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Fine particulate matter (PM2.5) poses threat to human health in China, particularly in

winter. The pandemic of coronavirus disease 2019 (COVID-19) led to a series of strict

control measures in Chinese cities, resulting in a short-term significant improvement in air

quality. This is a perfect case to explore driving factors affecting the PM2.5 distributions

in Chinese cities, thus helping form better policies for future PM2.5 mitigation. Based on

panel data of 332 cities, we analyzed the function of natural and anthropogenic factors

to PM2.5 pollution by applying the geographically and temporally weighted regression

(GTWR) model. We found that the PM2.5 concentration of 84.3% of cities decreased

after lockdown. Spatially, in the winter of 2020, cities with high PM2.5 concentrations

were mainly distributed in Northeast China, the North China Plain and the Tarim Basin.

Higher temperature, wind speed and relative humidity were easier to promote haze

pollution in northwest of the country, where enhanced surface pressure decreased PM2.5

concentrations. Furthermore, the intensity of trip activities (ITAs) had a significant positive

effect on PM2.5 pollution in Northwest and Central China. The number of daily pollutant

operating vents of key polluting enterprises in the industrial sector (VOI) in northern cities

was positively correlated with the PM2.5 concentration; inversely, the number of daily

pollutant operating vents of key polluting enterprises in the power sector (VOP) imposed

a negative effect on the PM2.5 concentration in these regions. This work provides some

implications for regional air quality improvement policies of Chinese cities in wintertime.

Keywords: PM2.5, spatiotemporal heterogeneity, Chinese cities, COVID-19, GTWR

INTRODUCTION

At the end of 2019, with the sudden outbreak of COVID-19 in China, a series of containment
measures were implemented by the government to limit the spread of infection. On 25 January
2020, the first day of the Chinese New Year, all cities in mainland China except cities in Tibet
launched the highest level of emergency response (http://www.nhc.gov.cn/). These measures
brought a temporary halt on human activities (1), e.g., transportation (2), industrial production
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(3) and energy consumption (4). The air quality during COVID-
19 in China became much better than that in the same period
of previous years (5). Particularly, the concentration of fine
particulate matter (PM2.5) decreased by 10.5% (6). Thus, the
stagnation caused by this epidemic provides a typical case study
for exploring the important driving factors of haze pollution
in Chinese cities in winter. The government can use this
information to take more effective policy intervention in the
future, specifically when addressing air quality improvement (7).

Numerous papers have studied the key factors influencing
PM2.5 concentrations, including anthropogenic and natural
factors (8). Anthropogenic factors include vehicle usage (9),
industrial production (10), energy consumption (11), and
household activities (12). In particular, the transportation sector
is recognized as the largest contributor to the emissions of
anthropogenic pollutants in urban air quality (13, 14), as
this sector consumes a considerable amount of primary and
secondary energy sources (15, 16). Previous studies have found
that reasonable control measures policies for public transit
improvement could effectively reduce PM2.5 concentrations
(17). Industrial pollution has been found to be another major
cause of the regional high PM2.5 concentrations in China (18).
Massive fossil fuel combustion in industrial production is a
notable source of PM2.5 emissions in Chinese cities (19). In
terms of natural factors, meteorological conditions can influence
the secondary formation of particulate matter by changing
the atmospheric diffusion dilution conditions and material
transformation process, thus affecting the regional haze pollution
(20). Therefore, it is necessary to consider meteorological factors
when studying the influencing factors of haze pollution (21, 22),
particularly in a short time (23).

A large and growing number of research is devoted to
analyzing air quality dynamics and its underlying driving factors
after the COVID-19 outbreak (24). Many studies have mainly
combined observations of air pollutant concentrations by remote
sensing (1, 25) and numerical weather prediction models (5, 26)
to reflect real-time changes in air quality. The contributions from
various emission sources or changes in weather conditions have
been common focuses of previous studies. For instance, Wang
et al. (27) and He et al. (28) employed statistical models to
evaluate the influence of different driving factors on air quality
during the epidemic period, which emphasized the significant
influence of restrictive measures. Yin et al. (29) and Shen et
al. (30) both emphasized the exceptional importance of climate
variability in regional air quality in China and noted that
unfavorable meteorological conditions greatly contributed to the
increase in the local PM2.5 concentration. However, the impacts
of natural and anthropogenic factors on PM2.5 concentrations
are dynamic and comprehensive (31, 32). Remote sensing data
cannot directly represent human activities. As the lack of real-
time socioeconomic data, the contribution of anthropogenic
factors to pollutant changes is hard to quantify in such a short
time. Although some papers have explored the contributions of
travel restrictions to atmospheric environmental change during
this epidemic with meteorological factors as control variables
(7, 33), these studies have ignored the dynamic effects of natural
factors and other human-induced emission sources on the PM2.5

concentration. In addition, because the PM2.5 concentration
varies with space and time (6), an analysis of spatiotemporal
heterogeneities on the impacts of different factors is needed.

Thus, in this paper, we collected higher temporal resolution
data that could reflect human activities, that is, PM2.5

observations, natural factors data and anthropogenic factors
data were matched at the same spatial and temporal scale. By
using daily monitoring data of PM2.5 concentrations, mobility,
and operating vents in prefecture-level cities across China
during the COVID-19 epidemic, we could comprehensively
analyse the real-time impact of human activities and natural
conditions on haze pollution. In addition, the geographically
and temporally weighted regression (GTWR)model was adopted
to quantitatively evaluate the spatiotemporal heterogeneous in
the relevance between driving factors and PM2.5 in the short
term. Therefore, we could distinguish the main driving factors
that dominate the temporal and spatial distribution of PM2.5

concentration in different cities in winter, the season with the
most severe haze. That could provide a reference for the local
government to put forward more effective haze control policies.

MATERIALS AND METHODS

Study Periods
In the winter from 2019 to 2020, COVID-19 broke out in China.
On January 23 of 2020, Wuhan, as the first city where COVID-
19 cases appeared, announced that the city would lockdown to
stop virus transmission. People in this city were not allowed to
leave and advocated to stay at home. With the spread of the virus,
other cities in China have gradually taken lockdown measures.
Under this measure, human activities were greatly restricted,
including the slowdown in the production of enterprises and
the significant reduction in the travel of residents. This special
period provides an unprecedented case for studying the impact
of human activities on air pollutants.

Methodology
The Univariate Local Moran’s I Index
The univariate local Moran’s I test was needed to assess spatial
autocorrelation before we detected local agglomeration. The
univariate local Moran’s I index has been proven to be an
effective tool for distinguishing the local spatial clusters, and it
is calculated as shown in Equation (1):

Ii =
Yi−Y
σ 2

n
∑

j=1,j 6=i

[

ωij

(

Yj − Y
)]

(1)

WhereYi is the value of the target variable (PM2.5 concentration)
of the i-th city,Yj represents the value of the PM2.5 concentration

in other cities (j 6= i), and Y denotes the average of the target
variable. σ 2 is the variance of the target variable. ωij is the
spatial weight displaying the neighboring relations among the
geographical units. In this research, we used GeoDa software to
obtain the LISA for cities’ PM2.5 concentrations before and after
the COVID-19 outbreak.
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The GTWR Model
Differentiated from the traditional time series model and spatial
econometric model, the GTWR model can comprehensively
consider the temporal correlation and the spatial characteristics
(34), better capturing the spatial and temporal heterogeneity of
statistical correlations among regression variables. The PM2.5

concentration may accompany spatial heterogeneity (35) and
time-series relevance, particularly in the short term (36).We used
thismodel to analyse the spatiotemporal heterogeneity of impacts
of natural and anthropogenic factors on PM2.5 pollution.

lnYi = β0 (ui, vi, ti) +
∑

k

βk (ui, vi, ti) lnXik + εi (2)

Where Yi is the PM2.5 concentration of the i-th city, and Xik is
the influencing factor of the i-th city on the k-th day, including
natural and anthropogenic factors. (ui, vi, ti) denotes the i-th
city’s geographical position (ui, vi) and time location (ti). βk(ui,
vi, ti) represent the coefficients of space-time observation sample
i, which can be explained as the percentage of dependent variable
(Y) change with 1% variation of the independent variable (X). εi
is the random error term.

βk(ui, vi, ti) for variable k and spatiotemporal location i is
examined by the following equation:

β̂ (ui, vi, ti) =
[

XTW (ui, vi, ti)X
]−1

XTW (ui, vi, ti)Y (3)

WhereW(ui, vi, ti) is the spatiotemporal weight matrix estimated
by the temporal and spatial distances and the decay functions.
Therefore, the spatiotemporal weight for independent variable
needs to be calculated before conducting this model analysis. The
spatiotemporal distance dST could be split into spatial distance
(dS) and temporal distance (dT), as shown in Equation (4):

dST = λdS + µdT (4)

Where λ and µ are scale factors to measure the impacts of the
spatial and temporal distance in their respective metric systems.
Then, the spatiotemporal distance dij between cities i and j is
calculated by Equation (5):

dSTij =

√

λ

[

(

ui − uj
)2

+
(

υi − υj
)2
]

+ µ
(

ti − tj
)2 (5)

Thus, the spatiotemporal weight (αij) can be obtained by using
Equation (6):

αij = exp

(

−

(

dSTij

)2

b2ST

)

(6)

Where bST represents the non-negative parameter of the
spatiotemporal bandwidth. In this work, cross-validation via the
minimum sum of the squared error [CVRSS(h)] was used to find
the optimal spatiotemporal bandwidth (37).

CVRSS
(

b
)

=
∑

i

(

yi − ŷ 6=1
(

b
))2

(7)

Where ŷi(b) denotes the predicted value from the GTWR model,
and the function is the sum of squared errors.

Stability Estimation of Coefficients
We applied the Kernel function to assess the stability of the
correlation coefficients (18). The density function of the variable
x is shown in Equation (8):

f (x) = 1
Nh

n
∑

i=1
K
(

Xi−X
h

)

(8)

Where Xi is the coefficients subordinated to independent and
identical distributions. n denotes the number of X. h is the
bandwidth, and X is mean value. The Epanechnikov function
widely used by previous studies was adopted as the kernel
function for estimation in this work.

Data Source
PM2.5 Concentrations
Hourly observations of the PM2.5 concentrations at 1,672
monitoring sites in our study period were collected from
the real-time monitoring data system of the China National
Environmental Monitoring Center (CNEMC) (https://air.cnemc.
cn:18007/). To ensure the continuity and reliability of the original
data, we conducted strict data quality control on the hourly PM2.5

concentration data before analysis according to the provisions
on the validity of air pollutant concentration data (GB 3095-
2012) (https://www.mee.gov.cn/), and we removed abnormal
data. The daily average of each site and then averaged these daily
averages of sites in each city was calculated as the daily PM2.5

concentration of the city. Based on the data pre-processing, 332
cities were selected in this study to discuss regional changes in
PM2.5 concentrations.

Natural Factors
Four essential meteorological factors were selected to report
the natural impacts on PM2.5, including surface pressure (sp,
KPa), temperature (tem, K), relative humidity (rh, %), and
wind speed (ws, m/s). In this work, rh was calculated by the
dewpoint temperature (d2m) and temperature (t2m) based on
the Clapeyron-Clausius equation. ws is the square root of the
sum of the squares of the eastward component of the 10m
wind (u10) and the northward component of the 10m wind
(v10). The reanalysis dataset (ERA5-Land hourly data) for these
data was obtained from the European Centre for Medium-
Range Weather Forecasts (ECWMF) (https://www.ecmwf.int/).
This reanalysis dataset is hourly 0.1× 0.1 grid data. The city-scale
meteorological data processing method is similar to that used for
the PM2.5 concentrations.

Anthropogenic Factors
In this study, we used the intensity of trip activities as an indicator
to assess traffic flow at each site during the COVID-19 epidemic
(7, 33, 38). This intensity of trip activities (ITAs), an exponential
result of the ratio calculated by the number of people who travel
in the city divided by the resident population in the city, can
be used to measure the daily passenger traffic pressure on the
urban transport system (https://qianxi.baidu.com/). Therefore,
we applied this index to indirectly reflect the impact of human
travel and lifestyle changes on PM2.5 concentration (39, 40).
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TABLE 1 | The descriptive statistics for each variable.

Variable Number Mean Std. Dev. Max Min

PM2.5 (µg/m3 ) 13,944 55.97 45.94 549.02 2.33

ITAs 13,944 3.79 1.58 8.88 0.36

VOI 13,944 59.0 166.3 2,100 0

VOP 13,944 26.5 56.3 372 0

sp (KPa) 13,944 93.94 10.06 103.93 53.74

temp (K) 13,944 275.84 10.03 299.46 248.41

rh (%) 13,944 69.25 15.80 98.54 10.70

ws (m/s) 13,944 1.65 1.11 10.51 0.01

Changes in industrial production affected by COVID-19 were
characterized by the numbers of daily pollutant operating vents
of key polluting enterprises in the industrial sector (VOI), which
could reflect the dynamic change in industrial pollution intensity.
The numbers of daily pollutant operating vents of key polluting
enterprises in the power sector (VOP) were used to report
the variation in energy consumption. The pollutant operating
vents were the sum of the vent numbers of dust, nitrogen
oxide (NOx) and sulphur dioxide (SO2). After the Spring
Festival in 2020, under the strict implementation of epidemic
control measures, the Chinese government announced that some
essential enterprises could resume production with restrictions.
We thus collected the daily pollutant operating vent numbers of
more than 9,000 key polluting enterprises in China from January
to February 2020 (http://www.ipe.org.cn/). These enterprises
usually pose great environmental risks, such as a great quantity
these air pollutants, and they are therefore screened by the
environmental protection department of the local government
based on the environmental quality improvement requirements
of their respective administrative areas and other specified
conditions (41). The key polluting enterprises in the power
sector was screened according to the national economic industry
classification (GB/T4754-2017). We searched each enterprise
name and check the industry classification of the enterprise one
by one. Moreover, combined with Google Maps, we have verified
the spatial coordinates of enterprises point by point to ensure the
accuracy of the number of enterprise vents in each city.

The descriptive statistics for each variable are presented in
Table 1.

RESULTS

Spatiotemporal Changes in PM2.5

Concentrations
The time-variation of daily PM2.5 concentrations in Chinese
cities before and after lockdown measures were implemented are
shown in Figure 1. Before the measures were taken, the daily
average PM2.5 concentration reaching its minimum value (32.7
µg/m3) on Jan 8, rapidly returned to 60 µg/m3, and continued to
fluctuate upward. In contrast, as cities in China gradually locked
down, the daily average national PM2.5 concentrations showed
a clear trend of first increasing and then decreasing, with the

value declining to 30.9 µg/m3 on February 14. This tendency was
consistent with the findings of Wang et al. (42).

The daily average PM2.5 concentrations for cities before
and after lockdown measures were taken presented diverse
spatial distribution characteristics (Figure 2). In the absence
of any measures to limit human activities, the 105 cities
with higher PM2.5 concentrations, more than 75 µg/m3,
were concentrated in Northeast China (Heilongjiang, Jilin
and Liaoning Provinces), the North China Plain (Tianjin,
Hebei, Shanxi, Henan, Shandong Provinces and northern Anhui
Province), and the Tarim Basin (Xinjiang Province). Other
areas with high PM2.5 concentrations (50–75µg/m3) were
distributed around the regions with the highest concentrations.
However, after cities gradually locked down, 84.3% of cities
experienced a decline in PM2.5 concentration. The number of
cities characterized by PM2.5 concentrations higher than 75
µg/m3 was significantly reduced, decreasing by 34.2%. Similar
to the period before measures were taken, cities with high PM2.5

concentrations were concentrated in Northeast China, the North
China Plain and Xinjiang Province. Moreover, haze pollution was
improved in 30 cities, with PM2.5 concentrations <37.5 µg/m3.
These cities were mainly distributed in the southern coastal areas.

We further conducted a local Moran’s I test (Figure 3)
to identify the spatial clustering characteristics of the PM2.5

concentration. During our study period, cities’ daily PM2.5

concentrations presented an appearance of regional convergence,
mainly marked by a high-high group and a low-low group.
When human activities were not limited, the high-high group
occurred in Northeast China, the North China Plain, and the
Tarim Basin, which indicated that the PM2.5 pollution in these
regions was more serious and that the positive local spatial
autocorrelation of PM2.5 existed in these cities. Cities with
low PM2.5 concentrations were mainly distributed in Xizang,
Qinghai, Sichuan, Yunnan, Guizhou, and Fujian Provinces,
suggesting that the haze pollution in these areas was relatively
light. The local spatial autocorrelation of haze pollution also
existed in these places but the correlation was weak. However,
after lockdown measures were taken, the club-convergence
phenomenon becamemore obvious, with the high-high cluster in
Northeast China shifting to the south. The regions characterized
by the low-low cluster in Northwest China shrank, while the
regions in Southwest China expanded to Guangdong Province.

Impacts of Factors on PM2.5

Concentrations
The GTWR model was employed to calculated the influence
of selected factors on cities’ haze pollution in this study, and
the parameters of the model are displayed in Table 2. In the
simulation results of the model, the R2 value was 0.403, the
adjusted R2 was 0.402, the bandwidth value was 0.115, the sigma
value was 0.259, the CV value was 808.202 and the spatiotemporal
distance ratio was 1.000.

Stability of Coefficients
From the Kernel distribution of coefficients of different variables
(Figure 4), we can see that the coefficients of ITAs, VOI
and VOP were concentrated at approximately 0.50,−0.01, and
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FIGURE 1 | Time-variation in daily PM2.5 concentrations Chinese cities before and after lockdown measures were implemented in response to the outbreak of

COVID-19. The red line represents the day that lockdown measures began in Wuhan, and shaded blue denote the standard deviations.

FIGURE 2 | Distributions of daily PM2.5 concentrations in Chinese cities before (A) and after (B) lockdown measures taken in response to the outbreak of COVID-19.

1.40, respectively. This result indicates that in most cities, the
increase in ITAs and VOP had a promotion effect on haze
pollution in the winter of 2020, while the increase in VOI
had the opposite effect. Among the four natural factors we
analyzed, the largest density of coefficients of sp was distributed
at 0.25, which illustrates that with the increase in sp, PM2.5

concentrations in most cities were promoted. In contrast, the
coefficients of rh, tem and ws were left-distributed, and the peaks
emerged at approximately−0.08,−1.25, and−0.25, respectively,
revealing that the increase in rh, tem and wind would restrain
the raise of PM2.5 concentration in most cities during our
study period.
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FIGURE 3 | The univariate Local Moran’s I for PM2.5 concentrations in Chinese cities before (A) and after (B) lockdown measures were taken in response to the

outbreak of COVID-19.

TABLE 2 | Regression parameters of the GTWR model.

Regression parameter Value

Bandwidth 0.115

Residual squares 934.863

Sigma 0.259

CV 808.202

R2 0.403

Adjusted R2 0.402

Spatiotemporal distance ratio 1.000

Impacts of Natural Factors
The surface pressure (sp) coefficients for the 332 Chinese cites
during our study period (Figure 5A) showed an increasing
trend of coefficients of the sp, with city moving from the
north to the southwest of the country. Cities in South China
experienced a positive relationship between the sp and PM2.5

concentrations, that the increased sp in the south aggravated
the PM2.5 concentrations, with Fangchengganng (0.609), Haikou
(0.608) and Chongzuo (0.608) ranking among the top three cities.
This is mainly because increased sp hindered the diffusion of
pollutants in the vertical direction (43). However, an increased
sp would limit PM2.5 pollution in northern cities, and the
lowest coefficients appeared in the Ali (-3.568). Decreases of
PM2.5 concentration in these cities was resulted from specific
meteorological conditions formed by sp and othermeteorological
factors (44).

The coefficient of temperature (Figure 5B) shown a negative
association with the PM2.5 concentrations in southeast and

middle regions of the country, which revealed that the increased
temperature in these areas would bring with a reduction in PM2.5

levels. Among the cities, Wenzhou was found to preserve the
most significant negative correlation between temperature and
PM2.5 concentration, a related coefficient being−2.289. As higher
surface temperature would intensify atmospheric convection,
PM2.5 concentration in these cities reduced. In contrast, positive
correlations between temperature and PM2.5 concentration was
exhibited in north regions. The temperature in the Ali exerted
the most positive impact on the PM2.5 concentration, with the
correlation coefficient being 7.455. The winter temperature in
northern cities was low (Supplementary Figure 1), although it
increased during the study period, resulting in an inversion layer
in the atmosphere, which made PM2.5 difficult to diffuse (32).

From the spatial distribution of relative humidity (rh)
coefficients (Figure 5C), we can see those regions with the
most remarkable linkage between rh and PM2.5 were mostly
situated in northwest regions, including Yili Kazak (0.578), Aksu
(0.577), and Bortala Mongolia (0.572), among others. In the
environment with high rh, water vapor in the air was easy to
condense water-droplets, which would lead to the growth of
moisture absorption of particles and aggravate haze pollution
(45). Zhoushan (- 0.129), Karamay (- 0.124) and other cities
in eastern areas displayed negative associations between rh and
haze pollution. Whereas, the absolute value of these negative
correlation coefficient was small, indicating that the reduction
of rh in these areas had limited effect on the increase of PM2.5

concentration in this study period.

The spatial distribution of wind speed (ws) coefficients
(Figure 5D) showed that the relations between ws and PM2.5

concentrations were not significant in the eastern and southern

Frontiers in Public Health | www.frontiersin.org 6 April 2022 | Volume 10 | Article 810098

https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/public-health#articles


Yang et al. Spatiotemporal Heterogeneity of PM2.5

FIGURE 4 | Kernel density distribution of each variable coefficient.

regions during our study period. Among the cities with a
significant relation, the ws coefficients of several cities located
in West and Northeast China were positive, but the coefficients
were found to be negative in other cities. Specifically, the wind
speed in Shigatse had the greatest promotion of haze pollution,
with a coefficient of 0.121. The lowest ws coefficient emerged in
Yingkou (- 0.057). As one of the important functions of wind
was to transport air pollutants, a high wind speed contributed
to the air pollutants’ dilution and diffusion process, resulting in
decreased regional PM2.5 concentrations (46).

Impacts of Anthropogenic Factors
Distribution of the correlation coefficient of three anthropogenic
factors considered in this work is shown in Figure 6. The
correlation of the ITAs and PM2.5 concentrations (Figure 6A)
was not significant in approximately half of the cities located
in the eastern regions during our study period. This result was
in accordance with previous studies conducted by Zeng and
Bao (47) and Bao and Zhang (33). In addition, the correlation
parameters for ITAs were found to be significantly positive in
other cities, and the coefficients in the western and north-eastern
regions were higher than those in the northern and central areas.

The ITAs in Kashgar was found to enforce the greatest promotion
impact on the PM2.5, and every 1% raise in ITAs would cause
a 1.703% decrease in PM2.5 concentration, followed by Kizilsu
Kirgiz, Ali and Hotan.

As seen from Figure 6B, the correlation between the VOI
and PM2.5 concentrations was gradually increase as area shifted
from north-eastern and north-western parts to eastern and
southwestern region (excepted for some cities in Shandong,
Henan, Hubei, Shanxi, Ningxia, Qinghai and Tibet Provinces).
Correlation coefficients in the southwestern and south-eastern
coastal cities were less than zero, suggesting that raise of the
VOI were accompanied by the decline of PM2.5 concentrations.
Cities in northern China, the PM2.5 concentration was shown
increase with grow in VOI. The VOI in Diqing Tibetan
played a particularly substantial role in decreasing the PM2.5

concentration, with the coefficient of−0.075, then, the Nujiang
Lisu Nationality Autonomous region (- 0.074), Lijiang (- 0.074),
and Dali (- 0.071). The VOI in Turpan exhibited the greatest
promoting influence on the PM2.5 concentration, having the
coefficient of 0.230.

Contrary to the VOI results, the coefficient of VOP
demonstrated an upward trend as cities shifted from the
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FIGURE 5 | Results of natural factors from the GTWR in 332 Chinese cities. (A) Coefficients of surface pressure (sp), (B) coefficients of temperature (tem), (C)

coefficients of relative humidity (rh), and (D) coefficients of wind speed (ws).

northeast to the southwest of China (Figure 6C). In north-
eastern cities, the VOP was shown to more obviously restrain
PM2.5 concentrations than in other cities. Hulun Buir (-0.070)
had the lowest coefficient, followed byHeihe (-0.056) andQiqihar
(-0.053). The significance of the positive influence of VOP on
PM2.5 concentrations in Shigatse, Lhasa, and Nagqu ranked as
the top three among cities, with coefficients of 0.549, 0.443, and
0.419, respectively.

DISCUSSION

During the study period, the areas with serious haze pollution in
China weremainly concentrated in theNorth China Plain (NCP),
the north of the Yangtze River Delta (YRD), Northeast China
(NEC) and some cities in Xinjiang. The specific area is shown in
Supplementary Figure 1, and relative change rates of 7 driving
factors in these areas before and after city closure are displayed
in Supplementary Table 1. According to the analysis results, the
spatial heterogeneity of the relationship between natural factors
and PM2.5 concentration was obvious. The decrease of PM2.5

concentration in NCP was mainly caused by the increase of
temperature andwind speed under themeteorological conditions
at that time. Compared with other natural factors, the rise of
temperature was the main reason for the mitigation of haze

pollution in the YRD. In most cities in NEC, the reduction of
relative humidity was themost important natural factor to reduce
haze pollution. In addition, the main natural factor causing the
decrease of PM2.5 concentration in some cities in Xinjiang was
the increase of wind speed.

We also analyzed the spatiotemporal heterogeneity of the
impacts of human activities on the PM2.5 concentration
during our study period. The intensity of trip activities (ITAs)
presented a positive effect on haze pollution, denoting that the
limitation of travel intensity would generally reduce the PM2.5

concentration (33, 42). The coefficient distribution suggested that
the aggravating effects of ITAs on haze pollution in western areas
were more significant than those in central regions. Regions
with significantly positive correlation coefficients in VOI were
distributed in northern China, in which the PM2.5 concentrations
were generally high. By contrast, the of VOP with PM2.5

concentrations showed an uptrend, as areas shifted from the
northeast to the southwest. It is worth noting that the low VOP
coefficients were concentrated in areas with winter heating (48).
This result means that in China, some achievements have been
made in using clean energy heating to improve air quality in
winter (49).

In our study, we selected the period of COVID-19 outbreak
in China as a case and calculated the relevance between
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FIGURE 6 | Results of anthropogenic factors from the GTWR in 332 Chinese cities. (A) Coefficients of the intensity of trip activities (ITA), (B) coefficients of the

numbers of daily pollutant operating vents of key polluting enterprises in the industrial sector (VOI), and (C) coefficients of the numbers of daily pollutant operating

vents of key polluting enterprises in the power sector (VOP).

city-level PM2.5 concentration and its driving forces during
that short time, exploring variation characteristics of these
correlations in time and space dimensions. According to the
results, we found that it is possible to propose regional
targeted air quality improvement suggestions for winter by
considering spatiotemporal heterogeneity in the interactivities
of PM2.5 concentrations and human activities. Although the
travel restrictions implemented after the COVID-19 outbreak
cannot be applied to air pollution management and control, it
is feasible to improve haze pollution by declining unnecessary
individual movements and increasing people’s awareness of
green commuting (50). When planning to improve air quality
in northern areas in winter (with positive VOI correlation
coefficients), the operating vent number of enterprises in the
industrial sector with emission levels more than the regional
standard limits should be strictly restrained or even eliminated.
However, cities located in the west and south of the country,
where the correlation of the VOP with PM2.5 concentrations is
positive, must pay more attention to the reduction in pollutant
emissions of polluting enterprises in the power sector (51). In
addition, although the recession has caused a temporary decrease
in air pollution, it would be difficult to preserve this decline after
national labor force gradually went back to work. Therefore, in
the future, green production and consumption will be a good

way to improve air pollution without reducing people’s normal
production and living needs (52, 53).

This study has limitations. The available daily dynamic data
of anthropogenic factors influencing PM2.5 distribution during
this epidemic period were limited. The indicators we selected did
not cover the influences of all anthropogenic factors. Because of
absence of pollutants emissions data, some uncertainty existed in
the process of evaluating the contributions of different sectors to
the PM2.5 distributions by using indirect indicators. However, we
used these indicators to reflect the dynamic changes in human
activities, and the contribution of pollutant emissions to the
PM2.5 concentration distribution was not discussed in this paper.

CONCLUSIONS

After the strict implementation of epidemic control measures
gradually taken in Chinese cities, 84.3% of cities’ PM2.5

concentrations decreased. Spatially, in the winter of 2020, cities
with higher PM2.5 concentrations (>75 µg/m3) were mostly
situated inNortheast China, the North China Plain and the Tarim
Basin. As the problem of haze pollution was suppressed, the
spatial aggregation of PM2.5 concentration was more prominent.
The surface pressure coefficients for Chinese cities increased
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from the north to the southwest of China. The coefficient
of temperature exhibited negative correlations with PM2.5

concentrations in southeast and middle cities; inversely, positive
relationships were found in the northeast and northwest regions.
Cities with higher relevance of PM2.5 concentrations with relative
humidity were mainly situated in Northwest China. Regions
in western and north-eastern China witnessed a significant
positive influence of wind speed on PM2.5 concentrations.
Among the three anthropogenic factors we considered, the ITAs
exhibited significant positive influence on haze pollution, and
the correlation maintained a high intensity during the study
period. The VOI coefficients in northern cities were positive,
while those in south-western and south-eastern coastal cities
shown significantly negative. In addition, the VOP coefficients
demonstrated an uptrend as region shifted from the northeast
to the southwest of the country. Based on the spatiotemporal
heterogeneity of coefficients for each factor, policy for controlling
haze pollution need to be pointed out by considering the
distinct meteorological and human activities at regional scales.
Reasonable restrictions on people’s travel intensity can effectively
prevent haze pollution. In winter, cities in the north could focus
on eliminating the operating vents of enterprises in the industrial
sector with emission levels exceeding the regional standard limits,
while cities in the west and south could pay more attention to
the reduction of unnecessary pollutant emissions of polluting
enterprises in the power sector.
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