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Abstract: Prostate cancer (PCa) is a heterogeneous disease and ranked as the second leading cause
of cancer-related deaths in males worldwide. The global burden of PCa keeps rising regardless of
the emerging cutting-edge technologies for treatment and drug designation. There are a number
of treatment options which are effectively treating localised and androgen-dependent PCa (ADPC)
through hormonal and surgery treatments. However, over time, these cancerous cells progress to
androgen-independent PCa (AIPC) which continuously grow despite hormone depletion. At this
particular stage, androgen depletion therapy (ADT) is no longer effective as these cancerous cells are
rendered hormone-insensitive and capable of growing in the absence of androgen. AIPC is a lethal
type of disease which leads to poor prognosis and is a major contributor to PCa death rates. A natural
product-derived compound, curcumin has been identified as a pleiotropic compound which capable
of influencing and modulating a diverse range of molecular targets and signalling pathways in order
to exhibit its medicinal properties. Due to such multi-targeted behaviour, its benefits are paramount
in combating a wide range of diseases including inflammation and cancer disease. Curcumin exhibits
anti-cancer properties by suppressing cancer cells growth and survival, inflammation, invasion, cell
proliferation as well as possesses the ability to induce apoptosis in malignant cells. In this review,
we investigate the mechanism of curcumin by modulating multiple signalling pathways such as
androgen receptor (AR) signalling, activating protein-1 (AP-1), phosphatidylinositol 3-kinases/the
serine/threonine kinase (PI3K/Akt/mTOR), wingless (Wnt)/ß-catenin signalling, and molecular targets
including nuclear factor kappa-B (NF-κB), B-cell lymphoma 2 (Bcl-2) and cyclin D1 which are
implicated in the development and progression of both types of PCa, ADPC and AIPC. In addition,
the role of microRNAs and clinical trials on the anti-cancer effects of curcumin in PCa patients were
also reviewed.

Keywords: curcumin; androgen-dependent prostate cancer; androgen-independent prostate cancer;
molecular mechanism; prostate cancer

1. Introduction

Prostate cancer (PCa) is the second leading cause of cancer-related deaths for males [1].
The incidence of PCa has significantly increased over the recent years [2]. In 2018 alone, there
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were 1.3 million new cases reported and 359,000 mortalities recorded worldwide. Other studies
have reported PCa as the most commonly diagnosed cancer after lung and liver carcinoma in
105 countries, notably in the developed countries. A similar increasing trend has been noted in
the United States of America (USA), across the years, from 164,690 cases in 2018, to 174,650 new
cases in 2019. Furthermore, there were 29,430 deaths in 2018, while the estimated mortality in
2019 has increased to 31,620 [2]. Globally, by 2030, the PCa incidence is expected to rise to 1.7 million,
together with 499,000 deaths [3]. In the USA, PCa has the highest prevalence, with more aggressive
phenotype among African-American with 2.4 times higher mortality rate, compared to white men [4,5].
However, the justification for such evidence remains inconclusive. Besides, despite the low number of
cases recorded in the past, the PCa incidence in Northeast Asia has increased in recent years, which is
strongly associated with the economic development and westernised lifestyle [6].

PCa is known as a heterogenous disease. Malignant transformation of prostate cells occurs through
multiple processes, initiating as prostatic intraepithelial neoplasia (PIN), followed by localized PCa and
then progress to locally invasive adenocarcinoma, metastasise to distant sites, primarily to the lymph
nodes or bone, and eventually develop androgen-independent phenotype [7]. PIN is a premalignant
lesion and the most established precursor of prostatic carcinoma. PIN is associated with progressive
abnormalities of phenotype and genotype changes, indicating impairment in cell differentiation and
regulatory control with advancing stages of prostate carcinoma. Currently, PIN is only detected through
a biopsy. The clinical importance of PIN is its high predictive value as a marker for adenocarcinoma
and its identification warrants repeat biopsy for concurrent invasive carcinoma [8]. The risk factors
for PCa are numerous and heterogeneous which could be age, sedentary lifestyle, family history,
environment, ethnic factors and genetics [9]. Moreover, a high protein diet or dairy product-based
calcium intake may elevate the risk of the disease [10]. Accordingly, changes in diet and lifestyle,
specifically exercise and smoking cessation, may reduce PCa progression. Phytochemicals, vitamins
and some minerals that are found in edible plants such as vitamin A, isoflavones (e.g., genistein and
daidzein), vitamin E, lycopene, selenium may also minimize the risk of subsequent cancer recurrence,
progression, or death due to PCa [11–13].

A few current treatment options are shown successful in treating localised and androgen-dependent
PCa (ADPC) including hormonal treatment, surgery and radiotherapy. However, over time, these
cancerous cells progress to androgen-independent PCa (AIPC) which continuously grow despite
hormone depletion. At this particular stage, androgen depletion therapy (ADT) will be no longer
effective as these cancerous cells are hormone-insensitive and capable of growing in the absence
of androgen, leading to metastasis [14,15]. Furthermore, the current therapy for AIPC is mainly
palliative, in the form of taxane-based therapy, cytotoxic agent (e.g., docetaxel/predisone), novel
hormonal therapies which target AR signalling (e.g., abiraterone acetate and enzalutamide regimes),
radiotherapy for reduction of bone metastases (e.g., radium-223), immunotherapy (e.g., sipuleucel-T)
and treatment by combination of different drugs [16]. Furthermore, the effectiveness of these drugs
remains short-term, yielded adverse effects, and there is no evidence that these drugs could increase
life expectancy [17,18]. Thus, numerous laboratory investigations and clinical studies have focused
in identifying other novel potent anti-cancer molecules and relevant pathways to address AIPC
occurrence, to extend life expectancy and improve health-related quality of life in patients with PCa.

The cost of prostate cancer care and available drugs can be high, thus limiting its potential
widespread usage in less developed countries. Hence, it is urgent to develop a safe, potent, affordable,
easily manufactured form of novel drug to treat AIPC. Throughout recent years, there is an emerging
trend of using natural products from fungi, plants, and animals, for medicine, primarily due to their
beneficial bioactive compounds as well as their lower toxicity [19]. The use of medicinal plants for
health well-being has increased tremendously across the world. Indeed, more than half of the current
drugs that available nowadays are originally obtained from such natural products.
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2. Mechanism of Progression from Androgen-Dependent to Androgen-Independent Prostate Cancer

Almost all PCa begins as ADPC, where the growth depends on androgen-induced androgen receptor
(AR), as illustrated in Figure 1a [20,21]. Initially, ADT is effective in treating ADPC and still remains the
foundational treatment of PCa. Unfortunately, nearly all PCa patients will eventually progress to AIPC
which are currently incurable [22,23]. Several studies have shown that persistent AR signalling and aberrant
AR expression are key contributing factors that support the progression to AIPC [24–26]. The augmentation
of AR-mediated signals in AIPC cells resulted in increased cell proliferation despite of low testosterone
levels and/or absence of androgens [27–29]. As shown in Figure 2b, the mechanisms contributed to
the progression of AIPC are AR amplification, AR mutation, AR-splice variants, modification of AR
co-regulators, prostate intracrine androgen biosynthesis, modulation of oncogenes and tumour suppressor
genes, and neuroendocrine cells differentiation. The first five pathways are AR-dependent pathways which
requires continuous activation of AR signalling. The latter two pathways are AR-independent pathways
that do not involve AR signalling [17,30].
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regulators, (6) modulation of oncogenes and TSGs and (7) neuroendocrine differentiation. TSGs: 
Tumour suppressor genes; HSP: heat shock proteins; ARE: androgen response element; DHT: 
dihydrotestosterone; PTEN: phosphatase and tensin homologue deleted on chromosome-10. 
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Figure 1. Molecular mechanisms of (a) androgen-dependent PCa (ADPC) and (b) development of
androgen-independent prostate cancer (AIPC). The mechanism of the development of AIPC has been
categorised based on AR-dependent that involving AR which include; (1) AR amplification, (2) intracrine
androgen synthesis, (3) AR mutation, (4) AR splice variants and (5) modulation of AR co-regulators, (6)
modulation of oncogenes and TSGs and (7) neuroendocrine differentiation. TSGs: Tumour suppressor
genes; HSP: heat shock proteins; ARE: androgen response element; DHT: dihydrotestosterone; PTEN:
phosphatase and tensin homologue deleted on chromosome-10.

AR amplification and overexpression have been implicated in many AIPC cases, both in vitro and
in vivo [31,32]. An aberrant gene amplification may lead to overexpression of AR and subsequently
enhance AR-androgen ligand binding even at presence of low circulating androgen [25]. Additionally, PCa
cells may also contain AR mutations. These mutations alter AR ligand-binding domain thus increase
AR transactivation activity by increasing the binding specificity to other endogenous steroid ligands (e.g.,
progesterone, corticosteroids, and oestrogen) [33]. AR splice variants (ARVs) have also been found to be
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correlated with persistent AR activity and contribute to therapy resistance. Tumour cells harbouring ARVs
lack of ligand-binding domain (LBD), enable cells to bypass the need of androgens because AR can become
constitutively active [34]. It was also reported that intracrine biosynthesis of androgens from adrenal steroids
and cholesterol also contribute to the elevated testosterone level in AIPC. Consequently, the presence
of intracellular androgens is sufficient to activate the AR signalling [35]. The ratio between co-activator
and co-repressor may also influence the overall AR activation in AIPC. Co-activators are overexpressed
in AIPC cells and modulate AR activity allowing to gain androgen-independence [36]. In contrast,
the co-repressor proteins have been reported to be down-regulated in AIPC, resulting in increased
AR-mediated transcriptional activity [30].

The progression of PCa cells to neuroendocrine differentiation of PCa cells (NEPC) has led to
treatment resistance and ultimately results in the progression to AIPC [37]. In contrast to the pathways
discussed earlier, this pathway is categorised as AR-independent pathway. Despite of the absence
of androgen, NEPC cells continually secrete neuropeptides such as serotonin and bombesin, which
pose paracrine effects on the neighbouring cells, stimulating the proliferation, motility, and thus the
metastatic potential of PCa cells [38]. Additionally, AIPC tumour cells develop the ability to survive in
androgen castration via modulation of Bcl-2 oncogene and PTEN (phosphatase and tensin homologue
deleted on chromosome-10) tumour suppressor genes. The pro-survival protein Bcl-2 has been reported
to be highly expressed in PCa cells, and closely correlated with the progression of ADPC to AIPC growth
state, although the mechanism is still uncertain [39]. Another important molecule, phosphatase and
tensin homolog deleted on chromosome 10 (PTEN) expression has been observed to be downregulated
in many cases of AIPC. Commonly, PTEN loss of function occurs in many types of cancers through
various genetic alterations like deletion, mutation and methylation [40]. The loss function of PTEN leads
to constitutive activation of PI3K pathway associated with cell proliferation, survival and migration.
Contrarily, PTEN negatively regulates the activity of this pathway thus promoting apoptosis and
inhibiting cell proliferation. It is hypothesized that PTEN loss or PI3K pathway activation stimulates
the AR nuclear translocation and AR-mediated transcriptional activity [41].
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3. Curcumin as a Potential Anticancer Agent for Prostate Cancer

Turmeric is derived from Curcuma longa rhizomes, has been used since ancient times for
medical purposes for the treatment of various ailments and diseases [42]. Curcumin, known as
diferuloylmethane, is the principal polyphenol of turmeric, responsible for its therapeutic effects [43,44].
Curcumin consists of two aromatic ring systems containing o-methoxy phenolic groups, connected by
a seven carbon linker consisting of an α,β-unsaturated β-diketone moiety (Figure 2) [45]. There are
numerous in vitro and in vivo, as well as clinical trials findings reporting the therapeutic efficacy
of curcumin in treating many diseases since it exhibits anti-inflammatory, antioxidant, antibacterial,
anti-fungal, and antiviral properties [46–51].
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Curcumin is identified as a highly pleiotropic compound capable of influencing and modulating a
diverse range of molecular targets, by altering cells’ gene expression and signalling pathways. Due to
multiple-targeting characteristic, curcumin is able to regulate a diverse array of transcription factors,
inflammatory cytokines, enzymes, kinases, growth factors, receptors, and apoptosis proteins that are
frequently dysregulated in cancer. There are numerous pre-clinical and animal studies which conclude
that curcumin as a potent anti-tumour agent, for its effectiveness in regulating several biological
pathways which are implicated in tumorigenesis [52]. Curcumin interferes cancer growth by targeting
a different multistep molecular tumorigenesis including tumour initiation and progression phase in a
wide range of tumour cells [53,54]. Therefore, it possesses chemopreventive effects by reverse, suppress,
prevent carcinogenesis and cancer progression. Several animal studies have shown that curcumin
has a dose-dependent chemopreventive effect in different type of cancers, including PCa [55]. It was
also reported that consuming curcumin could decrease the risk of PCa development [56]. Apart of
its anti-cancer properties, curcumin also acts as a potent chemo- and radio-sensitiser agent [57–59].
Furthermore, curcumin has been proven safe for medical purposes, with low toxicity and fewer side
effects regardless of the dosage consumed [60]. Clinical studies investigating curcumin’s safety and
efficacy have supported that curcumin have a safe profile [46,61]. Moreover, curcumin has been
categorised as Generally Recognised As Safe (GRAS) by the U.S. Food and Drug Administration
(USFDA), with recommended serving dose ranging from 8 g/day to 12 g/day [62–64].

The first evidence of the anti-cancer properties of curcumin was published in 1985 [65]. Since then,
a large amount of research exploring the effects of curcumin in cell lines, animal and human models
have been conducted worldwide [66–84]. There are plenty of data on curcumin’s anti-tumour effects
in many other types of cancer, however, evidences regarding the mode of actions of curcumin in
PCa are considered limited [85–88]. For the evaluation of curcumin activity in in vitro model of PCa,
the commonly used cells which represents ADPC is LNCaP cells, while PC-3 and DU 145 cells represent
AIPC [89,90]. At the molecular level, curcumin inhibits the over-expression of oncogenes Bcl-2, AR
signalling, epidermal growth factor receptor (EGFR), human epidermal growth factor receptor 2
(HER2), Cyclin D1, cyclooxygenase (COX-2), matrix metalloproteinase (MMP), protein kinases B (Akt),
transcription factors (e.g., nuclear factor kB (NF-κB), activator protein 1 (AP-1), signal transducer and
activator of transcription 3 (STAT3), and several signalling pathways like PI3K/Akt/mTOR, JAK/STAT
and MAPK [91,92]. Previous studies have reported that curcumin demonstrates inhibitory growth
effects on both ADPC (LNCaP) and AIPC (PC-3) cells, whereby its efficacy is comparable to conventional
chemotherapeutic drugs [52,93,94]. Curcumin also significantly delays tumour growth and induces
cell death in ADPC (LNCaP), AIPC (DU145) cells and (AIPC) PC-3 xenograft models [56,94–96].
Curcumin treatment also demonstrates strong selectivity towards prostate malignant cells over normal
human prostate epithelial cells [97]. Hence, this review will discuss the curcumin’s mode of mechanisms
as a potential anti-cancer agent influencing the key molecular targets and pathways which could offer
an alternative in improving therapeutic strategies of PCa.

4. Selected Molecular Targets Effected by Curcumin in Prostate Cancer

The aberrant signalling pathways as well as the alteration of molecular targets in prostate
tumorigenesis which lead to abnormal cell proliferation, cell survival, angiogenesis and metastasis
are well-documented [98]. Studies have described the ability of curcumin to suppress the prostate
carcinoma cells by interacting with different molecular targets such as p53, Ras, PI3K/Akt, Wnt-β
catenin and mTOR [99]. The following sections will discuss the mode of actions of curcumin in
targeting aberrant key molecules and signalling pathways in PCa. Based on in vitro, in vivo and
clinical studies on PCa, several major signalling pathways and molecular targets of curcumin have
been identified including AR, NF-κB, AP-1, PI3K/Akt, Bcl-2 family, Cyclin D1, and Wnt/ß-catenin
as presented in Figure 3, will be discussed in detail as follows. Table 1 shows the summarize of
molecular mechanism targeted by curcumin in vivo and in vitro against androgen-dependent PCa and
androgen-independent PCa.
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Table 1. Molecular mechanism targeted by curcumin in vivo and in vitro against androgen-dependent and androgen-independent prostate cancer.

Molecular Target Cell Lines/In-Vivo Molecular Mechanism Modulated by Curcumin Reference

Androgen receptor (AR) LNCaP Downregulated AR expression via limiting the binding activity to the ARE of the PSA
gene [100,101]

LNCaP Inhibited cell proliferation and growth via modulation of AR and its signalling pathway [102]

LNCaP Inhibited tumour growth and suppressed the PSA level by the activation of AR and
interleukin-6 [100]

LNCaP & PC-3 Downregulated AR expression and transcriptional activity [103]
LNCaP &

TRAMP model Decreased intracellular prostate testosterone level [102]

PC-3 Reduced AR availability by altering the over-expressed heat shock protein (Hsp90) [104]
LNCaP xenograft Delayed the tumour growth and suppressed AR expression [105]
LNCaP xenografts Inhibited AR through the modulation of Wnt/ß-catenin signalling [106]

LNCaP & PC-3 Downregulated the activation of AR-related cofactors [100,103]
LNCaP Initiated apoptosis and downregulated the AR activity [93]
LNCaP Reduced NKX3.1 and AR expression [107]

NF-κB LNCaP & DU145 Suppress NF-κB expression thus abrogates their survival mechanisms [92]
PC-3 Inhibited cell proliferation and induced apoptosis via suppressed NF-κB expression [108]

LNCaP Suppressed cell proliferation through downregulation of cyclin D1 by inhibiting NF-κB [92]
PC-3 Enhanced cytotoxicity by suppressed constitutional and TNF-α-induced NF-κB activation [109]

PC-3 mouse model Prevented metastasis by downregulating CXCL-1 and -2 by targeting NF-κB signalling [110]
LNCaP, PC-3 & DU145 Sensitised PCa cells towards TRAIL-induced apoptosis [111,112]

LNCaP Initiated apoptosis by effecting intrinsic and extrinsic pathways [111]
LNCaP Induced cytotoxicity by inhibiting phosphorylation and degradation of IκBα [111]

LNCaP & PC-3 Combination of TRAIL inhibits Akt-regulated NF-κB and NF-κB-dependent
anti-apoptotic proteins [113]

LNCaP & PC-3 Chemosensitization to TRAIL therapy inhibited a constitutively active NF-κB, AP-1 and
active anti-apoptotic Akt (p-Akt) [112–114]

PC-3 xenograft model Combination with TRAIL inhibition the growth indicated by NF-κB and AP-1 inhibition [115]

Activating protein-1 (AP-1) PC-3 & LNCaP Suppressed tumour progression of AP-1, which indicated by the reduced colony forming
ability in soft agar [92,103]

PC-3 Exhibited anti-cancer effects by impeding AP-1 protein [108]

LNCaP Promoted cell cycle arrest and apoptosis by regulating the level of c-Jun proteins, which is
activated via phosphorylation by the c-Jun amino terminal kinase (JNK) [116,117]
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Table 1. Cont.

Molecular Target Cell Lines/In-Vivo Molecular Mechanism Modulated by Curcumin Reference

LNCaP Reduced cell proliferation and migration by suppressing the activation of AP-1 which
stimulated by hydrogen peroxide

[118]

DU145 Disruption of the survival pathways by sensitising the cells, thus potentiating
TNF-induced apoptosis

[92]

PI3K/Akt LNCaP Apoptosis and cell cycle arrest by downregulating PI3K/Akt/mTOR pathway [119]
LNCaP, DU145 & PC-3 Apoptosis by downregulating PI3K p110 and p85 subunits, and phosphorylation of Ser

473 Akt.
[120]

PC-3 Decreased PI3K activity mediated by changes in the phosphorylation status of Akt [96]
PC-3 Inhibited the phosphorylation of Akt, mTOR, and their downstream substrates which

directly affect the downstream of PI3K and PDK1 activities
[121]

DU145 Suppressed cell proliferation by inhibiting Akt/mTOR signalling [121,122]

Bcl-2 family LNCaP Induced apoptosis in concentration-dependent manner [120]
LNCaP Initiated apoptosis by translocation of Bax and p53 to mitochondria, the production of

ROS, the release of mitochondrial proteins, and activation of caspase-3
[120,123]

LNCaP implanted nude mice Induced apoptosis [94]
PC-3 & DU145 Apoptosis and autophagy, mediated by cell cycle arrest at G2/M phase [124]

DU145 Induced apoptosis by suppressing the Bcl-2 expression, while activating
procaspase-3 simultaneously

[125]

PC-3 nude mice model Apoptosis by upregulating Bax and downregulating Bcl-2, and regulating the
mitochondrial outer membrane permeability

[126]

PC-3 Apoptosis by mitochondria damage and cell ceramide accumulation [127]
PC-3 Increased apoptotic cell death mediated by caspase activation and the loss of

mitochondrial membrane integrity
[128]

PC-3 Induced the apoptosis proteins by inhibition of NF-κB and NF-κB-regulated
anti-apoptotic genes products through suppression of Akt

[113]
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Table 1. Cont.

Molecular Target Cell Lines/In-Vivo Molecular Mechanism Modulated by Curcumin Reference

Cyclin D1 LNCaP Inhibited growth through cell cycle arrest indicated by downregulation of cyclin
D1 expression via inhibition of CDK4-mediated phosphorylation of Rb protein

[92]

LNCaP & PC-3 Induced cell cycle arrest at G1/S, followed by apoptosis [97]
LNCaP & PC-3 Induced cell cycle arrest at G2/M phase [129]

DU145 Induced G0/G1 arrest by suppression of cyclin D1 and CDK2 expression, while
upregulating p21 and p27

[125]

LNCaP xenograft model Suppressed cell proliferation by downregulating cyclin D1 and upregulating
TRAIL-R1/DR4, TRAIL-R2/DR5, Bax, Bak, p21 and p27 proteins

[130].

LNCaP & LNCaP xenograft
model

Downregulated cyclin D1 expression through inhibition of ß-catenin accumulation [102,106].

LNCaP Inhibiting ligand-induced activation for EGFR and its intrinsic tyrosine kinase activity
associated with cyclin D1 downregulation

[131]

PC-3 Inhibited the EGFR phosphorylation [132]

Wnt/ß -catenin LNCaP Inhibited cell growth by reducing the level TCF-4, CBP, and p300 proteins that leads to the
decrease of ß-catenin/TCF-4 transcriptional activity thus decreased β-catenin expression

[70,133]

LNCaP Inhibited cancer growth by suppressing the Wnt/ß-catenin signalling pathway [102,106]
LNCaP Inhibited cell proliferation by suppressing the GSK-3β phosphorylation thus inducing the

degradation of β-catenin
[102]

MiRNA DU145 Inhibited cancer growth and migration by upregulating the expression of miR-143 [34,134]
LNCaP, PC-3 & DU145 Inhibited cell proliferation and migration by restoring miR-143/miR-145 cluster

expression
[135,136]

Abbreviations: Androgen receptor (AR) signalling, Activating protein-1 (AP-1), Phosphatidylinositol 3-kinases/the serine/threonine kinase (PI3K/Akt/mTOR), Wingless (Wnt)/ß-catenin
signalling, and molecular targets; Nuclear factor kappa-B (NF-κB), B-cell lymphoma 2 (Bcl-2) and Cyclin D1.
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been identified including AR, NF-κB, AP-1, PI3K/Akt, Bcl-2 family, Cyclin D1, and Wnt/ß-catenin as 
presented in Figure 3, will be discussed in detail as follows. Table 1 shows the summarize of 
molecular mechanism targeted by curcumin in vivo and in vitro against androgen-dependent PCa and 
androgen-independent PCa.

Figure 3. The key molecular targets of curcumin linked with inflammation, cell death, and cell
proliferation in in vitro and in vivo models of PCa. The sign a indicated inhibition by curcumin.
AR: Androgen receptor signalling; AP-1: Activating protein-1; PI3K/Akt/mTOR: Phosphatidylinositol
3-kinases/the serine/threonine kinase; Wnt/ß: Wingless (Wnt)/ß-catenin signalling, and molecular
targets: NF-κB; Nuclear factor kappa-B; Bcl-2: B-cell lymphoma 2 and Cyclin D1.

4.1. Androgen Receptor (AR)

Androgens, as well as AR signalling, are crucial in the development and function of male
reproductive organs [137–139]. Androgens function predominantly by binding to AR, regulates a variety
of cellular processes like cell growth and proliferation, signal transduction and protein folding [140].
The activation of AR signalling governs the PCa cells growth and is known to be a key driver for
PCa tumorigenesis as well as an important factor for the progression to AIPC [140]. In the absence of
androgens, AR remains inactive and sequestered in the cytoplasm by the chaperone super-complex
from the heat shock protein (Hsp) family. Upon binding with 5α-dihydrotestosterone (DHT) which is
an active metabolite of testosterone, AR dissociates from Hsp and undergoes conformational changes.
The AR-DHT complex translocates to the nucleus, binds to the androgen response elements (AREs)
resulting in the transcription and translation of the target genes, hence activates the AR signalling
pathway [141].

The AR signalling pathway is one of the most common pathways dysregulated in PCa, which is
reported higher prevalence in AIPC, denoted by a high level of prostate-specific antigen (PSA) [140,142].
There are several factors that lead to activation of AR despite the absence of constitutive androgens
including synthetisation of steroids from adrenal glands, over-expression of AR co-activators, AR
gene amplification or ligand-independent activation of AR by growth factors, cytokines, and steroids
other than androgens [143–145]. This indicates that despite ADT, AR remains functional and AIPC
development is still dependent on androgen-driven activity [146–149]. A persistent AR activation in
AIPC leads to uncontrolled cell proliferation and metastasis, and subsequently resulting death in PCa
patients [24].
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Curcumin as an anti-inflammatory agent, has the capability to suppress AR at the protein as well as
AR gene transcription level in PCa cells [105,116]. The effects of curcumin on AR signalling are shown
in Figure 4a. In response to curcumin, AR expression was downregulated in ADPC (LNCaP) cells by
limiting the binding activity to the ARE of the PSA gene thus reducing its expression level [100,101].
Other studies have also reported that curcumin significantly inhibits cell proliferation and cancer
cells growth in dose-dependent manner when treated in ADPC (LNCaP) cells via modulation of
AR and its signalling pathway [102]. Curcumin also inhibits tumour growth and suppresses the
PSA levels which stimulated by the activation of AR and interleukin-6 in ADPC (LNCaP) cells [100].
Nakamura et al., (2002) demonstrated that curcumin downregulates AR expression and transcriptional
activity not only in ADPC (LNCaP) but also in AIPC (PC-3) cells [103]. Besides, curcumin was
shown capable of decreasing intracellular prostate testosterone level in ADPC (LNCaP) cells and in
transgenic adenocarcinoma of the mouse prostate (TRAMP) model, thereby prevent the activation
of AR by downregulating the expression of steroidogenic acute regulatory proteins, CYP11A1 and
HSD3B2 [102,150]. Moreover, curcumin treatment against AIPC (PC-3) cells also alter the over-expressed
heat shock protein (Hsp90), resulting in the reduction of AR availability [104]. Curcumin also shows
positive outcomes when tested in animal models, where it delays the tumour growth and suppresses
AR expression in ADPC (LNCaP) xenograft model [105]. Another study on LNCaP xenografts models
showed that curcumin inhibits AR through the modulation of Wnt/ß-catenin signalling [106].

An increased activity of AR coupled with the upregulation of a subset of AR-related co-activators
mainly AP-1, NF-κB, and cAMP response element-binding protein (CBP) and co-activator protein
p300 have contributed to the aggressiveness of the PCa disease and the progression to AIPC.
Curcumin has the ability to downregulate the activation of AR-related cofactors when treated in ADPC
(LNCaP) and AIPC (PC-3) cells [100,103]. Besides, other studies demonstrated that curcumin initiates
apoptotic process accompanied with the downregulation of AR activity upon its treatment in ADPC
(LNCaP) cells [93].

Curcumin also has shown the ability to mediate AR signalling by inhibiting NKX3.1, resulting
in the downregulation of AR expression and DNA binding activity with ARE [151]. NKX3.1 is an
androgen-adjusted NK-class homeobox gene, encodes a home-box-containing transcription factor
that functions as a negative regulator of epithelial cell growth in prostate tissue [152]. The loss of
NKX3.1 expression together with PTEN is constantly occurring in PCa, which therefore, is regarded
as the key factor for normal organogenesis and carcinogenesis [107,153]. It was demonstrated that
curcumin treatment in ADPC (LNCaP) cells has shown a reduction of NKX3.1 and AR expression [107].
Since activation of AR signalling has appeared to be the selective driving force for the development
of ADPC and AIPC cells, the suppression of androgen/AR signalling is beneficial in PCa therapies.
Curcumin has been shown is able to reduce PCa growth and malignancy by inhibiting the AR signalling
and appear as a promising therapeutic target for PCa treatment.
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Figure 4. Mode of actions of curcumin as anti-cancer agent on the key molecular targets in aberrant signalling pathways of PCa. Curcumin exhibits anti-cancer
properties by inhibiting signalling pathways and molecular targets; (a) Androgen receptor (AR) signalling; (b) Nuclear factor kappa-B (NF-κB); (c) Activating protein-1
(AP-1); (d) Phosphatidylinositol 3-kinases/the serine/threonine kinase (PI3K/Akt); (e) B-cell lymphoma 2 (Bcl-2); (f) Cyclin D1 and (g) Wingless (Wnt)/ß-catenin
signalling. Molecular targets and signalling pathways that are induced by curcumin are noted by using→, while the inhibition represented by a symbol.
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4.2. Nuclear Factor kappa-B (NF-κB)

Nuclear factor kappa-B (NF-κB) is a pleiotropic transcription factor responsible for regulating
cell signalling and various biological processes such as immune response, inflammation, cellular
transformation, cell proliferation, angiogenesis, invasion and metastasis. The constitutive activation of
NF-κB has been detected in many human malignancies [92]. In unstimulated cells, NF-κB present in
inactive state binds to IκB proteins, preventing its translocation into the nucleus. Otherwise, the factor
can be activated in response to a large variety of stimuli such as growth factor, protein kinases,
oxidative stress inducers, mitogens, pro-inflammatory cytokines and chemokines (TNF-α, IL-1, IL-8,
IL-6, CXCL12), and environmental stress factor [154,155]. Upon stimulation, IκBs are phosphorylated
by the IκB kinase complex (Iκκ), including Iκκα, Iκκβ, and Iκκγ (NEMO); then, leads to ubiquitination
and proteasome degradation. The phosphorylated NF-κB that dissociated from the Iκκ then bind to
the target DNA gene promoter region, resulting in cell proliferation induction, metastasis, apoptosis
suppression and treatment resistance [156,157].

Aberrant NF-κB activity has been associated to several types of carcinomas, including in human
PCa cells and xenografts [158,159]. During prostate carcinogenesis, NF-κB promotes cancer cell
survival, invasiveness, angiogenesis, metastasis, and chemo-resistance by inducing pro-survival genes
(e.g., Bcl-2 and Bcl-xL), pro-inflammatory cytokines, growth factors such as vascular endothelial
growth factor (VEGF), urokinase-type plasminogen activator (uPA), and matrix metalloproteinase-9
(MMP9) [160]. In addition, activated NF-κB upregulates tumour promoting cytokines, leads to increase
AR activity in the androgen depletion state [159]. Several studies indicate that NF-κB plays an important
role in regulating PCa transformation of ADPC to AIPC [161,162]. Other studies also reported an
elevated expression of NF-κB in AIPC cells [163,164].

Basically, NF-κB proteins comprises of five different family members including NF-κB1 (p50/p105),
NF-κB2 (p52/p100), RelA (p65), RelB, and c-Rel. These molecules can dimerise to form all possible
combinations of homo and heterodimers. Among the NF-κB family subunits, NF-κB2 (p52/p100), RelA,
RelB, and c-Rel have described are implicated in PCa [165]. Other studies reported that RelA (NF-κB/p65)
is constitutively activated in human PCa and transgenic TRAMP [166]. Similarly, the upregulation of
Iκκ activity has been observed alongside an increased IκBs protein phosphorylation and degradation,
correlated with PCa [167]. Findings of earlier studies have indicated the wide range of anti-cancer and
anti-inflammatory effects of curcumin attainable via suppressing the NF-κB activity. A number of studies
indicated that curcumin as a potent inhibitor of NF-κB activation, works to suppress angiogenesis,
invasion, and metastasis in various cancer cells, including PCa [168,169]. Following NF-κB inhibition,
the cancer-related genes like Bcl-2, Bcl-xL, cyclin D1, IL-6, COX-2 and MMP9 are subsequently
downregulated [170,171]. In many cases, curcumin prevents the NF-κB activation induced by
abundance of agents through the inhibition of the upstream kinase active, namely Iκκα and Iκκβ, which
are essential for the phosphorylation of IκBαprotein [155]. These inhibitory actions are attributable to the
sequential suppression of IκBα kinase activity, IκBα phosphorylation, IκBα proteasomal degradation,
p65 phosphorylation, p65 nuclear translocation, and p65 acetylation [172–174]. Other researchers
have underlined the link between curcumin-induced proteasomal malfunction with anti-inflammatory
activities associated in the NF-κB pathway [56].

There are studies indicate the role of NF-κB in the survival of PCa cells, whereby curcumin is
able to suppress NF-κB expression thus abrogates their survival mechanisms in both ADPC (inducible
LNCaP) and AIPC cells (constitutive DU145), as shown in Figure 4b [92]. Curcumin also exhibits
excellent anti-cancer activity by inhibiting cell proliferation and inducing apoptosis in AIPC (PC-3)
cells, which probably contributed with the inhibition of NF-κB [108]. Inhibition of NF-κB signalling also
restores responsiveness of AIPC cells to anti-androgen treatment [164]. Besides, NF-κB has also been
implicated in the regulation of the cell cycle regulatory components involved in PCa. Curcumin on the
other hand, downregulates cyclin D1 by inhibiting the activation of NF-κB, therefore subsequently
suppress the cell proliferation in ADPC (LNCaP) cells [92]. Furthermore, curcumin also suppresses
both the constitutional and TNF-α-induced NF-κB activation in AIPC (PC-3) cells, which contributes
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to the enhancement of cytotoxicity in the treatment combining curcumin and chemotherapeutic
agents [109]. Curcumin is also reportedly downregulates CXCL-1 and -2 by targeting NF-κB signalling,
simultaneously preventing metastasis in orthotopic mouse model of AIPC (PC-3) cells [110].

The combination of curcumin with tumour necrosis factor-related apoptosis-inducing ligand
(TRAIL), a potent anti-cancer and inducer of apoptosis, have become an adjuvant therapy to improve
the management of PCa disease, specifically AIPC. Impeded NF-κB action following curcumin
treatment either as a stand-alone therapy or in combination with TRAIL against PCa cells resulted in
suppression of angiogenesis, invasion, and metastasis. Previous studies have reported that ADPC
(LNCaP) and AIPC (PC-3 and DU145) cells are either resistant or poorly susceptible to TRAIL therapy.
However, a treatment of curcumin at certain concentrations is capable to sensitise these cancerous
cells towards TRAIL-induced apoptosis [111,112]. Other studies reported that curcumin treatment
in ADPC (LNCaP) cells initiates the induction of apoptosis by effecting both intrinsic and extrinsic
pathways [111]. The mechanism by which curcumin augments TRAIL-induced cytotoxicity in ADPC
(LNCaP) cells was shown to inhibit NF-κB by inhibiting phosphorylation and degradation of IκBα [114].
On the other hand, in AIPC cells, curcumin with the combination of TRAIL inhibits Akt-regulated
NF-κB and NF-κB-dependent anti-apoptotic proteins such as Bcl-2, Bcl-xL, and X-chromosome-linked
inhibitor of apoptosis protein (XIAP) [113]. Other studies reported that the mechanism by which
curcumin sensitises both ADPC and AIPC cells to TRAIL therapy is attributed by inhibition of
a constitutively active NF-κB, AP-1 and active anti-apoptotic Akt (p-Akt) [112–114]. In addition,
the effect of curcumin combination with TRAIL was effectively inhibits the growth of AIPC (PC-3)
tumour xenograft model, indicating the inhibition of NF-κB and AP-1 [115]. These findings suggest
that combined curcumin/TRAIL chemo-immunotherapy may be a beneficial adjunct to the standard
therapeutic regimens for PCa. To conclude, the aberrantly activated NF-κB signalling in PCa has been
correlated with the progression of the disease including gaining aggressive phenotype, PSA recurrence,
metastatic spread and chemoresistance. On the other hand, curcumin has been shown to be a potent
inhibitor of transcription factors NF-κB, resulted in reduction of tumour growth, therefore has become
a promising therapeutic target against PCa.

4.3. Activating Protein-1 (AP-1)

The activating protein-1 (AP-1) is a transcription factor, composed of dimer combinations
primarily formed between basic leucine zipper family. The protein families belongs to Jun (e.g.,
c-Jun, JunB, and JunD); Fos (e.g., c-Fos, FosB, Fra-1, and Fra-2); activating transcription factor
(ATF) (e.g., ATF2 and LRFI/ATF3); and musculoaponeurotic fibrosarcoma (MAF) (e.g., c-Maf, MafB,
MafA, MafG/F/K); whereby all groups bind to a common DNA site, namely AP-1 binding site [175].
Conceptually, AP-1 proteins form homo- or/and heterodimers in which the different compositions of
varying dimers will determine the resulting differential transcriptional and biological functions [176].
The activation of AP-1 by different stimuli, such as cytokines, growth factors, and oncogenic
stimuli leads to uncontrolled cellular proliferation and prevent the cancer cells from undergoing
apoptosis [177,178]. Primarily, AP-1 pathway is activated through the combination of signalling
events mostly by mitogen-activated protein kinases (MAPKs) which consist of; the extracellular-signal
regulated kinases (ERKs), the c-JUN amino-terminal kinase (JNKs) and p38 family of kinases which
directly activates the transcription of Jun and Fos [179]. Besides, the activation of AP-1 is often
associated with high levels of NF-κB which also implicated in tumorigenesis [180].

Constitutive AP-1 activity in PCa disease is associated with poor clinical outcomes through
modulating cancer-related genes expression involved in inflammation, cell proliferation, neoplastic
transformation and metastasis [181–183]. Studies have reported that the correlation between Fos
(Fra-1) and Jun family (c-Jun) proteins has been associated with tumour growth in multiple types
of cancer. In PCa, on the other hand, Jun protein family was reported have played a major role in
controlling cell growth and survival [184]. Other studies demonstrated that Jun family (JunD), along
with Fos family proteins (Fra-1 and Fra-2) are also implicated in PCa proliferation and conferring the
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protection against radiation-induced cell death [185]. Over-expression of c-Jun in ADPC (LNCaP) cells
has shown to increase cell proliferation and reduce of cell death [186]. Other studies reported that the
increased cytoplasmic phosphorylated ATF proteins family (ATF2) in PCa compared to normal prostate
cells suggest that altered localisation of ATF2 may contribute to clinical progression of PCa [187].
Meanwhile, the activation of the member of Fos family (Fra-1) and Jun family (c-Jun) proteins have
associated with the progression to AIPC state [182,188]. Elevated levels of Jun and Fos proteins in
mouse models of PCa was also correlated with prostate tumorigenesis, whereas the levels of Jun
proteins alone is correlated with disease recurrence [189]. It was also demonstrated that upregulation
of Raf-1 promotes the correlation with HER2/Raf-1/AP-1 axis, particularly via modulation of AP-1,
resulting in the development of AIPC and early relapse [190]. Other studies reported that AP-1 is a
mediator of epidermal growth factor receptor (EGF-R), PI3K and MAPK/ERK pathways whereby the
inhibitors of these pathways are able to suppress expression of several AP-1 subunits during disease
progression and also sensitises the radiation response of AIPC (PC-3 and DU145) cells [183].

Curcumin was shown to inhibit the expression of AP-1 in multiple types of cancer such as
astroglioma, colon, cervical and PCa [169]. As shown in Figure 4c, curcumin inhibits the activation
of AP-1 via a direct interaction with AP-1 DNA-binding motif [191,192]. Curcumin also inhibits the
activation of AP-1 as well as JNK which was induced by tumour promoters and carcinogens [193,194].
Curcumin suppresses tumour progression of AP-1 in both ADPC (PC-3) and AIPC (LNCaP) cells,
which indicated by the reduced colony forming ability in soft agar [92,103]. Other studies reported
that curcumin exhibits its anti-cancer effects by significantly impeding AP-1 protein in AIPC (PC-3)
cells [108]. Besides, curcumin treatment is able to promote cell cycle arrest and apoptosis in ADPC
(LNCaP) cells by regulating the level of c-Jun proteins, an important member of the AP-1 complex
which is primarily activated via phosphorylation by the c-Jun amino terminal kinase (JNK) [116,117].
Furthermore, curcumin has shown the ability to reduce cell proliferation and migration of ADPC
(LNCaP) cells by suppressing the activation of AP-1 that are stimulated by hydrogen peroxide [118].
Curcumin treatment is also able to modulate AP-1 activity in AIPC (DU145) cells which leads to
the disruption of the survival pathways by sensitising the cells, thus potentiating TNF-induced
apoptosis [92]. These findings indicate that curcumin may appear to be a potent AP-1 inhibitor agent
that may act as a therapeutic agent for PCa therapy.

4.4. Phosphatidylinositol 3-kinases/the Serine/threonine kinase (PI3K/Akt)

PI3K/Akt/mTOR signal transduction pathway is involved in the regulation of multiple cellular
physiological processes by activating downstream corresponding effector molecules, which serves an
important role in cell survival and growth. Dysregulation of downstream kinases in PI3K/Akt/mTOR
pathway are common in many types of cancer [195]. PI3K, a heterodimeric enzyme is typically
initiated by the binding of a growth factor such as EGFR, and eventually results in the downstream
activation of PI3K signal transduction [196]. Upon activation, PI3K phosphorylates membrane-bound
phosphatidylinositol-(4,5)-bisphosphate (PIP2) to phosphatidylinositol-(3,4,5)-trisphosphate (PIP3),
which subsequently acts as a secondary messenger triggering the downstream signalling events.
Following this, PIP3 recruits a subset of signalling proteins to pleckstrin homology (PH) domain
of Akt, which in turn activates Akt, which an important cell growth regulator. Activated Akt then
phosphorylates various downstream targets involved many biological functions including cell survival,
angiogenesis, metastasis and therapy resistance [197,198]. PTEN, a well characterised negative
regulator of PI3K action antagonises the Akt activation by dephosphorylating PIP3 to PIP2, thereby
opposing PI3K activity and subsequently inhibiting cell proliferation [199].

The PI3K signalling pathway plays an important role in PCa progression and the development of
castration resistance. In fact, it is one of the most commonly altered signalling pathway occurred in
PCa [200]. Excessive activation of PI3K/Akt/mTOR pathway has been identified in early and advanced
stage of PCa as a result of the loss of function of PTEN, normally through mutations [201–204].
Constitutively activated PI3K/Akt/mTOR pathway in PCa is accompanied with the loss of PTEN
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functions and an increased of AKT-1 phosphorylation [205,206]. The loss of PTEN expression in PCa
promotes the acceleration of the disease progression and also correlated with higher Gleason score,
advanced stage, and poor prognosis among patients [204]. Furthermore, activation of the PI3K pathway
is also associated with ADT resistance and is commonly occur during the progression from ADPC to
AIPC [207,208]. Constitutive activation of PI3K pathway has also been observed in 20-40% of primary
PCa and 60% of AIPC [209]. Therefore, the aberrance of the downstream targets of this pathway
are linked with cell survival and proliferation, invasion, metastasis as well as therapy resistance in
PCa [210,211].

Curcumin generally targets various signalling pathways including PI3K/Akt pathway which leads
to inhibition of tumour growth and disease progression in PCa (Figure 4d) [56,212]. It was shown that
curcumin exhibits anti-cancer effect in several tumour models through regulating PI3K/Akt/mTOR
pathway whereby it suppresses the Akt activation along with downstream targets, mTOR [213].
In response to curcumin treated ADPC (LNCaP) cells, PI3K/Akt/mTOR pathway was downregulated
which leads to apoptosis and induction of cell cycle arrest [119]. Other studies have reported that
curcumin induced apoptosis not only in ADPC (LNCaP) and but also in AIPC (DU145 and PC-3)
cells through the downregulation of PI3K p110 and p85 subunits, and phosphorylation of Ser 473 Akt.
This has increased the permeabilisation of the mitochondrial outer membrane and trigger the release
of mitochondrial proteins into the cytosol [120]. Besides, curcumin also inhibited PI3K activity in
AIPC (PC-3) cells, mediated by changes in the phosphorylation status of Akt [96]. Curcumin also
exhibited chemo- and radio-sensitising effects by downregulating the murine double minute 2
(MDM2) oncogene through the PI3K/mTOR/ETS2 pathway [96]. Additional evidence detailing the
mode of action of curcumin in inhibiting the phosphorylation of Akt, mTOR, and their downstream
substrates in AIPC (PC-3) cells, were directly affect the downstream of PI3K and PDK1 activities [121].
Furthermore, few studies were also demonstrated that curcumin also suppresses the cell proliferation
in AIPC (DU145) cells by inhibiting Akt/mTOR signalling [121,122]. These finding suggest that
curcumin is able to reduce the cancer cells viability and induced apoptosis by significantly inhibiting
the PI3K/Akt/mTOR pathway which eventually may improve the PCa therapy.

4.5. Bcl-2 family

The apoptosis process is mainly regulated by B-cell lymphoma 2 (Bcl-2) family proteins, which
consist of anti-apoptotic (e.g., XIAP, Bcl-2, Bcl-xL) and pro-apoptotic (e.g., Bim, Bax, Bak, Bid, Puma
and Noxa) proteins. The fate of a cell depends on the ratio of apoptotic proteins either by stimulation of
the pro-apoptotic molecules or by inhibition of the anti-apoptotic molecules. Among the anti-apoptotic
proteins, Bcl-2 protein plays a pivotal role in cell survival activities as well as chemo-resistance which
frequently dysregulated in many types of cancers, including PCa [96,214]. Bcl-2 also responsible in the
progression of ADPC to AIPC [215,216]. Meanwhile, studies also reported that the over-expression
of Bcl-xL was associated with higher Gleason grade and the onset of AIPC [217]. An increased
level of Bcl-2 expression protects PCa cells from undergoing apoptosis through association with
PTEN loss, p53 inactivation, PI3K/Akt phosphorylation, and the activation of RTK/STAT3/NF-κB,
Ras/Raf1/MEK/ERK pathways and autophagy proteins (e.g., Beclin1 and AMBRA1) [218].

Curcumin has been shown to induce apoptotic activity in prostate cancerous cells by regulating
various cell-signalling pathways via extrinsic or intrinsic pathway as illustrated in Figure 4e [219,220].
It was reported that curcumin downregulates Bcl-2, Bcl-xL, and XIAP and upregulates the expression
of p53, Bax, Bak, PUMA, Noxa, and Bim proteins which is attributed to the activation of caspases,
cleavage of PARP and eventually cell death [85,92,93,120]. Curcumin also mediates apoptosis by
affecting apoptotic-related molecules such as EGFR, erbB2, Hedgehog, AR, PI3K/Akt, NF-κB, Bcl-2,
Bcl-xl, AP-1, and TMPRSS2-ERG fusion protein [120,126,221].

Pre-clinical and clinical studies have reported that curcumin capable to induce apoptosis in
ADPC, AIPC, and metastatic PCa either via intrinsic or extrinsic pathways [44,93]. Previous study
has reported that curcumin induce apoptosis in ADPC (LNCaP) cells in concentration-dependent
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manner [120]. Curcumin initiates the ADPC (LNCaP) cells to undergo apoptosis by translocation of Bax
and p53 to mitochondria, the production of ROS, the reduction in mitochondrial membrane potential,
the release of mitochondrial proteins (cytochrome c, Smac/DIABLO and Omi/HtrA2), and activation of
caspase-3 [120,123]. Furthermore, nude mice implanted heterotopically with (ADPC) LNCaP cells has
depicted the induction of apoptosis potentially attributable to curcumin [94]. Moreover, curcumin
inhibits cell growth and induce apoptosis in both ADPC and AIPC cells but has no effect on normal
human prostate epithelial cells [120].

Meanwhile, curcumin treatment also triggers apoptosis in AIPC by inducing caspase-3 activity
in a dose-dependent manner [120]. A study demonstrated that upon curcumin treatment in AIPC
(PC-3 and DU145) cells, the cells undergo apoptosis and autophagy which mediated by cell cycle arrest
at G2/M phase [124]. Curcumin-treated AIPC (DU145) cells has revealed significant suppression of
Bcl-2 expression, while procaspase-3 is activated simultaneously [125]. The treatment of curcumin in
AIPC (PC-3) nude mice model displays apoptosis process by upregulating Bax and downregulating Bcl-2,
and also regulating the mitochondrial outer membrane permeability [126]. Other studies demonstrated
that curcumin triggers apoptosis in AIPC (PC-3) cells which was associated with mitochondria damage
and cell ceramide accumulation resulting in PC-3 cells apoptosis [127]. Curcumin treated AIPC (PC-3)
cells has triggered an increased apoptotic cell death which mediated by caspase activation and the loss of
mitochondrial membrane integrity [128]. Furthermore, since expression of anti-apoptotic Bcl-2, Bcl-xL,
and XIAP is regulated by NF-κB, the inhibition of NF-κB and NF-κB-regulated anti-apoptotic genes
products through suppression of Akt by curcumin in AIPC (PC-3) cells significantly induce the apoptosis
proteins [113]. On the other hand, curcumin downregulates MDM2 oncogene, which are negative
regulators of the p53 thus allowing PCa cells to undergo apoptosis [96]. Curcumin also mediates
apoptosis through cell cycle arrest due to induced expression of p16, p21, and p27; increased the ER
stress; and by downregulating MDM2 [97,104]. Therefore, curcumin is able to trigger apoptosis by
targeting Bcl-2 family which may represent an important strategy in the development of PCa treatment.

4.6. Cyclin D1

Accelerated proliferation of malignant cells may result the aberrant activities of cell cycle
proteins and the imbalance of cell cycle checkpoints [222]. Cyclin-dependent kinases (CDKs), are the
key intracellular mediators that regulate the initiation, progression and completion of cell cycle
division [223]. CDKs act as the engine that drives cell cycle progression activated by binding to
cyclins [224]. CDK/cyclin complex is tightly regulated by cyclin-dependent kinase inhibitors (CDIs),
a negative regulator of CDKs which halt the cell cycle progression under unfavourable conditions [225].
Dysregulation expression of cyclins and CDIs such as p21 and p27 effects the cyclin/CDK complexes
activity which eventually leads to abnormal cell proliferation and tumour growth [226].

Cyclin D1, the most predominantly cyclins associated with carcinogenesis, forms active complexes
by binding to CDK4 and/or CDK6, then phosphorylates the retinoblastoma protein (Rb), which
consequently governing the progression from G1 to S phase [227,228]. Over-expression of cyclin
D1 shortens the G1-S transition, thus promoting tumorigenesis and cancer recurrence in diverse
human cancers [229,230]. In PCa, cyclin D1 expression is upregulated and correlated with high-grade
Gleason score [231]. Cyclin D1 also leads to transformation of androgen-independent state through the
upregulation of MDM2 [232]. Besides, highly expressed cyclin D1 in AIPC cells acquired radio-resistance
properties and accelerates the relapse of the disease [233,234].

Curcumin has shown the ability to modulate cell cycle regulatory molecules, conferring
anti-proliferation and induction of apoptosis in cancer cells as illustrated in Figure 4f [228,235].
Inhibitory effect of curcumin in LNCaP (ADPC) cells was shown through cell cycle arrest indicated
by downregulation of cyclin D1 expression via inhibition of CDK4-mediated phosphorylation of Rb
protein [92]. Curcumin has also shown the ability to induce cell cycle arrest at G1/S, followed by
apoptosis when treated in (ADPC) LNCaP and AIPC (PC-3) treated cells [97]. Meanwhile, other
studies have reported that curcumin promotes cell cycle arrest at G2/M phase in both type of PCa
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cell lines [129]. The cell cycle arrest activity was attributed to the inhibition of cyclin E and cyclin
D1 expression, and hyperphosphorylation of Rb protein. Apart from that, curcumin induces the
expression of several CDIs proteins such as p16, p21 and p27 which also leads to inhibition of the
cell cycle progression [97]. Other findings demonstrated that curcumin induces G0/G1 arrest in AIPC
(DU145) treated cells by suppression of cyclin D1 and CDK2 expression, while upregulating p21 and
p27 [125]. In addition, curcumin suppresses cell proliferation in ADPC (LNCaP) xenograft model
by downregulating cyclin D1 and upregulating TRAIL-R1/DR4, TRAIL-R2/DR5, Bax, Bak, p21 and
p27 proteins [130]. Curcumin also downregulates cyclin D1 expression through inhibition of ß-catenin
accumulation in ADPC (LNCaP) cells and xenograft model [102,106].

Cyclin D1 activity is also mediated by extracellular signals and a variety of growth factors, where
EGF acts as the main mediator [236–238]. In PCa, EGF regulates cell proliferation partially through
regulation of cyclin D1, whereby EGFR translocates to the nucleus and act as a vector for cyclin
D1 [239,240]. Over-expression of EGFR family, especially c-erbB-1 and c-erbB-2 are frequently occurred
in multiple types of cancers including PCa [241,242]. Curcumin acts as a potent inhibitor for EGFR
and ERBB2 receptor when treated in ADPC (LNCaP) cells, inhibiting ligand-induced activation for
EGFR and its intrinsic tyrosine kinase activity associated with the downregulation of cyclin D1 [131].
Curcumin is also reported to have an inhibitory effect on EGFR phosphorylation in AIPC (PC-3)
cells [132]. Hence, it is well-established that curcumin inhibits EGFR signalling pathway as well as
cyclin D1 expression which are implicated in PCa [56]. The approach of targeting EGF and EGFR
in addition to the regulation of CDK-cyclin families especially cyclin D1 by curcumin could be a
promising strategy for the treatment of PCa.

4.7. Wnt/ß-catenin

Wingless (Wnt)/ß-catenin signalling pathway is one of the vital mechanisms responsible for the cell
proliferation and tissue homeostasis maintenance [243]. When in inactive state, cytoplasmic β-catenin
is sequestered in a multiprotein “degradation complex” which composed of scaffolding Axin proteins,
glycogen synthase kinase 3ß (GSK-3β), casein kinase 1α (CK1α), adenomatous polyposis coli gene
product (APC) and protein phosphatase 2A (PP2A) [244,245]. After sequential phosphorylation by CK1α
and GSK-3β, the phosphorylated β-catenin undergoes ubiquitination and degradation by proteasomes
thus maintaining the inactivity of this pathway [246]. On the contrary, accumulation of the extracellular
Wnt ligands, association of Axin with phosphorylated LRP5/6 (lipoprotein receptor-related protein 5/6)
and recruitment of phosphorylated DVL (dishevelled) to FZD (frizzled) lead to the dissociation of
the “destruction complex”. This dissociation allows translocation of β-catenin into the nucleus which
forms an active complex with T-cell factor/lymphoid enhancing factor (TCF/LEF), and consequently
activates the target genes which involved in cell growth including c-myc, CCND1, survivin, E-cadherin,
COX-2, MMP, and VEGF [247,248].

The dysregulation of Wnt/β-catenin pathway and its downstream is a common event in multiple
malignancies, including PCa [249–254]. The aberrance of this pathway leads to a highly aggressive
disease with poor prognosis in PCa [255]. Also, a study has demonstrated that over-expression of
Wnt/β-catenin pathway in AIPC (PC-3 and DU145) cells indicates the importance of this pathway in
the development and progression of PCa [256]. A recent study on sequencing of PCa genomes reveals
that mutations in major components of the Wnt/β-catenin pathway are frequently occurred in AIPC
cells [257].

On the other hand, curcumin is able to modulate the conical Wnt/β-catenin pathway in PCa
as illustrated in Figure 4g [258,259]. Curcumin has shown an impact on cell growth inhibition in
ADPC (LNCaP) cells by reducing the level TCF-4, CBP, and p300 proteins that leads to the decrease of
ß-catenin/TCF-4 transcriptional activity, which subsequently decreases the expression of β-catenin
target genes [70,133]. Curcumin has also shown the ability to suppress the Wnt/ß-catenin signalling
pathway treated in ADPC (LNCaP) cells [102,106].
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In addition, an interplay between AR and Wnt/β-catenin pathway enhanced the
androgen-mediated transcription which leads to prostate tumorigenesis [260,261]. The interaction
of β-catenin with AR promotes transcriptional activity in ADPC (LNCaP) cells, which suggesting a
possible mechanism of crosstalk between Wnt and androgen signalling pathways [262]. Curcumin is
able to control cell proliferation and angiogenesis by inducing the degradation of β-catenin through
the regulation of downstream molecules of Wnt/β-catenin pathway. As β-catenin is coupled with AR
as a potent coactivator, curcumin treatment downregulates the AR expression as well as reducing the
intracellular accumulation and nuclear translocation of β-catenin [102].

A phosphorylated GSK-3β can stabilise LRP5/6 that promotes β-catenin signalling, therefore the
inhibition of GSK-3β may suppress β-catenin–mediated gene expression [263]. Curcumin affects the
cell proliferation in ADPC (LNCaP) cells by suppressing the GSK-3β phosphorylation thus inducing
the degradation of β-catenin. Consequently, curcumin may serve not only to prevent accumulation of
β-catenin, but also to degrade target substance such as cyclin D1 and c-myc [102]. The suppression of
ß-catenin transcriptional activity by curcumin is also mediated through the activation of PDK1 [264].
In comparison to normal cells, PDK1 activity is much less expressed in PCa cells, which triggers the
initiation of prostate carcinogenesis [265,266]. On the other hand, curcumin activates PDK1 activity,
resulting in attenuation of nuclear β-catenin/TCF transcription activity. Such mechanism modulates the
phosphorylation, and translocates the nuclear ß-catenin out from the nucleus and enriches membrane
localisation of β-catenin [267]. Taken together, we can conclude that curcumin has the ability to
modulate Wnt/ß-catenin pathway and regulate the activation of AR, GSK-3β and PDK1 and it is
therefore suggested that curcumin may act as a potential therapeutic agent in targeting PCa.

4.8. Role of MicroRNA (MiRNA)

MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression
post-transcriptionally and aberrantly expressed in many types of cancers, including PCa [268,269].
Dysregulation of miRNA in cancer are normally caused by genetic alterations; amplifications, deletion
or mutations, or abnormal transcriptional control of miRNAs; or defects in components of the miRNA
biogenesis machinery [270,271]. In PCa, aberrant expression of miRNAs contributes to cellular growth
alteration, metastasis and development of AIPC by regulating the expressions and functions of their
target genes. Numerous studies in in vitro and in vivo have reported that aberrant expression of
miRNAs are associated with the disease progression in both ADPC and AIPC [272,273]. Curcumin has
been reported is able to regulate various miRNA expression profile in many types of cancers by
upregulating tumour suppressive miRNAs while downregulating oncogenic miRNAs in order to exert
its anti-cancer properties [274,275]. Curcumin inhibits cancer cell proliferation and promotes apoptosis
through upregulating a set of tumour suppressor miRNAs, such as miR-15a, miR-34a, miR-181b,
miR-186, miR-192-5p, and miR-215, or downregulating numerous onco-miRNAs, like miR-19, miR-21,
and miR-208 [276].

Curcumin has shown the ability to inhibit cell proliferation and migration of AIPC (DU145)
cells by upregulating the expression of miR-143, which could be attenuated by transfection with
anti-miR-143. In PCa, mir-143 expression is predominantly expressed, indicating an association
with the PCa development [277]. Similar to curcumin, overexpression of miR-143 downregulates
the expression of phosphoglycerate kinase-1 (PGK1), which is associated with the aggressiveness of
PCa. Curcumin is also able to increase the level of forkhead box D3 (FOXD3), a transcriptional factor
for miR-143 [34,134]. The ectopic expression of FOXD3 synergized with curcumin in upregulating
the expression of miR-143 resulting in suppression of tumour progression [278]. It was also shown
that curcumin is able to restore miR-143/miR-145 cluster expression in ADPC (LNCaP) and AIPC
(PC-3 and DU145) cells via hypomethylation. MiR-143/miR-145 cluster is widely recognized as a tumour
suppressor miRNA and frequently aberrated in PCa. Downregulation of miR-143/miR-145 cluster
is associated with an increased cell proliferation and migration [279,280]. The upregulation of
miR-143/miR-145 cluster expression by curcumin adversely inhibits the cell migration, cell proliferation



Nutrients 2020, 12, 679 19 of 34

and invasion by targeting Golgi membrane protein 1 (GOLM1) and hexokinase-2 (HK2) [135,136].
Moreover, restoration of miR-143/miR-145 cluster may suppress stem cell characteristics of PCa cells via
downregulating CD133, CD44, Oct4, c-Myc and Klf4. Both miR-143 and curcumin is able to sensitize
AIPC (PC-3 and DU145) cells to radiation via downregulation of autophagy-related protein 2 homolog
B (ATG2B), which enhanced the radiation-induced apoptosis in PCa cells [281]. Following this,
an approach investigating the interaction between miRNAs and their target genes could be a potential
therapeutic strategy in the treatment of PCa.

5. Clinical Trials

A number of clinical trials have shown the efficacy of curcumin as anti-cancer agent in several types
of cancer including pancreatic, colorectal, cervical, oral and breast cancer [282,283]. However, clinical
studies documenting the inhibitory effects of curcumin in PCa is scarce. Almost all of the existing
clinical studies report the effects of curcumin towards PCa only as an adjuvant therapy, either in
radiotherapy, hormonal or chemotherapeutic interventions but none of them are reporting curcumin
alone as the main therapeutic agent.

One of the completed studies reports the anti-cancer effects of curcumin in PCa patients
that undergo intermittent androgen deprivation (IAD) (clinicaltrials.gov code NCT03211104) [284].
During the off-treatment of IAD, results have shown that oral intake of curcumin for six months
duration is able to suppress the PSA levels in patients [285]. In another study, combination of curcumin
with the standard chemotherapy agent, docetaxel and prednisone in patients with castration-resistance
PCa demonstrated that curcumin enhances the efficacy of the treatment by increasing the response
rate, tolerability and patient acceptability [286]. There is another clinical study which analyses the
effects of curcumin as a radio-sensitising and radio-protective agent in PCa patients (clinicaltrials.gov
code NCT01917890) [287]. The results showed that curcumin improves antioxidant status in PCa
patients who received radiotherapy [288]. Curcumin supplement can improve lower urinary tract
symptoms in PCa patients who undergo radiotherapy [289]. Another clinical study was designed to
assess the curcumin supplement, together with isoflavones on the serum PSA levels, and given to
patients who had prostate biopsy due to elevated PSA levels but were not found to have PCa. After six
months of oral intake of isoflavones and curcumin, a significantly decreased of serum PSA levels was
observed [290].

At the moment, there are two ongoing clinical studies which focused on the effects of curcumin
towards PCa. One of the studies is investigating the potential of adjuvant use of curcumin after
prostatectomy in improving recurrence-free survival administered in PCa patients (clinicaltrials.gov
code NCT02064673) [291]. The other study, which currently in recruiting phase is evaluating the
potential of curcumin in reducing the risk of PCa progression in low-risk men which undergoing
active surveillance (clinicaltrials.gov code NCT03769766) [292].Based on these positive outcomes of
curcumin as an adjuvant therapy, therefore it is suggested that clinical studies of curcumin alone are
warranted in order to implement curcumin as a standard treatment for PCa. The suggested studies
may extend the current understanding of curcumin’s efficacy and mechanism of actions against PCa.
Table 2 depicts the summarized information for completed and ongoing clinical trials on the effects of
curcumin in PCa.

clinicaltrials.gov
clinicaltrials.gov
clinicaltrials.gov
clinicaltrials.gov
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Table 2. Completed and ongoing clinical trials on the effects of curcumin in prostate cancer.

Intervention Study Status Identifier Number/
Reference

Curcumin Effects on PCa patients that undergo
intermittent androgen deprivation (IAD) Completed NCT03211104/

[66]

Curcumin, Docetaxel
& Prednisone

Combination with standard chemotherapy
agents, docetaxel and prednisone in

patients with castration-resistance PCa
Completed *[286]

Curcumin Radiosensitizing and radioprotective effects
in PCa patients Completed NCT01917890/

[287]

Curcumin &
Isoflavones

Combination with isoflavones who had
prostate biopsy due to elevated PSA levels

but do not have PCa
Completed * [290]

Curcumin
Adjuvant use of curcumin after

prostatectomy in improving recurrence-free
survival for PCa patients

Recruiting NCT02064673/
[291]

Curcumin Effects on prevention progression of
low-risk PCa under active surveillance Recruiting NCT03769766/

[292]

* NCT number National Clinical Trial (NCT) Identifier not shown.

6. Conclusions and Future Perspectives

Despite the advancement in PCa treatment modalities, there is still no decline in incidence and
mortality rates of PCa. The available treatments for PCa are more to palliative, where a prolonged
intake may cause unfavourable effects. Curcumin is shown to have the ability to delay the early onset
of PCa and inhibits progression of the disease from ADPC to AIPC state by modulating multiple
key signalling pathways; AR, AP-1, PI3K/Akt/mTOR, Wnt/ß-catenin, and several molecular targets
including NF-κB, Bcl-2 and cyclin D1. In spite of its widely reported health benefits, the use of
curcumin is hampered by its poor bioavailability which limits its clinical application. Several strategies
have been developed to address these limitations, including designing new structural analogues and
improving the delivery system by encapsulation of curcumin in the forms of nanoparticles, liposomal
encapsulation, and emulsions, therefore maximising the potential of curcumin in combating PCa [66].
Further pre-clinical and clinical studies are required to better understand in terms of mechanism of
action of curcumin, enhanced bioavailability, safety, dose efficacy and stability in order to translate
curcumin as a drug candidate to treat PCa.
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