits melatonin synthesis, promotes 

dopamine production in the prefrontal lobe, accelerates 

epinephrine release in the nucleus ceruleus, and 

promotes neuron growth [19, 20]. Besides its action on 

the CNS, Agomelatine exhibits broad effects in other 

tissues. It has been proposed that the melatonin 

receptor agonists could possess cardiovascular benefit 

[21, 22]. Recent studies further reveal the potential 

effects of their modulation in the cardiovascular 

system. The experiment in vitro shows that 

Agomelatine alleviates oxidative stress by inhibiting 

ROS production and promoting antioxidant levels 

[23]. In a preclinical animal experiment, Agomelatine 

administration protected animals from 

lipopolysaccharide-induced cardiovascular toxicity by 

suppressing the NF-kβ pathway [24]. An anti-

depression study found that Agomelatine inhibits the 

infiltration and polarization of macrophages [25]. 

Agomelatine therapy increases circulated brain-

derived neurotrophic factor BDNF levels but reduces 

circulating CRP levels in depressive patients [26, 27]. 

The evidence indicates that the anti-depression drug 

Agomelatine possesses anti-ROS and anti-

inflammatory properties, and it is a highly interesting 

topic to evaluate the potential therapeutic effect in the 

cardiovascular disease model. In the present study, the 

anti-inflammatory effects of Agomelatine on 

endothelial cells were investigated to explore its 

potential therapeutic effects on injury induced by 

ischemic/reperfusion treatments for stroke. 

 

RESULTS 
 

Agomelatine inhibited macrophage infiltration in the 

cortex of the MCAO mouse model 

 

To evaluate the effects of Agomelatine on the 

infiltration of macrophages in MCAO mice, the MCAO 

mice were treated with Agomelatine and the cortex was 

isolated to determine the expression of CD68 by 

immunofluorescence, which is a representative marker 

of M2 macrophages. The structure of Agomelatine is 
shown in Figure 1. As shown in Figure 2, CD68 was 

found to be up-regulated in the cortex isolated from 

MCAO mice, compared to the control, which was 
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significantly reversed by the treatment with 

Agomelatine. These data indicate that the infiltration of 

macrophages into the cortex was greatly increased by 

establishing the MCAO model in mice and was 

alleviated by Agomelatine. 

 

Agomelatine promoted the expression of the down-

regulated tight junction protein in the MCAO mouse 

model 

 

To explore the effects of Agomelatine on the tight 

junctions between endothelial cells in MCAO mice, the 

expression level of claudin-5 was evaluated. As shown 

in Figure 3, claudin-5 was significantly down-regulated 

in the cortex by MCAO modeling in mice but was 

greatly up-regulated by the introduction of 

Agomelatine, indicating that the damaged tight junction 

by MCAO modeling was repaired by Agomelatine. 

 

BBB permeability in MCAO mice was diminished by 

Agomelatine   

 

The permeability of the BBB is of great importance in 

preventing damage to brain tissues by chemical 

materials and infiltrated inflammatory cells. Following 

MCAO modeling and Agomelatine administration, the 

permeability of the BBB of each animal was evaluated 

by the Evans blue staining assay. As shown in Figure 4, 

deeper staining of Evans blue was found in the MCAO 

group which was however faded significantly in 

Agomelatine treated MCAO animals. These data 

indicate that the increased BBB permeability by MCAO 

modeling was reversed by Agomelatine. 

 

The migration of macrophages was suppressed by 

Agomelatine in hypoxic endothelial cells 

 

Following hypoxic incubation, bEnd.3 cells were 

incubated with 10 μM Agomelatine. A two-chamber 

two-cell trans-well assay was performed to test the 

migration ability of macrophages through bEnd.3 cells. 

Figure 5A shows the representative schematic of the 

assay. BEnd.3 endothelial cells were plated in the 

bottom chamber and macrophages (IC21 cells) were 

suspended in the top chamber and allowed to migrate 

through the endothelial cells layer. As shown in Figure 

5B and 5C, compared to the control, the number of 

migrated macrophages was significantly increased by 

hypoxia incubation, but was greatly suppressed by the 

introduction of Agomelatine, indicating that hypoxia 

incubation-induced macrophage migration was inhibited 

by Agomelatine.  

 

 

 

Figure 1. Molecular structure of Agomelatine. 

 

 
 

Figure 2. Agomelatine prevents macrophage infiltration in the cortex of the MCAO mouse model. Representative images of 

staining for macrophages using CD68 in the cerebral cortex 3 days post-tMCAO. Scale bar, 100 μM. 



 

www.aging-us.com 13551 AGING 

 
 

Figure 3. Agomelatine restored the reduction of tight junction protein expressions in the MCAO mouse model. (A). 

Representative images of staining for claudin-5 in the cerebral cortex 3 days post-tMCAO; (B). Quantification of claudin-5 staining. Scale 
bar, 100 μM (****P < 0.0001 vs. vehicle group; ####P < 0.0001 vs. MCAO group). 
 

 

 
 

Figure 4. Agomelatine protects against impairment of brain permeability in MCAO mice. Brain permeability of MCAO mice was 

measured by Evans blue staining assay (****P < 0.0001 vs. vehicle group; ####P < 0.0001 vs. MCAO group).  
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The expression level of claudin-5 was up-regulated 

by Agomelatine in hypoxic endothelial cells 

 

To evaluate the effects of Agomelatine on the tight 

junctions between hypoxic endothelial cells, the 

expression level of claudin-5 was evaluated by qRT-

PCR and western blot analysis. As shown in Figure 6, 

claudin-5 was significantly down-regulated by hypoxic 

incubation, the expression of which was greatly restored 

by Agomelatine. These data indicate that the injured 

tight junctions between endothelial cells by hypoxic 

incubation were significantly repaired by Agomelatine. 

 

MCP-1 was down-regulated by Agomelatine in 

hypoxic endothelial cells 

 

To explore the effects of Agomelatine on the production 

of chemotactic factors, the expression of MCP-1, a 

representative chemotactic factor, was determined in the 

hypoxic endothelial cells in the presence or absence of 

Agomelatine. As shown in Figure 7, MCP-1 was greatly 

up-regulated by hypoxic incubation, the expression of 

which was significantly decreased by Agomelatine, 

indicating that the chemotactic function of endothelial 

cells to inflammatory cells, such as macrophages, was 

suppressed by Agomelatine. 

 

DISCUSSION 
 

The brain is the most sensitive organ to hypoxia in 

mammals and vital activity within the brain is mainly 

dependent on the energy provided by the aerobic 

oxidation of glucose. Therefore, irreversible injury is 

induced under a long-time hypoxic environment [28, 

29]. Thrombolytic therapy and mechanical 

recanalization are effective methods for blood re-supply 

after ischemia. However, for some specific patients, the 

injury induced by ischemia can be aggravated by 

ischemic/reperfusion, which is termed as “brain 

ischemic/reperfusion injury” [30]. 

 

Multiple types of pathological processes are involved in 

the injury, including changes in energy and amino acid 

metabolism, the cellular overload of calcium, activation 

of reactive oxygen species, inflammatory reactions, and 

damage of the BBB, which culminates in the apoptosis 

 

 
 

Figure 5. Agomelatine treated hypoxic endothelial cells inhibit macrophage migration. Brain bEnd.3 endothelial cells were 

incubated with 10 μM Agomelatine in the process of hypoxia/ reperfusion. (A). A representative schematic of the two-chamber two-cell 
trans-well assay. Brain bEnd.3 endothelial cells were subjected to hypoxia/reoxygenation (H/R) are plated in the bottom chamber and 
macrophages (IC21) are suspended in the top chamber and allowed to migrate. (B). Migrated IC21 macrophages were stained with DAPI; 
(C). Quantification of migrated macrophages. Scale bar, 100 μM (****P < 0.0001 vs. vehicle group; ####P < 0.0001 vs. H/R group). 
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of neurons [31, 32]. Ischemic/reperfusion is usually 

accompanied by the overexpression of inflammatory 

factors and adhesion molecules, as well as the 

infiltration of leukocytes. Direct damage is induced on 

the BBB by proteolytic enzymes produced by infiltrated 

leukocytes, including MMP, reactive oxygen species, 

and the metabolites of arachidonic acid [33, 34]. As 

verified by the clinical trials and animal experiments, 

brain ischemic/reperfusion injury can be induced by 

vasogenic cerebral edema, hemorrhagic transformation, 

and infarction resulting from the destruction of the BBB 

[35]. In the present study, a middle cerebral artery 

occlusion (MCAO) model was established in mice to 

evaluate the therapeutic effects of Agomelatine on brain 

ischemic/reperfusion. We found that the permeability of 

the BBB was significantly increased by MCAO 

modeling, which was confirmed by the results of Evans 

blue staining and repaired by the treatment with 

Agomelatine, indicating recovery effects of 

Agomelatine on by MCAO modeling-induced BBB 

 

 

 

Figure 6. Agomelatine restored the expression of claudin-5 in hypoxic endothelial cells. Brain bEnd.3 endothelial cells were 
incubated with 10 μM Agomelatine in the process of hypoxia/ reperfusion (H/R). ( A). mRNA of claudin-5 as measured by real-time 
PCR; (B). Protein expression of claudin-5 as measured by western blot analysis (****P < 0.0001 vs. vehicle group; ####P < 0.0001 vs. 
H/R group).  
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injury. The repair function of Agomelatine on the BBB 

was indirectly claimed by its promising inhibitory 

effects on the infiltration of macrophages into the brain 

tissue. We found that the increased infiltrated 

macrophages induced by MCAO modeling, especially 

M2 macrophages, were significantly suppressed by the 

introduction of Agomelatine. In in vitro macrophage 

migration assay, macrophages were found to easily 

migrate through endothelial cells under hypoxic 

conditions compared to endothelial cells under regular 

conditions or cells under hypoxic conditions but 

incubated with Agomelatine, indicating the promising 

inhibitory effects of Agomelatine on macrophage 

migration. We suspect that the inhibitory effects of 

Agomelatine on macrophage migration or infiltration 

are related to its repair function on the tight junctions 

between endothelial cells, which are the main 

components of the BBB. To verify our hypothesis, the 

expression level of a representative protein of the tight 

junctions between endothelial cells, claudin-5, was 

evaluated both in-vivo and in vitro. We found that in 

both the cerebral cortex of MCAO mice and the 

endothelial cells under hypoxic conditions, claudin-5 

was significantly down-regulated, indicating destructed 

tight junctions. As predicted, the decreased expression 

of claudin-5 was promoted by Agomelatine, claiming 

a potential mechanism underlying the effects of 

Agomelatine on macrophage infiltration and BBB 

permeability by enhancing the tight junctions between 

endothelial cells. 

 

Integrated inflammatory reactions are initiated by the 

central nervous system to prevent the brain from 

external injuries and acute inflammatory reactions play 

an important role in the secondary injury induced by 

brain ischemic/reperfusion. Following ischemic/ 

reperfusion, the production of adhesion molecules and 

chemotactic factors are promoted to recruit more and 

more leukocytes, macrophages, and neutrophil 

granulocytes [36]. The activated and recruited 

macrophages and neutrophil granulocytes migrate and 

adhere to the endothelial cells, which is reported to be 

initiated 1-hour post-ischemic/reperfusion and achieves 

the peak at approximately 24–48 hours post-

ischemic/reperfusion. Multiple types of pro-

inflammatory mediators, such as reactive oxygen 

species, proteases, and lysosomal enzymes, are released 

by the infiltrated macrophages and neutrophil 

granulocytes, which induce the secondary injury on 

brain tissue post- ischemic/reperfusion. Leukocytes 

trigger injury to capillaries by changing the 

hemorheology, diameter. and permeability of capillaries 

[37, 38]. In the present study, the expression level of 

MCP-1, a representative chemotactic factor, was 

evaluated to claim the effects of Agomelatine on the 

chemotactic function of injured endothelial cells to 

inflammatory cells. We found that MCP-1 was 

significantly up-regulated by hypoxia and down-

regulated by Agomelatine, indicating a potential 

chemotactic inhibitory effect of Agomelatine under the 

secondary injury of ischemic/reperfusion. 

 

There were limitations to the study, one of which is 

that we still do not fully understand the protective 

mechanism of Agomelatine acting on brain 

endothelial cells and macrophages in stroke animals. 

The effect of Agomelatine could be dependent on its 

suppression of 5-HT2C or its activation of melatonin 

receptors. The role of 5-HT2c in ischemic injury has 

not been well confirmed [39]. Melatonin MT1 and 

MT2 receptors have been shown to be involved in 

ischemic diseases. Activation of the MT1 receptor 

inhibits neuronal mitochondrial cell death pathways, 

while the action of the MT2 receptor protects against 

ischemia/reperfusion injury [40]. In isolated brain 

endothelial cells, MT1 and MT2 are required for 

 

 

 

Figure 7. Agomelatine reduced the expression and secretion of MCP-1 in hypoxic endothelial cells. Brain bEnd.3 endothelial 
cells were incubated with 10 μM Agomelatine in the process of hypoxia/ reperfusion (H/R). (A). mRNA of MCP-1 was measured; 

(B). Secretions of MCP-1 were measured (****P < 0.0001 vs. vehicle group; ####P < 0.0001 vs. H/R group). 



 

www.aging-us.com 13555 AGING 

protecting the BBB from neurotoxin-induced 

impairment [41]. Macrophages expressing MT1 and 

MT2 are reported to regulate macrophage polarization 

involving multiple pathways including NF-κB [42] 

Therefore, the MT receptor-mediated pathway could 

be an important mechanism that Agomelatine protects 

against brain injury following stroke associated with 

ischemia/reperfusion. In addition, since Agomelatine 

has been shown to exhibit pleiotropic effects, some of 

the mechanism acting on neuroprotection could be 

independent of its binding to melatonin receptors or 5-

HT2c. A recent study shows a short time injection of 

Agomelatine inhibits myocardial mitochondrial 

permeability transition pore opening and improves 

myocardial ischemia injury in an isolated rat heart 

model [43]. It is likely that Agomelatine could also 

protect the neuronal mitochondria from ischemia 

conditioning. Further investigation should be 

performed on the underlying molecular mechanism to 

illustrate more clearly how Agomelatine exerts 

neuroprotection in our future study. 

 

MATERIALS AND METHODS 
 

Collectively, we found that Agomelatine might prevent 

macrophage infiltration and brain endothelial cell 

damage in a stroke mouse model. 

 

Middle cerebral artery occlusion (MCAO) model 

and drug administration 

 

Twelve CD-1 mice were housed in a 12 hour light/dark 

cycle, temperature-controlled room, and divided into 3 

groups randomly. Agomelatine (10 mg/kg/day, Servier 

Laboratories, Suresnes, France) or its vehicle HEC 

(hydroxyethyl cellulose 1%, Servier Laboratories) 

were administered intraperitoneally (i.p.) on a daily 

basis for 15 days [44, 45]. Animals were used to 

establish the MCAO model according to the procedure 

reported by Kusaka [46]. Briefly, mice were 

anesthetized intraperitoneally with a mixture of 

ketamine (80 mg/kg) and xylazine (20 mg/kg). Body 

temperatures and respiration rates were recorded 

perioperatively. A vertical midline cervical incision 

was conducted, and the animals' right common carotid 

artery was exposed. The external carotid artery was 

isolated, coagulated, transected, and divided (leaving 

3–4 mm). The internal carotid artery was isolated, and 

the pterygopalatine artery was ligated close to its 

origin. A 5 mm aneurysm clip was utilized to fix the 

common carotid artery. The external carotid artery 

stump was reopened, and a 4.0 monofilament nylon 

suture was inserted through the internal carotid artery. 

The insertion was stopped when resistance was felt, 

occluding the origin of the right MCA. Post 2 hours of 

occlusion, the suture was withdrawn to allow for 

reperfusion. The external carotid artery was ligated, 

and the aneurysm clip was removed. The skin was 

sutured (1% lidocaine was applied), and the animal 

was left to recover. 98% purity of Agomelatine was 

purchased from Sigma (St. Louis, MO).  

 

Immunofluorescence 

 

The forebrain tissues were collected and sectioned using 

a Cryostats. The cortex tissue was then fixed using 

100% cold methanol for 10 minutes and permeabilized 

with 0.1% Triton-X in PBS. The slides were then 

blocked and incubated with primary rabbit anti-CD68 or 

anti-claudin-5 (1:1000, Abcam, Cambridge, MA) 

antibody overnight at 4°C. Following three washes with 

PBS, cells were incubated with secondary Cy3-

conjugated anti-rabbit IgG (1:200, Abcam, Cambridge, 

MA) for an additional 30 min at room temperature. 

DAPI was added to dye the nucleus for 5 minutes and 

50% glycerinum was used to block the medium. Stained 

cells were photographed under a fluorescence 

microscope (Olympus, Tokyo, Japan). 

 

Evans Blue (EB) extravasation assay 

 

To examine BBB integrity, EB extravasation assays 

were performed. Following drug treatment and the 

MCAO experiment, mice were injected with 0.25 mL 

EB dye (2%) (Sigma, St. Louis, MO) via the caudal 

vein. Two hours later, the animals were anaesthetized 

and killed by saline infusion. The left hemisphere of 

each brain was weighed, added into 500 µL N, N-

dimethylformamide, and incubated at 72°C for 3 days. 

Samples were centrifuged twice at 1516 g for 20 

minutes. The supernatant was collected and aliquoted 

(200 μL) into a 96-well glass plate. Fluorescence was 

quantified using a spectrophotometer at an excitation 

wavelength of 620 nm and an emission wavelength of 

680 nm.  

 

Cell culture and hypoxic injury model 

 

The mouse microvascular endothelial cell line, bEnd.3 

cells, were purchased from American Type Culture 

Collection (ATCC, Rockville, MD USA). DMEM 

medium with 10% fetal bovine serum was used to 

culture the cells at 37°C with 5% CO2. The hypoxia 

model was established according to a previously 

reported protocol [47]. Cells were placed in a hypoxia 

incubator (1% O2, 5% CO2, 94% N2) for 8 hours. An 

automated regulator with a built-in flow meter and 

oxygen sensor was used to ensure and maintain the 

proper composition of gas mixture within the 
incubator. After hypoxia treatment, cells were removed 

from the chamber and utilized for the subsequent 

experiments. 



 

www.aging-us.com 13556 AGING 

Trans-well migration assay 

 

An approximate 5 × 105 macrophages were suspended 

in serum-free DMEM and plated into the upper insert of 

a six-well trans-well plate (BD, Minneapolis, MN) and 

5 × 105 bEnd.3 cells were plated into the bottom of the 

lower chamber. The cells were incubated at 37°C for 8 

hours. The non-migratory cells in the upper layer were 

removed and the migratory cells were fixed with 4% 

paraformaldehyde at room temperature for 10 minutes, 

followed by staining with DAPI. Images were 

photographed and quantified by counting cell numbers 

of five randomly picked fields of view for each well. 

 

Reverse transcriptase-polymerase chain reaction 

(qRT-PCR) 

 

Total RNA was collected from the cells using an RNA 

Extraction Kit (Thermo Fisher Scientific, Waltham, 

USA) in terms of the instructions of the manufacture. 

Extracted RNA was quantified with a NanoDrop 

spectrophotometer (Thermo Fisher Scientific, Waltham, 

USA). A specific RT primer was used to reverse-

transcribe the complementary DNA. SYBR Premix Ex 

Taq TM (Thermo Fisher Scientific, Waltham, USA) 

with an Applied Bio-Rad CFX96 Sequence Detection 

system (Genscript, NanJing, China) was used in the 

real-time PCR procedure. The following primers were 

used in this study: claudin-5 (Forward: 5′- 

ACGGGAGGAGCGCTTTAC -3′, Reverse:  5′- 

GTTGGCGAACCAGCAGAG -3′); MCP-1: 

 (Forward: 5′- 

CCCAGGAGTGCCTTGATTC -3′, Reverse: 5′-

CGCCCCATAATTCTGACATC -3′); GAPDH

 (Forward: 5′- 

AAGAGGGATGCTGCCCTTAC -3′, Reverse: 5′- 

CCATTTTGTCTACGGGACGA-3′). The expression 

levels of claudin-5 and MCP-1 were determined by the 

threshold cycle (Ct), and relative expression levels were 

calculated using the 2−ΔΔCt method. 

 

The expression level of GAPDH in the tissue was taken 

as a negative control. 

 

Western blot assay 

 

Total proteins were isolated from cells using the nuclear 

and cytoplasmic protein extraction kit (Thermo Fisher 

Scientific, Waltham, USA). Approximately 40 μg of the 

protein were separated on 12% SDS-polyacrylamide gel 

(SDS-PAGE) and the gel was transferred to a 

polyvinylidene difluoride (PVDF) membrane (Millipore, 

MIT, USA). The membrane was blocked with 5% non-
fat dry milk in TBST (Trisbuffered saline/0.1% Tween-

20, pH 7.4) for 1 hour at room temperature and incubated 

overnight with primary antibodies against claudin-5 

(1:1000), MCP-1 (1:1000) and GAPDH (1:1000) 

(Abcam, Cambridge, MA). A horseradish peroxidase 

(HRP)-conjugated antibody against rabbit IgG (1:5000, 

Abcam, Cambridge, MA) was used as a secondary 

antibody. Blots were incubated with the ECL reagents 

(Amersham Pharmacia Biotech, Inc, USA) and exposed 

to Tanon 5200-multi to detect protein expression. The 

intensity of bands was quantified using Image Lab 

software (Bio-Rad, Herculus, USA). The relative 

expression of the protein was normalized to the control 

sample and presented as fold change to the initial value. 

 

Statistical analysis 

 

Mean ± standard deviation (SD) was displayed to show 

the data. GraphPad Prism 6.0 (GraphPad, China) was 

used to analyze the data. Analysis of variance 

(ANOVA) followed by Tukey’s HSD post-hoc test was 

utilized for the contrast among different groups. P < 

0.05 was regarded as a statistically significant 

difference between the groups. 
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