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Nonalcoholic fatty liver disease (NAFLD) is more sensitive to ischemia and reperfusion injury (IRI), while there are no effective
methods to alleviate IRI. Necroptosis, also known as “programmed necrosis,” incorporates features of necrosis and apoptosis.
However, the role of necroptosis in IRI of the fatty liver remains largely unexplored. In the present study, we aimed to assess
whether necroptosis was activated in the fatty liver and whether such activation accelerated IRI in the fatty liver. In this study,
we found that the liver IRI was enhanced in HFD-fed mice with more release of TNFα. TNFα and supernatant of macrophages
could induce necroptosis of hepatocytes in vitro. Necroptosis was activated in NAFLD, leading to more severe IRI, and such
necroptosis could be inhibited by TN3-19.12, the neutralizing monoclonal antibody against TNFα. Pretreatment with Nec-1 and
GSK′872, two inhibitors of necroptosis, significantly reduced the liver IRI and ROS production in HFD-fed mice. Moreover, the
inhibition of necroptosis could decrease ROS production of hepatocytes in vitro. Inflammatory response was activated during
IRI, and necroptosis inhibitors could suppress signaling pathways of inflammation and the soakage of inflammation cells. In
conclusion, TNFα-induced necroptosis played an important role during IRI in the fatty liver. Our findings demonstrated that
necroptosis might be a potential target to reduce the fatty liver-associated IRI.

1. Introduction

Hepatic ischemia-reperfusion injury (IRI) occurs under a
variety of clinical conditions, such as liver transplantation
and resection, as well as hemorrhagic shock [1, 2]. IRI
emerges due to not only the depletion of oxygen and ATP
during hypoxia but also an excessive inflammatory response
after reperfusion, leading to cell death, including apoptosis,
necrosis, and ultimately organ dysfunction [3]. Although
the nature of hepatic IRI has been widely studied, the molec-
ular mechanism underlying the hepatocyte death remains
largely unexplored. Nonalcoholic fatty liver disease (NAFLD)
is the most common cause of chronic liver disease inWestern
countries, and it is predicted to become also the most fre-
quent indication for liver transplantation by 2030 [4]. Both
clinical studies and animal experiments have found that the

steatotic liver is particularly susceptible to IRI [5, 6]. Cur-
rently, as the main source of marginal donors, livers with
greater than 30% of macrovesicular fat are considered unsuit-
able for transplantation due to their increased susceptibility
to IRI and greater risk of early graft dysfunction [7]. The pro-
ductions of proinflammatory cytokines, TNFα and IL1β, are
increased during IRI, which are two critical mediators in
the fatty liver [8]. TNFα plays a crucial role in almost all
the pathogenic nodes of NAFLD, such as development of
hepatic steatosis [9], hepatocyte death [10], and fibrosis
[11]. However, whether proinflammatory cytokines, such
as TNFα, are involved in regulating IRI in the fatty livers
remains unknown.

Necroptosis is a novel mode of cell death, known as “pro-
grammed necrosis,” which incorporates features of necrosis
and apoptosis, and such type of cell death is controlled by
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two kinase receptor-interacting proteins (RIP1 and RIP3)
[12]. At the functional level, the auto- and transphosphoryla-
tions of RIP1 and RIP3 are required for necrosome assembly
and activation of necroptotic signaling [13]. RIP3 recruits
and phosphorylates the mixed lineage kinase domain-like
protein (MLKL), which in turn oligomerizes and causes irre-
versible cellular membrane damage, resulting in necrotic cell
death [14]. It has been suggested that MLKL increases the
production of mitochondrial reactive oxygen species (ROS)
through mitochondrial targets. Accumulating evidence indi-
cates that necroptosis plays a crucial role in the pathogenesis
of inflammatory diseases, including NAFLD [15, 16]. A study
has found that necroptosis is best characterized in the setting
of TNFα-induced cell death, which has high relevance for
many types of liver diseases, but it may also occur under
other conditions, including IRI [17]. It has already been
shown that the inhibition of necroptosis attenuates necrotic
cell death in cardiac, renal, and brain IRI as well as in the liver
[18–21]. However, it remains unknown whether necroptosis
can be activated by TNFα, and the role of necroptosis during
IRI in the fatty liver is also unclear.

In the present study, we found that IRI and ROS produc-
tionweremore serious in the fatty liver comparedwith thenor-
mal liver. Macrophages stimulated with fatty acid expressed
and released more TNFα during IRI both in vivo and in vitro.
Moreover, necroptosis was activated in hepatocytes stimu-
lated with TNFα or supernatant from palmitic acid- (PA-)
treated macrophages followed by hypoxia-reoxygenation
(H/R) injury. Necroptosis inhibitors necrostatin-1 (Nec-1)
and GSK′872 could protect livers from IRI in both CD-
and HFD-fed mice. In addition, Nec-1 and GSK′872
reduced the ROS level induced by IRI. Furthermore, the
inhibition of necroptosis could alleviate inflammatory reac-
tion. Collectively, we, for the first time, investigated the roles
of necroptosis during IRI in the fatty liver and provided a
potential target to alleviate the fatty liver-associated IRI in
liver surgery.

2. Materials and Methods

2.1. Animals. Experiments were conducted using male
C57BL/6J mice, which were purchased from the Animal Cen-
ter of the Affiliated Drum Tower Hospital of Nanjing Univer-
sity Medical School and housed under specific pathogen-free
conditions. The animal protocols were approved by the Insti-
tutional Animal Care and Use Committee of Nanjing Univer-
sity, China, based on the NIH Guide for the Care and Use of
Laboratory Animals. All efforts were made to minimize suf-
fering of animals.

Male C57BL/6 mice (3-4 weeks old) were fed with a high-
fat diet (HFD: 60% fat, 20% protein, and 20% carbohydrates;
520 kcal/100 g; D12492; Research Diets, New Brunswick, NJ,
USA) for 14 weeks to induce steatosis.

2.2. Mouse Hepatic IR Injury. Briefly, 70% hepatic warm
ischemia of mice was induced as previously described [22].
After anesthesia, the hepatic artery, portal vein, and bile duct
branches to the left and median liver lobes were clamped for
60min. Mice were sacrificed after 6 h, and liver and serum

samples were collected. Blood samples were analyzed imme-
diately using an automatic analyzer (Fuji, Tokyo, Japan) for
alanine aminotransferase (ALT) and aspartate aminotrans-
ferase (AST). The livers were cut into pieces and preserved
in 4% formalin or snap frozen in liquid nitrogen.

2.3. Cell Culture. Kupffer cells (KCs) were isolated as previ-
ously described [22]. Briefly, livers were perfused in situ via
the portal vein with CMF-HBSS, followed by 0.02% type IV
collagenase in HBSS. Then, the liver was dissociated in
0.02% type IV collagenase and filtered through sterile nylon
gauze to remove undigested tissue and connective tissue,
followed by centrifugation at 35g for 3min for two times to
separate nonparenchymal cells (NPCs). NPCs were then sus-
pended in HBSS and layered onto a 50/25% two-step Percoll
gradient (Sigma-Aldrich, USA) in a 50mL conical centrifuge
tube and centrifuged at 1,800g for 15min at 4°C. KCs in the
middle layer were collected and allowed attaching onto cell
culture plates in RPMI 1640 medium containing 1% penicil-
lin/streptomycin and 10% fetal bovine serum (FBS).

For primary mouse hepatocytes, cell suspension was
washed in William’s medium supplemented with 100nM
dexamethasone, 2mM L-glutamine, 1μM insulin, 10% FBS,
and 1% penicillin/streptomycin (attachment medium) twice.
The hepatocyte suspension was plated on rat tail collagen I-
coated six-well plates in the attachment medium. The cells
were incubated for 4 h, and then they were washed and fur-
ther incubated in William’s medium supplemented with
2mM L-glutamine, 10% FBS, and 1% penicillin/streptomy-
cin. Primary hepatocytes were used for experiments within
2-3 days after isolation.

For evaluation of H/R injury in vitro, cells were treated
with PA (Sigma-Aldrich, USA) for 16h, followed by fluxing
with 95% N2/5% CO2 in the absence of FBS and incubation
at 37°C for 16h. For reoxygenation, cells were transferred
to a 95% air/5% CO2 gas mixture and 10% FBS was added.

2.4. Western Blotting Analysis. Proteins were subjected by
SDS/PAGE (12% or 10% gel), and the blots were incubated
overnight with primary antibodies. The following primary
antibodies were used: anti-RIP1 (Cell Signaling Technology,
#3493), anti-RIP3 (Santa Cruz Biotechnology, sc-374639),
anti-MLKL (phospho S345) (Abcam, ab196436), anti-MLKL
(Cell Signaling Technology, #37705), anti-JNK1+JNK2+JN
K3 (Abcam, ab208035), anti-JNK1+JNK2+JNK3 (phospho
T183+T183+T221) (Abcam, ab124956), anti-c-Jun (Abcam,
ab32137), anti-c-Jun (phospho S73) (Abcam, ab30620), anti-
ERK1+ERK2 (Abcam, ab17942), anti-ERK1 (pT202/
pY204)+ERK2 (pT185/pY187) (Abcam, ab50011), anti-p38
(Abcam, 170099), anti-p38 (phospho Y182) (Abcam, ab4
7363), anti-NF-κB (Abcam, ab16502), anti-NF-κB (phospho
S536) (Abcam, ab86299), anti-IKBα (Abcam, ab32518), anti-
IKBα (phospho S36) (Abcam, ab133462), and anti-GAPDH
(Abcam, ab181603).

2.5. Quantitative Real-Time Polymerase Chain Reaction
(qRT-PCR). Hepatocyte RNA was extracted from snap-
frozen liver tissues with TRIzol™ reagent (Life Technologies,
USA) according to the manufacturer’s instructions. Reverse
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Figure 1: Expression and secretion of TNFα are increased in the fatty liver after IRI. (a) Representative H&E staining of liver sections of CD-
and HFD-fed mice after IR. Scale bars, 200μm. (b) Serum ALT of CD- and HFD-fed mice after IR were measured (n = 6 − 8). (c) qPCR
analysis of TNFα of CD- and HFD-fed mice after IR (n = 4 − 5 per group). (d) Serum TNFα was measured after IR in CD- and HFD-fed
mice (n = 5 − 6 per group). (e) Representative Oil Red O staining of KCs treated with PA (500 μM, Sigma-Aldrich, USA) or PBS for 24 h.
Scale bars, 100 μm. (f) TNFα in cell supernatant were measured (n = 6 per group). (g) qPCR analysis of TNFα in KCs treated with PA
followed by H/R. Data are mean ± SEM; ∗P < 0 05, ∗∗P < 0 01, ∗∗∗P < 0 001, and ∗∗∗∗P < 0 0001 by unpaired Student’s t-test.
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transcription was performed with PrimeScript™ RT Master
Mix (Takara, Japan) according to the manufacturer’s instruc-
tions. qRT-PCR was performed using TB Green™ Premix Ex
Taq™ (Takara, Japan) and ABI Prism 7500 real-time PCR
System (Applied Biosystems, USA). Primers used for qPCR
are as follows: β-actin forward: 5′-AGTGTGACGTTGACA
TCCGTA-3′, reverse: 5′-GCCAGAGCAGTAATCTCCT
TCT-3′ and TNFα forward: 5′-GACGTGGAACTGGCAG
AAGAG-3′, reverse: 5′-ACCGCCTGGAGTTCTGGAA-3′.

2.6. Enzyme-Linked Immunosorbent Assay (ELISA). The
levels of TNFα (eBioscience, USA) in mouse serum and cell
culture supernatantsweremeasuredusingcommercially avail-
able ELISA kits according to the manufacturer’s instructions.

2.7. Histological and Immunohistochemical Analysis. Paraffin
liver sections (5μm) were stained with hematoxylin and
eosin (HE) for histological evaluation of IRI based on stan-
dard pathology methods and visualized using a light micro-
scope. Liver damage was evaluated using Suzuki’s score by
two independent pathologists. To identify macrophages and
neutrophils, paraffin-embedded liver sections (5μm) were
stained with F4-80 (Abcam, USA) and myeloperoxidase
(MPO, Abcam, USA) as previously described [22].

2.8. PI Staining. Cells and frozen liver sections (4μm) were
fixed with 4% paraformaldehyde for 30min and washed
twice with PBS. After treatment with 10mg/mL DNase-
free RNase at 37°C for 30min, cell nuclei were stained
with 10mg/mL propidium iodide (PI, KeyGEN BioTECH,
China) at room temperature for 5min in the dark, then
counterstained with DAPI, and observed under a fluores-
cence microscope.

2.9. Determination of ROS. For liver tissues, the ROS level
was measured with the dihydroethidium (DHE, KeyGEN
BioTECH, China) following the manufacturer’s instructions.
Briefly, frozen liver sections (4μm) were incubated with
20μMDHE in the dark at 37°C for 30min and then counter-
stained with DAPI. After washing, slides were mounted and
observed under an immunofluorescence microscope.

For cells, cells were incubated in the dark with 10μmol/L
DCFH-DA (Beyotime Institute of Biotechnology, China) at
37°C for 20min and then washed with PBS three times to
remove residual probes. DCFH-DA was intracellularly by
nonspecific esterase and oxidized by oxidant species to form
the fluorescent compound 2′,7′-dichloro-fluorescein (DCF).
The fluorescent signal intensity of DCF was detected under
an immunofluorescence microscope.

2.10. Oil Red O Stain Assay. To detect lipid accumulation in
macrophages, Oil Red O Stain Kit (Jiancheng Bioengineering
Institute, China) was used according to the manufacturer’s
instructions and visualized using a light microscope.

2.11. Immunocytofluorescence (ICF) Analysis. Immunofluo-
rescence analysis was performed according to the previously
described protocols. Briefly, frozen liver sections (4μm) fixed
with acetone were penetrated with 0.3% Triton for 15min.
Then, the slides were blocked with 10% fetal sheep serum,

followed by incubation with primary antibodies overnight
at 4°C. After washing, slides were incubated with the corre-
sponding secondary antibodies, followed by incubation with
DAPI. Representative images were observed under an
immunofluorescence microscope. The following antibodies
were used: anti-RIP3 (Santa Cruz Biotechnology, sc-
374639) and goat anti-mouse IgG H&L (Alexa Fluor® 488)
(Abcam, ab150117).

2.12. Statistical Analysis. Statistical analysis was performed
using the GraphPad Prism software version 6.0. All data were
expressed asmean ± standard error of the mean (SEM). Nor-
mally distributed data were tested by Student’s t-test. P value
less than 0.05 was considered statistically significant.

3. Results

3.1. Expression and Secretion of TNFα Are Increased in the
Fatty Liver after IRI. Compared with the control group (fed
with a control diet, CD), the mice fed with a HFD exhibited
significantly worse IRI, evidenced by higher serum ALT
and increased Suzuki’s score in HFD-fed mice (Figures 1(a)
and 1(b) and Table 1). From the pathological liver sections,
there were more edema, sinusoidal congestion, and necrosis
in HFD-fed mice (Figure 1(a)). The expression of TNFα at
both the liver tissue and serum levels was higher in HFD-
fed mice compared with those fed with a CD (Figures 1(c)
and 1(d)). Macrophages are the major source of inflamma-
tory factors, including TNFα. Therefore, we extracted KCs
and treated with PA (50μm) to simulate macrophages in
the fatty liver. After 24 h of stimulation, lipid accumulation
was found in the cytoplasm (Figure 1(e)). Then, we investi-
gated the effect of IRI on KCs with steatosis using an
in vitro model of IRI. After H/R stimulation, the expression
of TNFα at the mRNA level in KCs and cellular supernatant
was increased. Moreover, PA treatment enhanced the expres-
sion of TNFα (Figures 1(f) and 1(g)). In conclusion, macro-
phages in the fatty liver expressed and released more TNFα
compared with the normal liver after IRI.

3.2. TNFα Induces Necroptosis In Vitro. Studies have shown
that necroptosis is best characterized in the setting of
TNFα-induced cell death. To further verify whether

Table 1: The mice fed with a HFD exhibited significantly increased
Suzuki’s score of IRI in HFD-fed mice.

Group Suzuki’s score

CD-sham 0 46 ± 0 23
CD-IRI 4 01 ± 0 26a

HFD-sham 2 97 ± 0 45b

HFD-IRI 7 13 ± 0 83c,d

The results are presented as the mean ± SEM of 6 to 8 animals per group.
aSignificant difference (P < 0 001) versus the CD-sham group. bSignificant
difference (P < 0 01) versus the CD-sham group. cSignificant difference
(P < 0 01) versus the CD-IRI group. dSignificant difference (P < 0 01) versus
the HFD-sham group.
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Figure 2: TNFα induces necroptosis in vitro. Hepatocytes were cultured with TNFα (PeproTech, USA) or cell supernatant of KCs treated
with PA followed by H/R for 24 h. (a) Immunoblot analysis of RIP1, RIP3, and MLKL of hepatocytes treated with different concentrations
of TNFα. (b) Immunoblot analysis of RIP1, RIP3, and MLKL of hepatocytes treated with cell supernatant of KCs for 24 h. (c, d)
Representative immunofluorescence staining of propidium iodide (PI) staining of hepatocytes treated with TNFα (20 ng/mL) for 24 h.
Scale bars, 100 μm. (e, f) Representative immunofluorescence staining of PI of hepatocytes treated with cell supernatant of KCs for 24 h.
Scale bars, 100 μm. Data are mean ± SEM; ∗P < 0 05, ∗∗P < 0 01, and ∗∗∗P < 0 001 by unpaired Student’s t-test.
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necroptosis was associated with TNFα, primary mouse
hepatocytes were treated with TNFα for 24 h. Figure 2(a)
shows that the expressions of RIP1, RIP3, and MLKL were
significantly increased upon stimulation of TNFα and
necroptosis was induced by TNFα in a concentration-
dependent manner. Cellular supernatant of KCs treated with
PA and H/R could also activate necroptosis of hepatocytes
(Figure 2(b)). The viability of hepatocytes was assessed by
dual staining of DAPI and PI. A high proportion of PI+ cells
was found after TNFα treatment (Figures 2(c) and 2(d)).
The number of PI+ cells was also markedly increased when
stimulated with supernatant of KCs treated with PA and
H/R (Figures 2(e) and 2(f)). Therefore, these results showed
that TNFα could induce necroptosis in vitro.

3.3. Necroptosis Is Found in NAFLD after IRI. We showed
TNFα-induced necroptosis in vitro, and then we detected
necroptosis in the fatty liver following IRI. Figure 3(a)
reveals that necroptosis was activated in livers of HFD-fed
mice. After IRI, necroptosis was further activated, exhibiting
the upregulation of necroptotic markers (RIP1, RIP3, and
MLKL). This finding suggested that necroptosis was further
activated by IRI (Figure 3(b)). Moreover, immunofluores-
cence staining of RIP3 further indicated that necroptosis
was activated in NAFLD with or without IRI (Figure 3(c)).
Taken together, necroptosis was activated in the fatty liver

and further enhanced after IRI, which might contribute to
the enhanced IRI in HFD-fed mice.

3.4. Inhibition of Necroptosis Reduces IRI in NAFLD.Necrop-
tosis was activated during IRI, and the fatty liver further
aggravated the activation. Therefore, we speculated whether
the inhibition of necroptosis could attenuate IRI in the fatty
liver. Nec-1 and GSK′872, two necroptosis inhibitors, were
administered by intraperitoneal injection 1h before IRI.
TN3-19.12, the neutralizing monoclonal antibody against
TNFα [23], was also used to confirm whether TNFα was an
effective trigger of necroptosis during liver IRI by intraperito-
neal injection.We found thatTN3-19.12,Nec-1, andGSK′872
could significantly inhibit necroptosis in both CD- and HFD-
fed mice, showing increased expressions of RIP1, RIP3, and
MLKL (Figures 4(a) and4(b)). Consistentwithour conjecture,
Nec-1 and GSK′872 as well as TN3-19.12 reduced levels of
ALT and AST in CD- and HFD-fed mice (Figures 4(c)–4(f)).
HE staining and decreased Suzuki’s scores revealed that liver
injury was also reduced (Figure 4(g) and Tables 2 and 3). PI
staining exhibited that hepatocyte necrosis, the direct result
of IRI damage, was also alleviated after IRI (Figure 4(h)).

We also studied the above-mentioned conjecture in vitro.
Primary hepatocytes were stimulated with TNFα to induce
IRI. Nec-1 and GSK′872 could also reduce the expressions
of RIP1, RIP3, and MLKL in TNFα-treated hepatocytes
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Figure 3: Necroptosis is found in NAFLD after IRI. (a) Immunoblot analysis of necroptosis markers RIP1, RIP3, and MLKL of mice fed with
a CD or a HFD. (b) Immunoblot analysis of RIP1, RIP3, andMLKL of CD- and HFD-fed mice after 60min of ischemia and 6 h of reperfusion.
(c) Representative immunofluorescence staining of RIP3 was performed in CD- and HFD-fed mice with or without 60min of ischemia and
6 h of reperfusion. Scale bars, 100μm.
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(Figure 5(a)). Furthermore, Nec-1 and GSK′872 also
decreased the proportion of PI+ hepatocytes (Figure 5(b)).
Taken together, the inhibition of necroptosis could reduce
cell injury induced by TNFα during IRI in NAFLD.

3.5. Inhibition of Necroptosis Reduces ROS Production after
IRI in NAFLD Both In Vivo and In Vitro. The pathophysiol-
ogy of hepatic IRI generally includes ROS production. In
terms of entity of oxidative stress, the most relevant event is
ROS production by activated inflammatory cells, while liver
cells can also produce ROS by the uncoupled mitochondria
due to oxygen readmission [24]. Moreover, it has been
suggested that MLKL increases mitochondrial ROS produc-
tion through mitochondrial targets [25]. Therefore, we
detected whether Nec-1 and GSK′872 could reduce the
ROS production. Figure 6(a) reveals that ROS production
was increased during IRI, and it was further enhanced in
the fatty liver. Pretreatment with Nec-1 and GSK′872 could
significantly decrease the ROS level. The same results were
also found by in vitro experiments (Figure 6(b)). Therefore,
the inhibition of necroptosis could reduce the ROS level after
IRI in NAFLD, and this might be another mechanism of alle-
viating IRI in the fatty liver.

3.6. Inhibition of Necroptosis Reduces the Inflammatory
Response after IRI in NAFLD. Danger-associated molecular
patterns (DAMPs) are either passively released by necrotic
cells and the damaged extracellular matrix or are actively
secreted by stressed and injured cells [26]. Various types of
DAMPs are released during liver IRI, and these DAMPs
can interact with and activate toll-like receptor (TLRs). The
TLRs are one of the components by which the innate
immune system senses the invasion of pathogenic microor-
ganisms or tissue damage by recognizing DAMPs [27]. Tran-
scription factors have been shown to mediate TLR activation
in liver IRI, including NF-κB, JNK, ERK, p38, and IKBα [28].
Therefore, we assessed the expressions of these transcription
factors in the fatty livers. Figure 7(a) shows that compared

GSKNec-1 Nec-1+GSKPBS
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PI/DAPI Sham TN3-19.12

(h)

Figure 4: Inhibition of necroptosis reduces ischemia-reperfusion injury of NAFLD. (a) Immunoblot analysis of necroptosis markers RIP1,
RIP3, and MLKL of mice fed with a CD after IRI pretreated with Nec-1 (1.65mg/kg, Selleck, USA), GSK′872 (1.9mM/kg, Selleck, USA),
and TN3-19.12 (250 μg/mouse, Sigma-Aldrich, USA). (b) Immunoblot analysis of necroptosis markers RIP1, RIP3, and MLKL of mice fed
with HFD after IRI pretreated with TN3-19.12, Nec-1, and GSK′872. (c, d) Serum ALT and AST of mice fed with a CD after IRI
(n = 6 − 8 per group). (e, f) Serum ALT and AST of mice fed with a HFD after IRI (n = 6 − 8 per group). (g) Representative H&E
staining of liver sections. Scale bars, 200 μm. (h) Representative immunofluorescence staining of PI. Scale bars, 100 μm. Data are
mean ± SEM; ∗P < 0 05 by unpaired Student’s t-test.

Table 2: Inhibition of necroptosis reduces Suzuki’s score of IRI in
CD-fed mice.

Group Suzuki’s score

PBS-IRI 3 98 ± 0 26
TN3-19.12-IRI 1 51 ± 0 36a

Nec-1-IRI 1 77 ± 0 21a

GSK-IRI 2 11 ± 0 29b

Nec-1+GSK-IRI 1 62 ± 0 29a

The results are presented as the mean ± SEM of 6 to 8 animals per group.
aSignificant difference (P < 0 01) versus the PBS-IRI group. bSignificant
difference (P < 0 05) versus the PBS-IRI group.

Table 3: Inhibition of necroptosis reduces Suzuki’s score of IRI in
HFD-fed mice.

Group Suzuki’s score

PBS-IRI 7 03 ± 0 83
TN3-19.12-IRI 4 51 ± 0 57a

Nec-1-IRI 5 57 ± 0 48b

GSK-IRI 4 77 ± 0 56a

Nec-1+GSK-IRI 4 73 ± 0 79b

The results are presented as the mean ± SEM of 6 to 8 animals per group.
aSignificant difference (P < 0 01) versus the PBS-IRI group. bSignificant
difference (P < 0 05) versus the PBS-IRI group.
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with CD-fed mice, all the transcription factors were activated
in HFD-fed mice and IRI increased the expressions of NF-κB,
JNK, ERK, p38, and IKBα. Moreover, we found that the liver
inflammatory response after IRI was inhibited by Nec-1 and
GSK′872 in both CD- and HFD-fed mice (Figures 7(b) and
7(c)). In addition, the same findings were achieved by
in vitro experiments (Figure 7(d)). There was also more infil-
tration of MPO- and F4-80-positive cells in HFD-fed mice
after IRI. Inhibition of necroptosis could also decrease the
soakage of inflammation cells (Figures 7(e) and 7(f)). In
summary, the inhibition of necroptosis by Nec-1 and GSK′
872 could reduce the inflammatory response after IRI in
NAFLD, which might be another mechanism protecting the
fatty liver from IRI.

4. Discussion

IRI results from a prolonged ischemic insult, followed by the
restoration of blood perfusion. Hepatic IRI can lead to severe
liver injury, and it is a major cause for the failure of liver

transplantation. However, the fatty liver is more sensitive to
IRI, leading to more severe outcomes of patients. Moreover,
in the past two decades, urbanization has led to sedentary
lifestyle and overnutrition, setting the stage for the epidemic
of obesity and NAFLD, which is currently estimated to be
24% worldwide [29, 30]. Therefore, it is urgently necessary
to prevent and attenuate IRI [22, 31]. However, there are
no available effective and simple methods available to reduce
IRI in the fatty liver. In the present study, we also found that
IRI in the fatty liver was more severe compared with the nor-
mal liver and the TNFα level was increased in serum and liver
of NASH animals, which was in agreement with the previous
report [11].

As a newly defined type of programmed cell death,
necroptosis is tightly controlled by the multiprotein complex
of RIP1 and RIP3, known as the necrosome. Accumulating
evidence indicates that MLKL and the protein kinases
(RIPK1 and RIPK3) contribute to inflammatory processes
through both the induction of necroptotic cell death and
other cellular changes [32, 33]. Necroptosis has been shown
to be involved in various ischemic, inflammatory, and
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Figure 5: Inhibition of necroptosis reduces hepatocyte death induced by TNFα in vitro. (a) Hepatocytes were cultured with TNFα (20 ng/mL)
for 24 h. Immunoblot analysis of necroptosis markers RIP1, RIP3, and MLKL of hepatocytes pretreated with Nec-1 (100 μM) and GSK′872
(5 μM). (b) Representative immunofluorescence staining of PI. Scale bars, 100μm.
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neurodegenerative human disorders [34]. Necroptosis has
been identified as a mechanism of cell death in renal, car-
diac, and retinal IRI [18, 35, 36]. A recent study has found
that necroptosis contributes to hepatic damage during IR,
which induces autophagy via ERK activation [21]. However,
another study has found that necroptotic molecules are not
increased in the necrosis-dominant hepatic IRI model, and
antinecroptosis does not have an overall protective effect
on necrosis-dominant hepatic IRI [37]. Therefore, the role
of necroptosis or even whether necroptosis is activated in
liver IRI remains largely unexplored. In the present study,
we found that TNFα was upregulated in the fatty liver and
its level was further increased after IRI. Early studies have
found that TNFα is the best characterized activator to induce
necroptosis. Therefore, we stimulated hepatocytes with
TNFα. As expected, necroptosis was significantly activated
by TNFα as well as supernatant of KCs treated with PA
and H/R. Moreover, we tested the expressions of RIP1,
RIP3, and MLKL in liver tissues suffering IRI, and all three
markers of necroptosis were upregulated. In addition, the
activation of necroptosis was much more intensive in the
fatty liver, which was consistent with the level of TNFα. Fur-
thermore, Nec-1 and GSK′872 could significantly reduce
necroptosis and protect the liver from IRI in both CD- and

HFD-fed mice (Figure 8). To the best of our knowledge,
we, for the first time, demonstrated that necroptosis was
activated during IRI in the fatty liver, and inhibition of
necroptosis could reduce IRI in NAFLD.

Immune cells, such as macrophages, are activated during
the ischemic phase and even more during reperfusion. Once
activated, they produce proinflammatory cytokines, includ-
ing TNFα [38]. Cytokines play critical roles by stimulating
hepatocytes to produce ROS, greatly contributing to their
damage [39]. In the present study, we also found that ROS
production was increased in hepatocytes of the fatty liver
after IRI as well as hepatocytes stimulated with TNFα. Inhi-
bition of necroptosis could reduce the level of ROS. There-
fore, necroptosis contributed to the ROS production, which
might aggravate the IRI in the fatty liver. DAMPs released
during liver IRI bind to a group of receptors termed pattern
recognition receptors (PRRs) to induce the inflammatory
response [40]. Transcription factors, including NF-κB, JNK,
ERK, p38, and IKBα, participate in the activation of the
inflammatory response. In this study, we found that tran-
scription factors, as well as the soakage of inflammation cells,
were all significantly upregulated during IRI in the fatty liver,
while the inhibition of necroptosis could reduce the inflam-
matory response (Figure 8).
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Figure 6: Inhibition of necroptosis reduces ROS after IRI of NAFLD both in vivo and in vitro. (a) Representative images of DHE staining of
liver sections in CD- and HFD-fed mice with Nec-1 and GSK′872 pretreatment. Scale bars, 100μm. (b) Representative images of DE-FHDA
staining of hepatocytes with Nec-1 and GSK′872 pretreatment followed by TNFα stimulation. Scale bars, 100 μm.
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Figure 7: Inhibition of necroptosis reduces the inflammatory response after IRI of NAFLD. (a) Immunoblot analysis of JNK, cJUN, ERK,
IKBα, p38, and p65 of CD- and HFD-fed mice with or without IRI. (b) Immunoblot analysis of JNK, cJUN, ERK, IKBα, p38, and p65 of
CD-fed mice after IRI with Nec-1 and GSK′872 pretreatment. (c) Immunoblot analysis of JNK, cJUN, ERK, IKBα, p38, and p65 of CD-fed
mice after IRI with Nec-1 and GSK′872 pretreatment. (d) Immunoblot analysis of JNK, c-JUN, ERK, IKBα, p38, and p65 of hepatocytes
with Nec-1 and GSK′872 pretreatment. (e) Representative F4-80 immunohistochemistry of liver sections with IRI in CD- and HFD-fed
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5. Conclusions

In the present study, we found a new mechanism, which
could explain why the fatty liver was more susceptible to
IRI, and demonstrated the mechanism underlying the
necroptosis of the fatty liver. Our findings provided a
potential target to reduce the fatty liver-associated IRI in
liver transplantation.
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