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Background. Medically vulnerable individuals are at increased risk of acquiring multidrug-resistant Enterobacterales (MDR-E) 
infections. People with HIV (PWH) experience a greater burden of comorbidities and may be more susceptible to MDR-E due to 
HIV-specific factors.

Methods. We performed an observational study of PWH participating in an HIV clinical cohort and engaged in care at a 
tertiary care center in the Southeastern United States from 2000 to 2018. We evaluated demographic and clinical predictors of 
MDR-E by estimating prevalence ratios (PRs) and employing machine learning classification algorithms. In addition, we created 
a predictive model to estimate risk of MDR-E among PWH using a machine learning approach.

Results. Among 4734 study participants, MDR-E was isolated from 1.6% (95% CI, 1.2%–2.1%). In unadjusted analyses, MDR-E 
was strongly associated with nadir CD4 cell count ≤200 cells/mm3 (PR, 4.0; 95% CI, 2.3–7.4), history of an AIDS-defining clinical 
condition (PR, 3.7; 95% CI, 2.3–6.2), and hospital admission in the prior 12 months (PR, 5.0; 95% CI, 3.2–7.9). With all variables 
included in machine learning algorithms, the most important clinical predictors of MDR-E were hospitalization, history of renal 
disease, history of an AIDS-defining clinical condition, CD4 cell count nadir ≤200 cells/mm3, and current CD4 cell count 201– 
500 cells/mm3. Female gender was the most important demographic predictor.

Conclusions. PWH are at risk for MDR-E infection due to HIV-specific factors, in addition to established risk factors. Early 
HIV diagnosis, linkage to care, and antiretroviral therapy to prevent immunosuppression, comorbidities, and coinfections 
protect against antimicrobial-resistant bacterial infections.
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The World Health Organization identifies antimicrobial resis-
tance as “a global health security threat that requires action 
across government sectors and society as a whole,” leading to 
greater morbidity and mortality [1]. Multidrug-resistant 
Enterobacterales (MDR-E) are especially important emerging 
pathogens, with carbapenem-resistant Enterobacterales (CRE) 
and extended-spectrum β-lactamase-producing Enterobacterales 
(ESBL-E) being classified by the US Centers for Disease Control 
and Prevention as “urgent” and “serious” threats, respectively 
[2, 3]. While CRE are mostly health care–associated infections 
in the United States, increasing numbers of community- 
associated CRE cases have been reported globally. Likewise, 

ESBL-E infections due to community spread are becoming 
more common [3–5]. Identified risk factors for MDR-E infection 
include health care exposures, residence in long-term care facili-
ties, antibiotic exposure, and immunosuppression [6–14]. 
Overall, medically vulnerable individuals are disproportionately 
at risk for antimicrobial-resistant bacterial infections, including 
MDR-E, as well as for adverse outcomes [3, 15].

It is well documented that people with HIV (PWH) are at in-
creased risk of multidrug-resistant tuberculosis [16]. We and oth-
ers have shown that PWH may also be at increased risk for MDR-E 
infection, compared with the general population [6, 17–21]. An ex-
cess risk of MDR-E among PWH is likely multifactorial. PWH 
have a greater burden of comorbidities, including cancer, metabol-
ic disorders, cardiovascular disease, chronic kidney disease, liver 
disease, lung disease, and multimorbidity [22–28]. In addition, 
PWH may be more susceptible to MDR-E colonization and infec-
tion due to HIV-specific factors, including HIV-associated immu-
nosuppression, dysbiosis, and antibiotic prophylaxis [29–31].

In this study, we assessed predictors of MDR-E in a clinical 
cohort of PWH receiving care at a large tertiary care center in 
the Southeastern United States from 2000 to 2018. We used ma-
chine learning classification algorithms to evaluate demographic 
and clinical factors that may be associated with MDR-E.
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METHODS

Study Population

Our study population included all PWH receiving HIV prima-
ry care at the University of North Carolina at Chapel Hill 
(UNC) Infectious Diseases Clinic and participating in the 
UNC Center for AIDS Research HIV Clinical Cohort 
(UCHCC). The UNC Infectious Diseases Clinic is part of a 
not-for profit integrated health care system serving PWH 
from all 100 North Carolina counties without regard to health 
insurance status. The clinic receives Ryan White funding, and 
the patients are representative of PWH in care across the state. 
Nearly all PWH seen in the clinic since 1996 participate in the 
UCHCC (>95%). The UCHCC study and participants have 
been described previously [32]. For this study, we included 
all adult UCHCC patients who received HIV care between 
January 1, 2000, and December 31, 2018. Patients were entered 
in the study on January 1, 2000, or the date of the first of 2 CD4 
cell count measures obtained within a 12-month period and at 
least 90 days apart, whichever was later (baseline). They were 
followed until the culture date of the first MDR-E isolate, 
loss to follow-up, or administrative censoring (December 31, 
2018), whichever was earlier. Patients were considered lost 
to follow-up if they did not have a CD4 cell count or HIV 
RNA level in >12 months. Patients <18 years of age at baseline 
were excluded. Inclusion and exclusion criteria are detailed in 
Figure 1.

Patient Consent

Participants provided written informed consent to participate 
in the UCHCC. This study was approved by the UNC Office 
of Human Research Ethics/Institutional Review Board.

Microbiology

Our primary outcome was an MDR-E isolate from a clinically 
obtained culture. We obtained microbiological data, including 
antibiotic susceptibility testing, from the UNC Hospitals 
Clinical Laboratory for bacterial cultures with growth of an 
Enterobacterales species. The cultures for our analysis were ob-
tained for clinical purposes from study participants during out-
patient or inpatient visits at any UNC Health site and 
originated from any anatomical source (eg, blood, urine, 
wound). We selected the first Enterobacterales isolate per pa-
tient, thereby excluding repeat cultures, and classified the ana-
tomical source as “blood,” “respiratory,” “urine,” or “other.”

Susceptibility breakpoints for some antibiotics changed dur-
ing the study period; therefore, we used numeric antibiotic sus-
ceptibility tests (ie, zone of inhibition measurements or 
minimum inhibitory concentrations) to standardize suscepti-
bility interpretations to the current breakpoints published by 
the Clinical and Laboratory Standards Institute [33]. Species– 
antibiotic combinations were considered nonsusceptible to an 
antibiotic if the antibiotic susceptibility test interpretation 
was “intermediate” or “resistant” using current breakpoints. 
An isolate was considered nonsusceptible to an antibiotic class 
if it was nonsusceptible to any member of that class, after re-
moving results corresponding to intrinsically resistant spe-
cies–antibiotic combinations. MDR-E was defined as an 
Enterobacterales that was nonsusceptible to at least 1 antibiotic 
from 3 or more separate antibiotic classes [34].

Predictors of Interest

All predictive variables were obtained from the UCHCC, which 
includes all electronically available data from the institutional 

Figure 1. Diagram of patient flow, with inclusion and exclusion criteria. Abbreviation: UCHCC, University of North Carolina Center for AIDS Research HIV Clinical Cohort.
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electronic health record (EHR), including factors known to in-
crease risk of antimicrobial resistance in the general population 
and factors specific to PWH. Demographic characteristics were 
self-reported date of birth (evaluated as age at the date of cul-
ture or censoring), gender, race, and ethnicity. Hospital admis-
sions were evaluated as a measure of health care exposure, and 
CD4 cell counts and HIV RNA levels were evaluated as 
HIV-specific characteristics. A comorbidity was included if it 
was documented in the EHR at any time between baseline 
and the end of follow-up. We assessed comorbidities using 
International Classification of Diseases, 9th/10th Revision, 
Clinical Modification (ICD-CM), diagnosis codes. We 
categorized the diagnosis codes into clinically relevant groups 
using Healthcare Cost and Utilization Project Clinical 
Classifications Software [35] and aggregated the groups by dis-
ease type. The comorbidities included in our analysis were 
AIDS-defining clinical conditions, asthma, cerebrovascular 
disease, chronic obstructive pulmonary disease, diabetes melli-
tus, heart disease, hypertension, lipid disorders, liver disease, 
psychiatric disorders, renal disease, sexually transmitted infec-
tions, and substance use disorders. Their corresponding 
ICD-CM codes are listed in Supplementary Table 1. For time- 
varying characteristics (age, CD4 cell count, and HIV RNA lev-
el), we included the value most proximal to the first date of a 
culture with an MDR-E isolate; for those without an MDR-E 
isolate, we used the value most proximal to censoring. In a sec-
ondary analysis, we also included calendar year of study entry.

For each of the predictors, we estimated the unadjusted prev-
alence ratio (PR) and 95% CI for having an Enterobacterales 
isolate obtained, as well as for presence of MDR-E, our primary 
outcome of interest. For the analysis of predictors, we trans-
formed continuous variables into binary or categorical form. 
Given the limits of detection of HIV RNA assays at the begin-
ning of our study period, we dichotomized HIV RNA levels as 
≤400 or >400 copies/mL. We categorized current CD4 cell 
count into 3 clinically relevant categories: ≤200, 201–500, or 
>500 cells/mm3. Since only 1 patient with the outcome of inter-
est had a nadir CD4 cell count >500 cells/mm3, we dichoto-
mized nadir CD4 cell count as ≤200 or >200 cells/mm3. 
Based on the functional form of age and MDR-E prevalence, 
we dichotomized age as ≤50 or >50 years. Calendar year of 
study entry was categorized into the following time periods: 
2000–2004, 2005–2009, 2010–2014, or 2015–2018.

Machine Learning Approaches

We first fit a penalized logistic regression model (PLR [elastic- 
net]) to assess the relative importance of our candidate predic-
tors in the prediction of MDR-E. In a secondary analysis, we fit 
an identical PLR model, except with calendar year of study en-
try as an additional variable.

For our predictive model, we employed super learning, a 
stacked ensemble machine learning approach that fits a 

meta-learner on combined predictions from multiple base learn-
ers [36]. Rather than prespecifying a parametric model, machine 
learning algorithms exploit associations in data to model the out-
come as a complex function of the covariates. The algorithms in 
our library of base learners were PLR, naïve Bayes, gradient boost-
ing, support vector machines, and random forest. These base 
learner algorithms were selected to provide a diverse set of para-
metric and nonparametric models. We included each algorithm 
in multiple configurations to test an array of hyperparameters. 
Because the outcome of interest was rare in our study population, 
most algorithms would preferentially predict the majority class 
(ie, patients without MDR-E); therefore, we tested the algorithms 
using various combinations of class weighting, random under-
sampling of the majority class, and oversampling of the minority 
class (synthetic minority oversampling technique [37]).

To train the super learner, we first split the data into 70% 
training and 30% test sets, stratified so the outcome of interest 
was present in an equal proportion in each set. We used 
10-fold cross-validation to train the base learners, evaluating 
the algorithms based on their cross-validated area under the re-
ceiver operating curve (cv-AUC). For the meta-learner, we used 
logistic regression, regressing the actual outcome against the pre-
dictions of the base learners. The resulting coefficients then 
weighted the base learners to create the optimal combination 
for prediction. After training the super learner (with 10 repeats), 
we evaluated its discrimination on the held-out test set using the 
mean AUC. We also evaluated the relative importance of the fea-
tures in the super learner’s predictions using Shapley additive ex-
planations (SHAP), a model-agnostic approach to explain how 
each feature contributes to predictions [38].

In each model, we included the full set of predictors, detailed 
in Supplementary Table 2. For the PLR models, all input vari-
ables were binary. For the super learner, current and nadir 
CD4 cell counts, current HIV RNA level, age, and hospital 
length of stay were continuous (scaled to the range of 0–1). 
All other variables were binary. Current CD4 cell count and 
HIV RNA level were missing for 1% and 9% of patients, respec-
tively. For these patients, we imputed the median value of the 
study population for the machine learning models. We also as-
sessed estimates based on multiple imputation of missing values 
in unadjusted association analyses, and results were consistent 
with using the median for imputation.

Analyses were performed using R (version 4.0.2; R 
Foundation for Statistical Computing, Vienna, Austria) and 
Python (version 3.9.6; Python Software Foundation, 
Beaverton, OR 97008 USA).

RESULTS

Study Population

The characteristics of 4534 PWH in HIV care from January 
2000 to December 2018 are detailed in Tables 1 and 2. 
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Participants’ median age (interquartile range [IQR]) was 46 
(36–55) years, median nadir CD4 cell count (IQR) was 209 
(58–378) cells/mm3, median current CD4 cell count (IQR) 

was 515 (281–760) cells/mm3, 75% had a current HIV RNA 
level ≤400 copies/mL, and 93% had received antiretroviral 
therapy (ART). Comorbidities were common, particularly 

Table 1. Unadjusted Prevalence Ratios of Patient Characteristics and the Probability of Having a Clinically Obtained Enterobacterales Isolate, UCHCC 
2000–2018

Isolate Obtained

Characteristica No. (%) Yes, No. (%) No, No. (%) Prevalence Ratio (95% CI)

Total No. 4534 343 4191

Gender

Male (referent) 3175 (70.0) 147 (42.9) 3028 (72.3) —

Female 1359 (30.0) 196 (57.1) 1163 (27.7) 3.12 (2.52–3.86)

Age

18–49 y (referent) 2715 (59.9) 166 (48.4) 2549 (60.8) —

≥50 y 1819 (40.1) 177 (51.6) 1642 (39.2) 1.59 (1.29–1.97)

Race

Black 2721 (60.0) 226 (65.9) 2495 (59.5) 1.35 (1.05–1.74)

Otherd/unknown 449 (9.9) 33 (9.6) 416 (9.9) 1.19 (0.79–1.77)

White (referent) 1364 (30.1) 84 (24.5) 1280 (30.5) —

Ethnicity

Hispanic or Latino 255 (5.6) 23 (6.7) 232 (5.5) 1.12 (0.71–1.68)

Not Hispanic or Latino 2858 (63.0) 230 (67.1) 2628 (62.7) —

Unknown 1421 (31.3) 90 (26.2) 1331 (31.8) 0.79 (0.61–1.00)

Nadir CD4 count

≤200 cells/mm3 2223 (49.0) 227 (66.2) 1996 (47.6) 2.03 (1.63–2.55)

>200 cells/mm3 (referent) 2311 (51.0) 116 (33.8) 2195 (52.4) —

Current CD4 countb

≤200 cells/mm3 791 (17.7) 79 (23.5) 712 (17.2) 1.55 (1.18–2.03)

201–500 cells/mm3 1368 (30.6) 108 (32.1) 1260 (30.4) 1.23 (0.96–1.57)

>500 cells/mm3 (referent) 2316 (51.8) 149 (44.3) 2167 (52.4) —

HIV RNA levelc

≤400 copies/mL (referent) 3058 (74.5) 225 (75.8) 2833 (74.5) —

>400 copies/mL 1044 (25.5) 72 (24.2) 972 (25.5) 0.94 (0.71–1.22)

Hospital admission in prior 12 mo 772 (17.0) 125 (36.4) 647 (15.4) 2.79 (2.24–3.47)

Comorbidities

AIDS-defining condition 1823 (40.2) 222 (64.7) 1601 (38.2) 2.73 (2.19–3.41)

Asthma 469 (10.3) 42 (12.2) 427 (10.2) 1.21 (0.86–1.65)

Cerebrovascular disease 269 (5.9) 40 (11.7) 229 (5.5) 2.09 (1.48–2.87)

Chronic obstructive pulmonary disease 407 (9.0) 54 (15.7) 353 (8.4) 1.89 (1.40–2.51)

Diabetes mellitus 558 (12.3) 67 (19.5) 491 (11.7) 1.73 (1.31–2.24)

Heart disease 1427 (31.5) 173 (50.4) 1254 (29.9) 2.22 (1.79–2.74)

Hypertension 1831 (40.4) 192 (56.0) 1639 (39.1) 1.88 (1.52–2.33)

Lipid disorder 1309 (28.9) 130 (37.9) 1179 (28.1) 1.50 (1.21–1.87)

Liver disease 1559 (34.4) 167 (48.7) 1392 (33.2) 1.81 (1.46–2.24)

Psychiatric disorder 2456 (54.2) 240 (70.0) 2216 (52.9) 1.97 (1.57–2.49)

Renal disease 1237 (27.3) 191 (55.7) 1046 (25.0) 3.35 (2.71–4.15)

Sexually transmitted infection 1353 (29.8) 96 (28.0) 1257 (30.0) 0.91 (0.72–1.15)

Substance use disorder 2404 (53.0) 191 (55.7) 2213 (52.8) 1.11 (0.90–1.38)

Time period, study entry

2000–2004 847 (18.7) 43 (12.5) 804 (19.2) 0.65 (0.46–0.89)

2005–2009 664 (14.6) 62 (18.1) 602 (14.4) 1.19 (0.88–1.58)

2010–2014 780 (17.2) 62 (18.1) 718 (17.1) 1.01 (0.75–1.34)

2015–2018 (referent) 2243 (49.5) 176 (51.3) 2067 (49.3) —

Abbreviations: MDR-E, multidrug-resistant Enterobacterales; UCHCC, University of North Carolina Center for AIDS Research HIV Clinical Cohort.  
aFor time-varying characteristics, we included the value most proximal to the first date of a culture with an MDR-E isolate; for those without an MDR-E isolate we used the value most proximal 
to censoring.  
bFifty-nine missing values.  
cFour hundred twenty-eight missing values.  
d“Other” race includes American Indian (34), Asian (16).
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psychiatric and substance use disorders and hypertension. An 
AIDS-defining clinical condition had been diagnosed in 40% 
of participants. Within the 12 months before the end of follow- 

up, 17% of participants had been hospitalized at least once. The 
median follow-up time (IQR) was 5 (3–10) years until the first 
MDR-E isolate, loss to follow-up, or administrative censoring.

Table 2. Unadjusted Associations Between Patient Characteristics and the Probability of Having a Multidrug-Resistant Enterobacterales Isolate, UCHCC 
2000–2018

MDR-E Isolate

Characteristica No. (%) Yes, No. (%) No, No. (%) Prevalence Ratio (95% CI)

Total No. 4534 73 4461

Gender

Male (referent) 3175 (70.0) 35 (47.9) 3140 (70.4) —

Female 1359 (30.0) 38 (52.1) 1321 (29.6) 2.54 (1.60–4.03)

Age

18–49 y (referent) 2715 (59.9) 46 (63.0) 2669 (59.8) —

≥50 y 1819 (40.1) 27 (37.0) 1792 (40.2) 0.88 (0.54–1.40)

Race

Black 2721 (60.0) 50 (68.5) 2671 (59.9) 1.57 (0.91–2.84)

Otherd/unknown 449 (9.9) 7 (9.6) 442 (9.9) 1.33 (0.51–3.11)

White (referent) 1364 (30.1) 16 (21.9) 1348 (30.2) —

Ethnicity

Hispanic or Latino 255 (5.6) 6 (8.2) 249 (5.6) 1.53 (0.58–3.32)

Not Hispanic or Latino (referent) 2858 (63.0) 44 (60.3) 2814 (63.1) —

Unknown 1421 (31.3) 23 (31.5) 1398 (31.3) 1.05 (0.62–1.72)

Nadir CD4 count

≤200 cells/mm3 2223 (49.0) 58 (79.5) 2165 (48.5) 4.02 (2.34–7.35)

>200 cells/mm3 (referent) 2311 (51.0) 15 (20.5) 2296 (51.5) —

Current CD4 countb

≤200 cells/mm3 791 (17.7) 23 (31.9) 768 (17.4) 3.21 (1.77–5.83)

201–500 cells/mm3 1368 (30.6) 28 (38.9) 1340 (30.4) 2.26 (1.29–4.02)

>500 cells/mm3 (referent) 2316 (51.8) 21 (29.2) 2295 (52.1) —

HIV RNA levelc

≤400 copies/mL (referent) 3058 (74.5) 35 (58.3) 3023 (74.8) —

>400 copies/mL 1044 (25.5) 25 (41.7) 1019 (25.2) 2.09 (1.24–3.48)

Hospital admission in prior 12 mo 772 (17.0) 37 (50.7) 735 (16.5) 5.01 (3.16–7.94)

Comorbidities

Asthma 469 (10.3) 7 (9.6) 462 (10.4) 0.92 (0.38–1.87)

AIDS-defining condition 1823 (40.2) 52 (71.2) 1771 (39.7) 3.68 (2.25–6.24)

Cerebrovascular disease 269 (5.9) 13 (17.8) 256 (5.7) 3.44 (1.80–6.05)

Chronic obstructive pulmonary disease 407 (9.0) 7 (9.6) 400 (9.0) 1.08 (0.45–2.18)

Diabetes mellitus 558 (12.3) 11 (15.1) 547 (12.3) 1.26 (0.63–2.30)

Heart disease 1427 (31.5) 39 (53.4) 1388 (31.1) 2.50 (1.58–3.97)

Hypertension 1831 (40.4) 39 (53.4) 1792 (40.2) 1.69 (1.07–2.69)

Lipid disorder 1309 (28.9) 21 (28.8) 1288 (28.9) 0.99 (0.59–1.63)

Liver disease 1559 (34.4) 32 (43.8) 1527 (34.2) 1.49 (0.93–2.36)

Psychiatric disorder 2456 (54.2) 52 (71.2) 2404 (53.9) 2.10 (1.28–3.55)

Renal disease 1237 (27.3) 44 (60.3) 1193 (26.7) 4.04 (2.54–6.53)

Sexually transmitted infection 1353 (29.8) 14 (19.2) 1339 (30.0) 0.56 (0.30–0.97)

Substance use disorder 2404 (53.0) 39 (53.4) 2365 (53.0) 1.02 (0.64–1.62)

Time period, study entry

2000–2004 847 (18.7) 14 (19.2) 833 (18.7) 3.09 (2.65–11.00)

2005–2009 664 (14.6) 25 (34.2) 639 (14.3) 7.04 (3.61–14.51)

2010–2014 780 (17.2) 22 (30.1) 758 (17.0) 5.27 (2.65–6.80)

2015–2018 (referent) 2243 (49.5) 12 (16.4) 2231 (50.0) —

Abbreviations: MDR-E, multidrug-resistant Enterobacterales; UCHCC, University of North Carolina Center for AIDS Research HIV Clinical Cohort.  
aFor time-varying characteristics, we included the value most proximal to the first date of a culture with an MDR-E isolate; for those without an MDR-E isolate, we used the value most proximal 
to censoring.  
bFifty-nine missing values.  
cFour hundred twenty-eight missing values.  
d“Other” race includes American Indian (34), Asian (16).
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Enterobacterales Isolates

Among the 4534 participants, 343 (8%) had an Enterobacterales 
isolate obtained (Table 1). The majority of isolates were urinary 
(80%), followed by blood (12%) and respiratory (2%), with the 
remaining 6% originating from other anatomical sites. 
Participants who were female or ≥50 years of age were more 
likely to have had an isolate obtained (PR, 3.1; 95% CI, 2.5– 
3.9; and PR, 1.6; 95% CI, 1.3–2.0; respectively). A nadir CD4 
cell count ≤200 cells/mm3, compared with >200 cells/mm3, 
was also associated with having had an isolate obtained (PR, 
2.0; 95% CI, 1.6–2.6), as were hospital admission within the prior 
12 months (PR, 2.8; 95% CI, 2.2–3.5) and a history of an 
AIDS-defining clinical condition (PR, 2.7; 95% CI, 2.2–3.4). 
Several comorbidities were associated with having an 
Enterobacterales isolate, most notably renal disease (PR, 3.4; 
95% CI, 2.7–4.2). Participants who entered the study during 
2000–2004 were less likely to have had an isolate obtained, com-
pared with those who entered later (PR, 0.7; 95% CI, 0.5–0.9).

Predictors of MDR-E

Overall, 1.6% of participants (n = 73) had an MDR-E isolate 
(95% CI, 1.2%–2.1%). Unadjusted associations of demographic 
and clinical characteristics with MDR-E are presented in 
Table 2. Females had a higher prevalence of MDR-E than males, 
with a PR of 2.5 (95% CI, 1.6–4.0). Participants with a nadir CD4 
cell count ≤200, vs >200 cells/mm3, had a higher prevalence of 
MDR-E (PR, 4.0; 95% CI, 2.3–7.4). Similarly, a current CD4 cell 
count of ≤200 or 201–500 cells/mm3, vs >500 cells/mm3, was 
associated with higher MDR-E prevalence (PR, 3.2; 95% CI, 
1.8–5.8; and PR, 2.3; 95% CI, 1.3–4.0; respectively). Restricted 
cubic spline models estimating the predicted percentage of pa-
tients with MDR-E by continuous CD4 cell count confirmed the 

increasing MDR-E prevalence at lower nadir, as well as current, 
CD4 cell counts (Figure 2). Other characteristics associated with 
greater MDR-E prevalence included hospital admission in the 
prior 12 months (PR, 5.0; 95% CI, 3.2–7.9) and having a history 
of an AIDS-defining clinical condition, cerebrovascular disease, 
or renal disease, with PRs of 3.7 (95% CI, 2.3–6.2), 3.4 (95% CI, 
1.8–6.0), and 4.0 (95% CI, 2.5–6.5), respectively. Participants 
who entered the study during 2015–2018 were less likely to 
have had MDR-E, compared with those entering earlier.

Machine Learning Algorithms

Our PLR model supported the findings of the unadjusted anal-
yses, identifying female gender, low nadir and current CD4 
cell count, hospitalization within the prior 12 months, renal dis-
ease, and an AIDS-defining clinical condition as the most impor-
tant predictors of MDR-E. Results are presented in Figure 3A, 
with the coefficient indicating the relative influence of each pa-
tient characteristic in predicting MDR-E. Regularization adds a 
penalty term to the loss function to avoid overfitting and obtain 
better predictive performance. The penalty biases the coefficients 
toward the null, complicating interpretation of the coefficients 
and estimation of meaningful confidence intervals. Therefore, 
we do not report measures of association from the PLR models.

To fit the super learner, we included 18 configurations of the 
base learners. The base learner configurations and their 
cv-AUCs are detailed in Supplementary Table 3. After fitting 
the base learners to the training data and using the cv-AUC 
as an indicator of performance, the algorithms all performed 
similarly, with cv-AUCs of 65%–72%. The mean AUC of the 
super learner on the held-out test data was 71%, sensitivity 
was 67%, specificity was 76%, and positive and negative predic-
tive values were 5% and 99%, respectively. The SHAP analysis 

Figure 2. Predicted percentage of patients with multidrug-resistant Enterobacterales infections by CD4 count. A, Nadir CD4 cell count. B, Current CD4 cell count. Per-
centages were estimated using restricted cubic spline models. Bands represent 95% confidence intervals (bands do not extend the full range of estimates due to lack 
of precision at the extremes).
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(Figure 3B) revealed female gender to be the most influential 
predictor of MDR-E in our study participants, followed by low-
er values of nadir CD4 cell count, higher values of days hospi-
talized in the prior 12 months, and lower values of current CD4 
cell count, respectively. A history of renal disease, heart disease, 
and an AIDS-defining clinical condition were also influential in 
prediction of MDR-E.

In our secondary PLR model with the addition of calendar 
time of study entry, the time periods 2005–2009 and 2010– 
2014 were the strongest predictors of MDR-E (Supplementary 
Figure 1). This model retained the same predictors as the origi-
nal PLR model, identifying hospitalization within the prior 
12 months, female gender, renal disease, and low nadir CD4 
cell count as important predictors of MDR-E, albeit with de-
creased influence on the model output.

DISCUSSION

In this well-characterized clinical cohort of PWH from 2000 to 
2018, the prevalence of MDR-E was 1.6%. As no nationwide 
surveillance system monitors the prevalence of MDR-E, we 
are unable to compare our findings to national estimates. 
Notably, we found that HIV-specific factors, including lower 
current and nadir CD4 cell counts, were strongly associated 
with having an MDR-E isolate. Participants also had a greater 
likelihood of MDR-E if they had evidence of MDR-E risk fac-
tors that have been established in the general population, in-
cluding recent hospitalization and certain comorbidities. 
Consistent with greater risk among those with more interac-
tions with the health care system, our results underscore excess 
risk among medically vulnerable PWH.

In unadjusted analyses, participants with nadir CD4 cell 
counts ≤200 cells/mm3 had substantially increased prevalence 

of MDR-E, as did those with current CD4 cell counts 
≤500 cells/mm3. Our results show that the predicted prevalence 
of MDR-E rose sharply as the nadir CD4 cell count decreased be-
low ∼300 cells/mm3. A similar pattern was observed as the cur-
rent CD4 cell count decreased below ∼500 cells/mm3. CD4 cell 
count is a marker of severity of HIV-induced immune defi-
ciency, and low CD4 cell counts increase the risk of mortality 
and morbidity, including opportunistic infections.

Enterobacterales are colonizers of the gut, and HIV infection 
disrupts the gut mucosal epithelia and microbiota, resulting in mi-
crobial translocation [39]. Therefore, HIV-associated gut micro-
biota changes and inflammatory responses may lead to 
colonization and subsequent infection with MDR-E [39, 40]. It 
is also possible that low CD4 cell counts are associated with in-
creased MDR-E risk by increasing a patient’s interactions with 
the health care system through hospitalizations or clinical man-
agement of AIDS-defining clinical conditions or other comorbid-
ities. Having a history of an AIDS-defining clinical condition was 
also strongly associated with MDR-E, and this association re-
mained when all other predictors, including current and nadir 
CD4 cell counts and hospitalization, were included in the models.

In addition, PWH had a higher prevalence of MDR-E if they 
had been hospitalized or had renal disease. This is consistent 
with risk factors documented in the general population. For exam-
ple, in a large study of gram-negative rods isolated from hospital-
ized patients, renal disease was present in 46% of patients with 
ertapenem-resistant isolates, compared with 32% of patients 
with ertapenem-susceptible isolates. In that study, renal disease 
was the only comorbidity retained in the final model for predic-
tion of ertapenem-resistant gram-negative infection [10].

In our PLR model with calendar period of study entry in-
cluded as a predictor, calendar years early in the study period 

Figure 3. Relative influence of predictors on machine learning model output. A, Coefficients from penalized logistic regression (elastic-net) model. The model includes all 
demographic and clinical predictors of interest, with variables specified as binary input features. B, Shapley additive explanations for super learner model. The model includes 
all demographic and clinical predictors of interest, with variables specified as either continuous or binary input features. Continuous features vary from low to high values, 
whereas binary features are either present or absent. Each dot represents the impact of a feature on the prediction of a multidrug-resistant Enterobacterales isolate for 1 
patient. Abbreviation: SHAP, Shapley additive explanations.
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were the strongest predictors of MDR-E. The predictors iden-
tified in our primary analyses were retained, though their influ-
ence was somewhat reduced. This is likely related to the use of 
more potent ART and other changes in the management of 
HIV infection over the study period [41].

In contrast to the general population, we did not find age to 
be associated with risk of MDR-E, either in unadjusted analyses 
or in our models. This may be related to the young age at which 
many PWH are diagnosed with HIV-related conditions, as well 
as the younger ages at which PWH develop comorbidities in 
comparison to the general population. For instance, PWH are 
diagnosed with cancers and cardiovascular conditions at youn-
ger ages compared with persons without HIV [26, 28, 42].

To identify predictors of MDR-E among PWH, we relied on 
a set of machine learning classification algorithms. Because no 
single algorithm invariably outperforms all others, we used su-
per learning to create a predictive model. As a predictive model, 
the super learner will, in theory, perform at least as well as the 
optimal algorithm in a library of base learners [36]. We found 
that all algorithms in the super learner library performed sim-
ilarly on the training data. The super learner model had 
low-to-moderate sensitivity and specificity for predicting 
MDR-E in our participants. Furthermore, given the low preva-
lence of MDR-E in the study population, the negative predic-
tive value of the super learner was high at 99%, while the 
positive predictive value was just 5%. With a rare condition, 
positive predictive value is expected to be low, even when sen-
sitivity is high. Improving the performance of a predictive 
model would therefore require a population with a much high-
er prevalence of MDR-E.

Our findings of an association between MDR-E and low CD4 
cell counts and diagnosis of an AIDS-defining clinical condi-
tion underscore the continuing need for strategies that mini-
mize the time from HIV infection to linkage to HIV care, as 
well as the time from HIV care initiation to ART initiation 
[43, 44]. Strategies that prevent HIV progression are relevant 
to reducing MDR-E risk among PWH, in addition to their es-
tablished effects decreasing HIV-related morbidity, mortality, 
and non-HIV clinical outcomes such as myocardial infarction, 
end-stage renal disease, cancer, and hospitalization [43, 45, 46]. 
Further efforts are also needed to support PWH in maintaining 
consistent engagement with HIV care and remaining on effica-
cious ART to preserve and improve immune function, with 
programs spanning individual, health care system, and policy 
levels [47].

A strength of this study is the large clinical cohort of PWH, 
with longitudinal data collected throughout the 19-year study 
period. We were able to verify susceptibility results of isolates 
to all antibiotic classes that were tested, as well as correct for 
changes in susceptibility definitions by updating interpreta-
tions with current susceptibility breakpoints. However, the 
study is subject to several limitations. The study is based on a 

clinical cohort of PWH receiving care at a single tertiary care 
center in North Carolina, and results need to be reproduced 
in larger cohorts and other geographical areas. The outcome 
of interest was rare in our study population, limiting the perfor-
mance of the classification algorithms as well as the number of 
predictors that could be analyzed. We were unable to include 
some patient characteristics that may increase MDR-E risk, 
such as residence in long-term care facilities, invasive medical 
procedures, and use of antibiotics including prophylactic med-
ications, due to limitations of the available data. In spite of these 
limitations, we were able to show that some HIV-specific char-
acteristics, as well as general risk factors that are more prevalent 
in PWH, were associated with MDR-E.

In conclusion, we found that prevalence of MDR-E in 
PWH is associated with HIV-specific factors, including low 
CD4 cell counts, in addition to established risk factors, 
such as hospitalization and comorbidities. Early diagnosis 
of HIV, linkage to care, and provision of ART to preserve im-
mune function, which is critical to reducing HIV-related 
morbidity and mortality, may also protect PWH from 
antimicrobial-resistant bacterial infections. Additionally, 
screening and treatment for comorbidities among PWH 
may reduce MDR-E infections in this population. This may 
be increasingly important as PWH live to older ages, given 
the efficacy of current ART.

Supplementary Data
Supplementary materials are available at Open Forum Infectious Diseases 

online. Consisting of data provided by the authors to benefit the reader, the 
posted materials are not copyedited and are the sole responsibility of the 
authors, so questions or comments should be addressed to the correspond-
ing author.
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