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AbstrAct
Unprecedented successes regarding cancer 
immunotherapy have been achieved, in which therapeutic 
agents are used to target immune cells rather than cancer 
cells. The most effective immunotherapy to date is the 
group of immune checkpoint inhibitors (CPI), targeting, 
for example, cytotoxic T-lymphocyte-associated antigen 
4 (CTLA-4) or programmed cell death protein (PD-1). 
TThe combination of these therapies (anti-PD-1 with 
anti-CTLA-4) induces high response rates, and seem to 
be increased further when applied in early-stage disease. 
However, combined CTLA-4 plus PD-1 blockade causes 
frequent high-grade immune-related adverse events 
(irAE). To date, research on biological mechanism of irAEs 
is scarce and no widely accepted biomarkers predicting 
onset of severe irAEs have been identified. The similarity 
of irAEs to autoimmune disorders fuels the hypothesis that 
irAEs may be linked to susceptible genetic loci related 
to various autoimmune diseases. In this review, we 
extensively searched for susceptible loci associated with 
various autoimmune diseases, and pooled them in groups 
most likely to be associated with CPI-induced irAEs. These 
sets could be used in future research on predicting irAEs 
and guide physicians in a more refined and personal 
manner.

IntroduCtIon
Remarkable achievements in the treatment of 
once considered incurable cancers have been 
made since the introduction of immuno-
therapeutics. Immune checkpoint inhibitors 
(CPI), especially anti-PD-(L)1 antibodies, 
have improved survival in metastatic mela-
noma, lung cancer, renal cancer, urothelial 
cancer and advanced Hodgkin’s lymphoma 
and promises to be effective in other cancers 
as well.1–5

Combining anti-cytotoxic T-lympho-
cyte-associated antigen 4 (CTLA-4) with 
anti-programmed cell death protein 
(PD-1) can increase response rates and 
progression-free survival (PFS) further, for 
example, the combination of ipilimumab 
plus nivolumab demonstrated a median 
PFS of 11.5 months vs 2.9 months and 6.9 

months for ipilimumab or nivolumab alone 
in patients with advanced melanoma.4 Other 
combinations, for example, nivolumab plus 
relatlimab (anti-lymphocyte activation gene 
3 (LAG-3)), can overcome resistance to anti-
PD-1 monotherapy.6 Moving combination 
immunotherapy to earlier stages of disease 
seems to increase the response rate further, 
but at cost of higher incidence of severe 
toxicities.7–10

Severe adverse events (AE) from CPI are 
observed in about 15% of patients treated 
with anti-PD-1/PD-L1, 20%–30% with 
ipilimumab and in up to 60% in ipilim-
umab/nivolumab combination therapy in 
late-stage disease.4 11–17 These AEs, called 
immune-related (ir)AEs or AEs of special 
interest, closely resemble autoimmune 
diseases (AID), but usually lack the chro-
nicity of AID. AEs can be found in any organ 
or tissue of the body, usually develop within 
the first 3 months of treatment with CPI 
(ranging from days after start-up to 1 year 
after cessation of therapy) and require 
prompt management.18

The most prevalent irAEs are gastroin-
testinal, skin, endocrine or liver toxicities, 
while myositis, arthritis, sarcoidosis, neurop-
athies and nephritis are less frequently 
reported.12 13 19–21 Severe irAEs can be 
managed with immune-modulatory medica-
tions, such as steroids, anti-tumour necrosis 
factor-alpha (TNF-α) antibody (eg, inflix-
imab or inflectra), mycophenolate mofetil 
or calcineurin inhibitors like tacrolimus and 
cyclosporine.22 While reversal in the majority 
of cases will be achieved, long-term hormonal 
substitution therapy for endocrine disorders 
occurs regularly.15

As only a subset of patients treated with 
CPI develop severe AEs, it would be advan-
tageous to upfront identify patients most 
likely to experience these toxicities. To date, 
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however, no predictive biomarker has been identified to 
anticipate for treatment-related toxicities. The similarity 
to autoimmune disorders argues for a possible link to 
susceptible loci single nucleotide polymorphisms (SNP)/
genetic alterations related to various AID, although 
acknowledging that treatment-induced irAEs and AID 
also differ in some aspects (time of onset, flare episodes). 
Genome-wide association studies (GWAS) have uncov-
ered hundreds of risk loci for AID, although it remains to 
be elucidated how risk variants affect gene regulation and 
immune function.23 Treatment with immune CPI anti-
bodies in patients with pre-existing risk loci for AID could 
trigger an erroneous immune response that damage 
healthy tissues of these patients. In line with this idea, 
55% of patients with AID experience an AID flare and/
or severe irAEs on PD-1/PD-L1 targeting therapies, which 
is significantly more frequent than non-AID patients.24 
Thus, loci associated with AID likely play an important 
role for onset of irAE and should be examined in patients 
who receive CPI therapy.

In this review, we discuss which susceptible loci that are 
associated with various AID are potentially relevant for 
CPI treatment-induced irAEs. We provide an overview of 
reported irAEs, categorised according to affected organs. 
We focus on reported relevant immune-related suscep-
tible loci possibly related to treatment-related autoimmune 
toxicity to facilitate plausible prediction. We anticipate that 
our comprehensive analysis might be the basis for large 
CPI-treated patient cohort correlative analyses.

Methods
data sources and searches
A broad search strategy was used using different data-
bases: PubMed, Medline, Web of Science for literature 
and ImmunoBase search, OMIM, dbSNP NCBI, gene 
NCBI for genetic alterations and gene function informa-
tion. The search was restricted to English language arti-
cles and published until January 2019.

study selection
Relevant studies were selected by screening titles and 
abstracts, then by reviewing the full text and corresponding 
reference list. Important references were hand searched. 
Case reports and reviews of case reports describing irAEs 
in patients with melanoma (and to a fewer extent lung 
and kidney cancer) following treatment with anti-CTLA-4 
and/or anti-PD-1 antibodies were included. Only the 
Food and Drug Administration (FDA)-approved CPI ipil-
imumab, pembrolizumab and nivolumab were included 
in this review and all case reports on non-FDA-approved 
CPI therapy were excluded.

Preferably, (meta-analysis of) GWAS with large study 
cohorts (>1000 patients) was selected to rapport suscep-
tible loci for the different AIDs. However, if no large 
genetic studies were reported for the disease in question, 
genetic studies with smaller cohorts (50–1000 patients 
and very small cohorts <50 patients and single case 

studies) were included. Relevant studies were identified 
and are listed in the References section, and in the Refer-
ences section of the online supplementary file 1.

supplementary material
See online supplementary file for used search terms.

irAes and susceptible loci for AIds
The clinical presentation of irAEs often resembles 
various AIDs and thus might be associated with suscep-
tibility loci associated to AID. In table 1, we summa-
rised the most common irAE categories (sorted by level 
of challenge to identify and treat) and the AIDs with 
corresponding symptoms including the known associ-
ated susceptibility loci. We highlight irAEs that cause 
permanent damage and can be life threatening, if not 
promptly recognised. In our opinion, these should 
include all reported neuropathies (Guillian-Barré 
syndrome (GBS), chronic inflammatory demyelinating 
polyneuropathy (CIDP), enteric neuropathy, myas-
thenia gravis (MG)), cardiomyopathies, most endocrin-
opathies (hypophysitis, type 1 diabetes mellitus (T1D), 
adrenalitis), and the dermatological diseases drug rash 
with eosinophilia and systemic symptoms (DRESS) 
syndrome, Stevens-Johnson syndrome (SJS) and toxic 
epidermal necrolysis (TEN). Subsequently, we will 
describe in detail the different irAE categories and 
current ideas about the pathophysiology of the indi-
vidual correlating autoimmune phenomenon.

Autoimmune neuropathies
Autoimmune neuropathies can manifest acutely or 
chronically. A complex interaction between antigen-pre-
senting cells, B-cells and different types of T-cells results 
in demyelination or axon loss. Different progressive 
neurological toxicities were reported following CPI 
treatment, resembling various autoimmune neuropa-
thies.25–31 Although the observed immune-mediated 
neuropathies remain rare (<3% of patients after treat-
ment with ipilimumab15 18), these side effects can cause 
permanent damages and are potentially fatal.

There are several reported cases of GBS after or 
during treatment with CPI (online supplementary table 
1). GBS is a potentially reversible, acute demyelinating 
polyneuropathy with a complex pathophysiology, in 
which infiltration of spinal nerve roots and periph-
eral nerves by macrophages, antibodies and T-cells 
contributes to neural damage. Immune activation by 
CPI therapy may brake peripheral tolerance to gangli-
oside-related epitopes in patients who already have 
predisposition factors for the development of GBS. 
Genes encoding macrophage mediators and polymor-
phisms in the Fcγ receptor were associated with severity 
(table 1; online supplemental table 1).

The development of CIDP on CPI is rare (table 1). 
It is most likely also CPI induced and less likely part 
of a paraneoplastic syndrome, since CIDP and malig-
nant disease are only rarely seen concurrently.32 CIDP 
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Table 1 Reported immune-related adverse events and possible associated genetic loci based on descriptions in autoimmune 
disease (AID). Most common immnue-related adverse event (irAE) categories, sorted by level of challenge to identify and to 
treat. Shared risk loci between AID are underlined

Reported immune-related adverse events References
Possible susceptible loci based on 
autoimmune diseases (References)

Neuropathies

Guillian-Barré syndrome (GBS) 25 31 33 93 MMP-9, TNF-α,94 Fcγ receptors95

Chronic inflammatory demyelinating polyneuropathy 
(CIDP)

33 96 HLA-Aw30, HLA-B8, HLA-Dw3,97–99 HLA-
DR2,100 HLA-DRB1*13,101 FCγRIIb,102 
SH2D2A103

Enteric neuropathy 36 104 105 RET,106 GALNACT-2, RASGEF1A,107 108 HLA-
DQ region,109 between LTA-α and TNF-α,110 
VIPR1,111 IL-10,112 IL-23R,113 RAD21,114 
SGOL1,115 MT-TL1,116 TYMP117

Myasthenia gravis (MG) 31 118–120 CTLA-4,121 122 HLA-DQA1, TNFRSF11A,121 
CHRNA1, AIRE122

Multiple sclerosis (MS) 123

Immune polyneuropathies, posterior reversible 
encephalopathy syndrome, aseptic meningitis, 
transverse myelitis and immune encephalitis

30 36 124   

(Cardio)myopathies and skeletal disease     

Rheumatoid arthritis (RA) 15 36 125 126 MMEL1, PTPN22, IL-6R, DNASEIL3, CD5 
ICAM-3, TYK2127 128

Myopathies 15 36 126 129 130 SLCO1B1131

Myocarditis 4 12 130 132 133 HLA-DR4, HLA-DR12, HLA-DR15, HLA-
DPB*06:01134–136

Pericarditis 137   

Cardiac arrest and Takotsubo cardiomyopathy 138   

Genitourinary diseases     

Nephritis 4 14 15 22 37 64 119 139 140 FAN1,141 meta-analysis GWAS142 143

Vasculitis of uterine and ovarian vessels 144   

Endocrinopathies     

Hypophysitis 4 36 145 146   

Thyroid disorders 145–147 Immunochip project,148 149 PTPN22, CTLA-4, 
TSHR, MMEL1, LPP, BACH2, IL-2RA148

Adrenalitis 36 145 HLA-DR3, HLA-DQ2, HLA-DR4, HLA-DQ8, 
MICA, CTLA-4, PD-L1, PTPN22, CIITA, 
CLEC16A, CYP27B1150

Type 1 diabetes mellitus 36 145 151 PTPN22, CTLA-4, IL2RA, CLEC16A, IFIH1, 
IGF2, C12orf30, ERBB3, PTPN2, HLA-DQA1152

Gastrointestinal diseases     

Colitis (inflammatory bowel disease (IBD); Crohn’s 
disease (CD) and ulcerative colitis (UC))

12 15 36 40 146 147 LRRK2, NOD2, HNF4A, IL-2RA, RTEL1-
TNFRSF6B, CARD9, IFIH1, IKZF1, GPR35, 
NKX2-3, SMAD3, JAK2, IL-23R, PRDM1153

Gastritis 44 154–156

Coeliac disease 39   

Hepatitis 4 14 63 64 HLA haplotypes,157–160 CARD10, SH2B3161

Dermatological diseases     

Vitiligo 46 162 163 TYR, between OCA2 and HERC2 and MC1R, 
IFIH1, CD80, CLNK, BACH2, SLA, CASP-7, 
CD44, IKZF4, SH2B3, TICAM1, TOB2164 165

Lichenoid reactions 46 47 50 TNF-α, IFN-γ (in Northern Italian population)166

Drug rash with eosinophilia and systemic symptoms 
(DRESS) syndrome

46 119 HLA-B*58:01, HLA-B*57:0157 167

Stevens-Johnson syndrome (SJS) and toxic epidermal 
necrolysis (TEN)

36 46 119 HLA-B*15:02,56 168 HLA-A*31:01,58 
HLA-B*58:0159

Continued
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Reported immune-related adverse events References
Possible susceptible loci based on 
autoimmune diseases (References)

Psoriasis 36 169–171 IFIH1, ERAP2, IL-12B, MICA, TYK260

Alopecia 172 61

Dermatitis 36   

Respiratory diseases     

Pneumonitis 15 36 63 64 146 147 173 174 SP-C,175 176 AIRE,177 TERT, MUC5B178–180

Haematological conditions     

Red cell aplasia 36 181   

Neutropenia 4 14 182 FOXP3,183 chemotherapy-induced neutropenia 
associated with susceptible loci184–186

Acquired haemophilia A (AHA) 187 HLA-DRB*16, HLA-DQB1*05:02, CTLA-4188

Aplastic anaemia 189 TNF-α,190 HLA-A*02:01, HLA-A*02:06, 
HLA-A*31:01 and HLA-B*40:02,191 TERF1, 
TERF2, IL-23R192 193

Disseminated intravascular coagulation 36   

Ophthalmological diseases     

Multifocal bilateral choroidal neovascularisation 194 CFH195

Graves’ ophthalmology (GO) 36 IL-1A196

Optic neuropathy 96 197   

Vogt-Koyanagi-Harada (VKH) syndrome 198 199 HLA-DRB1*04:05, IL-23R, ADO-ZNF365-
EGR2200

Systemic disease     

Sarcoidosis 36 46 201–207 BTNL2, ANXA11, HLA-DRA, HLA-DRB5, HLA-
DRB1208 209

Systemic lupus erythematosus (SLE) 210 GWAS studies211–213

ADO, 2-Aminoethanethiol dioxygenase; AIRE, autoimmune regulator; ANXA11, annexin A11; BACH2, BTB domain and CNC homologue 2; 
BTNL2, butyrophilin-like 2; CARD9, caspase recruitment domain family member 9; CARD10, caspase recruitment domain family member 10; 
CASP-7, caspase-7; CFH, complement factor H; CHRNA1, cholinergic receptor nicotinic alpha 1 subunit; CIITA, class II major histocompatibility 
complex transactivator; CLEC16A, C-type lectin domain containing 16A; CLNK, cytokine-dependent haematopoietic cell linker; CTLA-4, cytotoxic 
T-lymphocyte associated protein 4; CYP27B1, cytochrome P450 family 27 subfamily B member 1; DNASEIL3, deoxyribonuclease 1-like 3; EGR2, 
early growth response 2; ERAP2, endoplasmic reticulum aminopeptidase 2; ERBB3, erb-b2 receptor tyrosine kinase 3; FAN1, Fanconi anaemia-
associated nuclease 1; FOXP3, forkhead box P3; GALNACT-2, polypeptide N-acetylgalactosaminyltransferase 2; GPR35, G protein-coupled receptor 
35; GWAS, genome-wide association studies; HERC2, HECT and RLD domain containing E3 ubiquitin protein ligase 2; HLA, human leucocyte 
antigen; HNF4A, hepatocyte nuclear factor 4 alpha; ICAM-3, intercellular adhesion molecule 3; IFIH1, interferon induced with helicase C domain 1; 
IFN-γ, interferon gamma; IGF2, insulin-like growth factor 2; IKZF1, IKAROS family zinc finger 1; IKZF4, IKAROS family zinc finger 4; IL-10, interleukin 
10; IL-1A, interleukin-1A; IL-12B, interleukin 12B; IL-6R, interleukin 6 receptor; IL-23R, interleukin receptor 23; IL-2RA, interleukin 2 receptor subunit 
alpha; JAK2, Janus kinase 2; LPP, LIM domain containing preferred translocation partner in lipoma; LRRK2, leucine-rich repeat kinase 2; LTA-α, 
lymphotoxin alpha; MC1R, melanocortin 1 receptor; MICA, MHC class I polypeptide-related sequence A; MMEL1, membrane metalloendopeptidase-
like 1; MMP-9, matric metallopeptidase 9; MTTL1, mitochondrially encoded tRNA leucine 1 (UUA/G); MUC5B, mucin 5B oligomeric mucus/gel 
forming; NKX2-3, NK2 homeobox 3; NOD2, nucleotide binding oligomerisation domain-containing 2; OCA2, OCA2 melanosomal transmembrane 
protein; PD-L1, programmed cell death 1 ligand 1; PTPN2, protein tyrosine phosphatase, non-receptor type 2; PTPN22, protein tyrosine 
phosphatase, non-receptor type 22; RAD21, RAD21 cohesin complex component; RASGEF1A, RasGEF domain family member 1A; RET, ret 
proto-oncogene; RTEL1, regulator of telomere elongation helicase 1; SGOL1, shugoshin-like 1; SH2B3, SH2B adaptor protein 3; SH2D2A, SH2 
domain-containing 2A; SLA, Src-like adaptor; SLCO1B1, solute carrier organic anion transporter family member 1B1; SMAD3, SMAD family 
member 3; SP-C, surfactant protein C; TERF1, telomeric repeat binding factor 1; TERF2, telomeric repeat binding factor 2; TERT, telomerase reverse 
transcriptase; TICAM1, toll-like receptor adaptor molecule 1; TNF-α, tumour necrosis factor alpha; TNFRSF11A, TNF receptor superfamily member 
11a; TNFRSF6B, TNF receptor superfamily member 6b; TOB2, transducer of ERBB2, 2; TSHR, thyroid-stimulating hormone receptor; TYK2, tyrosine 
kinase 2; TYMP, thymidine phosphorylase; TYR, tyrosinase; VIPR1, vasoactive intestinal peptide receptor 1; ZNF365, zinc finger protein 365; pRDM1, 
PR/SET domain 1.

Table 1 Continued

is characterised by demyelination, remyelination, inter-
stitial oedema and endoneurial inflammatory cell infil-
trates.33 Genetic variation in immune-related genes 
could contribute to acquiring disease after trigger of 
CPI (table 1; online supplemental table 1).

Enteric neuropathy following treatment with anti-
CTLA-4 and/or anti-PD-1 has been described in 
few patients, but is usually severe (table 1).15 This 

degenerative neuromuscular condition of the digestive 
system results in variable degrees of impaired motility 
of the digestive tract. Enteric neuropathies are classi-
fied depending on where the symptoms present along 
the gastrointestinal tract. Susceptible loci are reported 
for each location (online supplementary table 1).34 35 
The molecular genetic basis of Hirschsprung disease, 
in which the rectosigmoid is mostly affected, is the most 
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intensively investigated enteric neuropathy. The disease 
is considered to be polygenic or multifactorial in origin; 
however, a variety of point mutations in the RET gene 
(a transmembrane receptor tyrosine kinase) are consid-
ered to be a major contributing factor (table 1; online 
supplemental table 1).

The development of muscle weakness symptoms (fati-
gable muscle weakness in the limbs with bulbar dysfunc-
tion) that are in line with MG has been described after 
receiving CPI therapy (table 1). Muscle weakness is 
caused by antibodies that block or destroy nicotinic 
acetylcholine receptors at the junction between nerves 
and muscles. GWAS identified variations in genes 
known to affect immune functions, as well as genes that 
reflect their unique role in pathology that contribute 
to susceptibility to neuroimmunological conditions 
(online supplementary table 1). In particular, the poly-
morphism for CTLA-4 is of interest, since this leads to 
ineffective transcription of the CTLA-4 gene, suggesting 
that it plays a central role in generating abnormal 
immune response that results in neuromuscular junc-
tion dysfunction.

Autoimmune (cardio)myopathies and skeletal disease
Cases of cardiac and musculoskeletal AEs following CPI 
treatment are increasingly reported. Musculoskeletal 
pain and stiffness are the most common AEs reported, 
but higher grade toxicity occurs infrequently. Severe 
events include polyarthritis, myositis, rhabdomyolysis, 
pericarditis and Takotsubo-like syndrome.36

A common irAE of CPI is arthralgia (combination 
CPI therapy: 11%).4 Less common but more severe 
event is polyarticular inflammatory arthritis (any grade: 
0%–2%),15 characterised by inflammation of the joints 
(table 1). Rheumatoid arthritis (RA) is a common 
archetypal AID, in which GWAS identified 46 risk loci 
in genes of known immune function, both specific for 
RA or shared with other AID (table 1). Bioinformatic 
analyses generated potential causal SNPs at seven loci 
(online supplementary table 2; table 1). Other docu-
mented risk loci could also be of potential relevance 
to explain checkpoint-blocking treatment-related AEs.

Manifestations of myopathies have been described 
(any grade: <1%),36 including (poly)myositis, myalgia, 
rhabdomyolysis, polymyalgia rheumatic/giant cell arte-
ritis and autoimmune inflammatory myopathy (table 1). 
Autoimmune myopathies encompass a group of indi-
vidual (rare) diseases characterised by the presence 
of muscle inflammatory infiltrate resulting in progres-
sive muscle weakness. Pathophysiological knowledge 
is limited, and no genetic alterations have (yet) been 
established for autoimmune myopathy (online supple-
mentary table 2; table 1).

Cardiac side effects have been recently described 
after CPI therapy (grade 3/4: 1%–2%),15 including 
(fatal) myocarditis, pericarditis, cardiac arrest and 
Takotsubo cardiomyopathy (table 1). Immune mech-
anisms in heart diseases are complex, in which both 

humoral and cellular immunity are involved, but the 
course of autoimmune-mediated cardiac disorder is 
often not completely understood. Genetic predisposi-
tioning factors associated with autoimmune myocarditis 
are polymorphisms in MHC genes (online supplemen-
tary table 2; table 1).

Autoimmune genitourinary diseases
CPI-induced irAE affecting the genitourinary system 
has been described. Most of the reported irAEs affect 
the urinary system (0%–4%).37 When these are not 
treated early on, persistent (severe) damage may develop 
(table 1).

(Interstitial) nephritis is a common cause of renal 
toxicity. The pathogenesis of nephritis is complex and 
largely unknown. The role of autoimmune mechanisms 
is not well understood, and genetic predisposition 
factors are scarce. Multiple genetic linkage studies have 
provided evidence for a genetic component to renal 
failure, which include loci affecting renal function and 
creatinine production and secretion, and importantly, 
not encoding for immunoregulatory proteins (table 1). 
Since these loci are reported for a wide range of kidney 
diseases (which seem not to be immune related), most 
not corresponding with CPI-induced renal toxicities, we 
consider these loci of low importance for CPI.

Autoimmune endocrinopathies
Endocrine toxicities from CPI therapy are well-recog-
nised irAEs (approximately 10% of patients). These 
include hypophysitis, hypothyroidism, hyperthyroidism 
and adrenal insufficiency. If not promptly recognised 
they can become life threatening, for example, Addison 
crisis (table 1), but can normally be managed easily with 
lifelong hormonal substitution therapy, beta-blockers 
or strumazol.22

Pituitary inflammation, or hypophysitis, is a frequently 
reported endocrine toxicity, causing hormonal dysfunc-
tion (combination CPI therapy: 8%) (table 1).15 
Immune-related hypophysitis is often presented with 
non-specific symptoms such as nausea, headache, 
fatigue and vision change caused by swelling of the pitu-
itary gland (table 1). To date, no data are available asso-
ciating autoimmune hypophysitis to susceptible genes.

Additionally, both hyperthyroidism (combination 
CPI therapy: 10%) and hypothyroidisms (combination 
CPI therapy: 15%) have been described.15 Hyperthy-
roidism often turns into hypothyroidism after a few 
weeks. It is observed preferentially after anti-PD-1 or 
anti-CTLA-4 plus anti-PD-1 (table 1). Environmental as 
well as genetic factors are associated with autoimmune 
thyroid disease (AITD). The most convincing evidence 
for susceptibility loci has been limited by the Immuno-
chip project (table 1). The most relevant susceptibility 
loci affect the T-cell receptor signalling pathway (online 
supplementary table 3; table 1).

Other endocrine irAEs occurring following CPI 
therapy include primary adrenal insufficiency 
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(combination CPI therapy: 0.5%) (table 1).25 A third 
of these reported cases were grade 3 or higher, and can 
be life threatening if not diagnosed promptly (Addison 
crisis). Several genes that confer susceptibility to auto-
immune adrenalitis have been identified (online 
supplementary table 3; table 1).

The incidence for T1D was higher in patients who 
received combination therapy compared with patients 
who received monotherapy.4 11 Preclinically, it has been 
demonstrated that blockade of the PD-1 axis induced 
diabetes in non-obese diabetic mice.38 Approximately 
50% of the cases of CPI treatment-induced T1D were 
indicated as grade 3 or higher, making this a rare, but 
relevant irAE to report susceptibility loci, since affected 
patients need lifelong insulin replacement therapy 
(table 1). The well-defined T1D is characterised by 
insulin deficiency resulting from an autoimmune 
destruction of the insulin-producing β-cells in the Lang-
erhans islets. Different GWAS have revealed 57 genetic 
contributors to the pathogenesis of T1D. A meta-anal-
ysis combining evidence of different GWAS identified 
10 susceptibility loci with convincing effect size, some 
of which gene regions overlap with other autoim-
mune endocrinopathies (PTPN22, CTLA-4, IL2-RA and 
CLEC16A) (online supplementary table 3; table 1).

Autoimmune gastrointestinal diseases
The most frequently identified irAEs involving 
the gastrointestinal tract are diarrhoea and colitis 
(depending on the clinical or endoscopic diagnosis). 
The incidence of diarrhoea at any grade was higher in 
those treated with ipilimumab (33%) compared with 
nivolumab (19%), and was highest in the combination 
ipilimumab-plus-nivolumab group (44%).4 Grade 3 
or 4 effects occurred in 9% for diarrhoea and 8% for 
colitis in the combination ipilimumab-plus-nivolumab 
group.11 Other reported toxicities affecting the 
gastrointestinal tract include hepatitis (any grade: 
30%, grade 3 or higher: 18.8%), gastritis and coeliac 
disease.4 22 39 40 Inflammation of the intestine (colitis/
enterocolitis) commonly leads to moderate to severe 
diarrhoea. Severe colitis is the most frequent reason for 
treatment discontinuation, can be life threatening, due 
to subsequent intestinal perforation or dehydration 
(table 1).

Well-defined autoimmune intestinal diseases include 
inflammatory bowel disease (IBD), classified as either 
Crohn’s disease (CD) or ulcerative colitis (UC). Both 
disorders are characterised by chronic inflammation of 
the gastrointestinal tract, in which CD involves the total 
digestive tract, and UC involves the colon and rectum. 
A major difference between IBD and irAE colitis is its 
chronicity and slow improvement on steroids or TNF 
blockers. The aetiology of IBD is complex and arises 
as a result of the interaction of genetic and environ-
mental factors. To date, genetic studies have identified 
163 susceptibility loci for IBD. Approximately 30% are 
shared between CD and UC and more than 50% are 

associated with other AIDs. However, the genetic contri-
bution to the pathogenesis is poorly understood and, 
in most cases, genetic alterations are thought to have a 
minor role. Recent mapping studies have used suscepti-
bility loci to explain genetic heterogeneity across diverse 
populations and clinical subphenotypes.41 42 Moreover, 
it is emerging that the value of genetic studies is defined 
by just single susceptibility genes, and to identify 
disease-relevant pathways (eg, barrier function, innate/
adaptive immunity, metabolic pathways, autophagy) to 
understand the genetic architecture of complex disease 
such as IBD.43 Although all reported risk loci may be of 
importance to explain CPI-induced autoimmune colitis, 
a few loci with greater than 95% certainty to be a single 
causal variant have been reported for IBD, UC and CD. 
These 18 susceptible loci associated with IBD, UC and 
CD are potentially of greater value in explaining treat-
ment-induced intestinal toxicities after CPI (online 
supplementary table 4; table 1).

Gastritis, an inflammation of the lining of the 
stomach, is also reported on CPI therapy (table 1). One 
of the common causes of non-CPI gastritis is the infec-
tion with Helicobacter pylori (table 1). All reported SNPs 
for gastritis are related to an H. pylori infection, which 
is not frequently seen in the reported CPI treatment-in-
duced gastritis.44 Therefore, we consider these loci of 
less relevance.

Grade 3 or 4 immune-related hepatitis is among the 
most common identified high-grade irAEs (8.3% and 
6.1%, respectively, in response to combination therapy) 
(table 1). Autoimmune hepatitis (AIH) is a disease with 
an unknown aetiology, where GWAS identified genetic 
variants that predispose individuals to AIH. Identified 
human leucocyte antigen (HLA) haplotypes, both class 
I and class II associated with AIH, are variable between 
geographic and ethnic populations (online supplemen-
tary table 4; table 1). Only two non-HLA loci have been 
identified as risk factors for AIH (online supplementary 
table 4), making it difficult to find a genetic component 
underlying AIH.

Autoimmune dermatological diseases
Dermatological toxicities are one of the most frequently 
reported toxicities on CPI, but often manageable due 
to early detection.37 45–50 Some skin toxicities such as 
vitiligo are more prevalently observed in patients with 
advanced melanoma than in lung cancer and renal 
cancer.3 51–53 The most common skin toxicities are 
lichenoid reactions, eczema, vitiligo, bullous pruritus 
and rash. These AEs occur more frequently when 
patients received combination therapy compared with 
monotherapy. In patients treated with combination 
therapy, 35.1% developed rash, 4.2% were high-grade 
(grade 3 or 4) and 33.2% developed pruritus, 1.9% 
were high-grade.4 Other (rare) severe dermatological 
toxicities include SJS, TEN, psoriasis, alopecia and 
DRESS syndrome (table 1).
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Vitiligo is a complex disease, in which an autoim-
mune response directed against epidermal melanocytes 
results in patched depigmentation. The development 
of vitiligo followed by CPI treatment may be explained 
by expansion of anti-Melan-A T-cells that are specific 
to an anti-melanoma immune response. Interestingly, 
vitiligo is associated with clinical benefit on immune 
CPI therapy (table 1). Previous linkage analyses and 
GWAS identified vitiligo susceptibility loci, in which a 
meta-analysis uncovered SNPs spanning 14 different 
gene regions encoding immunoregulatory proteins as 
well as pathology-specific proteins (online supplemen-
tary table 5; table 1).

Lichenoid reactions (including oral mucosal lesions), 
characterised by infiltration between the epidermis and 
dermis, have been described after administration of CPI 
(table 1). Genetic factors were only identified in oral 
lichen planus in a small study cohort (online supple-
mentary table 5; table 1).

Dermatitis is a frequent AE developing after adminis-
tration of CPI (table 1). Although GWAS for dermatitis 
showed significant association with genes of the innate/
adaptive immune system, the reports of dermatitis after 
CPI were relatively mild and treatable.54 Therefore, 
we consider these polymorphisms of irrelevance for 
biomarker analyses.

Another more severe skin toxicity is the DRESS 
syndrome, characterised by skin rash, fever, lymph 
node enlargement and internal organ involvement 
(table 1). Other drugs, such as anticonvulsants, allo-
purinol, minocycline, sulfasalazine and abacavir, have 
been described as potential inducers of the rare cases 
of DRESS syndrome.55 Genetic predisposition for 
(drug-induced) DRESS syndrome was found to be asso-
ciated with specific HLA groups in some ethic groups, 
for example, it seems to be more common in Asian 
populations than in other parts of the world (online 
supplementary table 5; table 1).

Cases of the life-threatening skin toxicities SJS and 
TEN were also reported after CPI (table 1). As observed 
for DRESS syndrome, SJS and TEN are also associated 
with many different drugs.56–59 Both SJS and TEN are 
characterised by confluent epidermal necrosis, caused 
by autoimmune response which can be triggered by 
drugs of infections. Genetic risk factors for SJS and TEN 
are strongly associated with HLA alleles (table 1).

A few sporadic cases of psoriasis, a chronic, inflam-
matory disease, characterised by erythematous, scaling 
lesions, have been observed after administration of 
CPI (table 1). Pathogenesis of CPI-induced psoriasis 
remains speculative. A meta-analysis reported potential 
causal SNPs for significant loci, half of which encode 
regulators of innate host defence.60 The most strongly 
associated SNPs include IFIH1, ERAP2, IL-12B, MICA 
and TYK2 (online supplementary table 5), all overlap-
ping with other AIDs, such as T1D, vitiligo, CD, adrenal-
itis, multiple sclerosis (MS) and RA.

Alopecia is a disease that involves immune-mediated 
destruction of the hair follicles, occurring in 1.0%–2.0% 
of CPI-treated patients (table 1). In total, 13 susceptibility 
loci for alopecia were identified61 (table 1), many overlap-
ping with other AIDs, such as T1D, CD, UC, RA, AITD, MS 
and systemic lupus erythematosus (SLE). However, hair 
regrowth on immunosuppressive treatment is a well-rec-
ognised feature of imunne-related alopecia (table 1).62 
Accordingly, we consider alopecia not serious enough 
to pre-evaluate individuals at risk before receiving CPI 
therapy.

Autoimmune respiratory diseases
Serious respiratory AEs occur on CPI treatment. These 
include pneumonitis and acute respiratory distress 
syndrome. Combination therapy was associated with the 
highest rate of pulmonary toxicity (table 1).

Pneumonitis is a rare (any grade: 5%–10%, grade 
3/4: 2%63 64), but potentially serious irAE first described 
in patients with melanoma treated with CPI, but more 
often observed in patients with non-small cell lung 
cancer treated with anti-PD-1. Pneumonitis is a general 
term for inflammation of the lung tissue and is further 
classified in different subtypes. The subtype interstitial 
lung disease has been identified as a rare but potentially 
severe treatment-related irAE. Recent genomic studies 
associated different genetic alterations that predispose 
or cause interstitial pneumonitis (online supplemen-
tary table 6; table 1).

Autoimmune haematological conditions
Treatment with CPI can cause haematological AEs, 
although rarely. The development of CPI-induced haema-
tological diseases includes thrombocytopenia, aplastic 
anaemia, neutropenia, red blood cell aplasia, acquired 
haemophilia A (AHA) and disseminated intravascular 
coagulopathy (table 1).

Development of immune-mediated red cell aplasia, 
which is a type of anaemia affecting the erythropoietic 
precursor cells, occurred in patients treated with CPI 
(table 1). Anaemia has been restored in the majority 
of patients on immunosuppression. Red cell aplasia is 
in most cases autoimmune mediated, initiated either by 
antibodies, natural killer cells or T-cells. Genetic factors 
that predispose individuals for immune-mediated red 
cell aplasia have not (yet) been reported.

CPI treatment-induced cases of aplastic anaemia are 
characterised by T-cell-mediated immune destruction of 
haematopoietic cell results in pancytopenia (and throm-
bocytopenia) (table 1). Bone marrow failure results in 
increased risk for complications such as haemorrhage, 
infection, organ dysfunction and death. Genetic alter-
ations that are significantly associated with increased 
risk for aplastic anaemia include TNF-α and HLA alleles 
(online supplementary table 7; table 1).

Mild neutropenia is regularly reported during CPI treat-
ment; however, grade 3 and 4 neutropenia is infrequent 
(table 1). Immune-mediated neutropenia, characterised 
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by antineutrophil antibodies, is one of the established 
causes for neutropenia. There are few genetic alterations 
for autoimmune neutropenia described (online supple-
mentary table 7; table 1).

AHA is a rare autoimmune bleeding disorder with 
a high mortality rate. It arises as a result of the produc-
tion of autoantibodies against clotting factor VII, which 
is predominantly drug induced (eg, by penicillin and 
interferon-α). CPI treatment-related AHA (grade 3 or 4) 
is rare (table 1). Genetic predisposition factors for AHA 
include HLA polymorphisms and SNPs in CTLA-4 (online 
supplementary table 7; table 1).

Autoimmune ophthalmological diseases
CPI has been associated with eye inflammation, which can 
be manifested as uveitis, conjunctivitis, orbital inflamma-
tion, Vogt-Koyanagi-Harada (VKH) syndrome, Graves’ 
ophthalmology (GO), choroidal neovascularisation 
and optic neuropathy. The incidence of these ophthal-
mological diseases is less than 1%, and for most cases 
treatment with topical or systemic corticosteroids was 
effective.36 65–67 The more severe adverse ophthalmolog-
ical malignancies co-occurred with several other irAEs. 
Although the occurrence of these severe side effects is 
rare, we consider conditions that potentially result in 
vision loss of importance, hence we report potential risk 
loci (table 1).

A case of multifocal bilateral choroidal neovascu-
larisation in a patient on ipilimumab was described 
(table 1). Choroidal neovascularisation is character-
ised by aberrant choroidal vessel formation in the eye 
and can cause vision loss by way of haemorrhage or 
retinal oedema. There have been no susceptible loci 
for choroidal neovascularisation identified up to date; 
however, choroidal neovascularisation is a form of 
age-related macular degeneration, in which polymor-
phisms in CFH are strongly associated, suggestive to 
be of relevance in choroidal neovascularisation as well 
(online supplementary table 8; table 1).

GO, generally occurring in patients in Graves’ disease 
and hyperthyroidism, is an autoimmune inflammatory 
disorder which affects ocular and orbital tissues. Various 
associations between gene polymorphisms and GO have 
been established, mostly in interleukin (IL)-related 
genes. A meta-analysis confirmed only one polymorphism 
in IL-1A to be significantly associated (table 1; online 
supplemental table 8).

The uveomeningitic syndrome VKH has been associ-
ated with CPI therapy, although it occurs rarely (table 1). 
VKH is characterised by a systemic granulomatous auto-
immune response that targets melanocyte-rich tissues, 
affecting the eye, inner ear, meninges, skin and hair. 
Several studies have demonstrated that HLA polymor-
phisms and two loci (IL-23R and the mRNA expression 
of ADO-ZNF365-EGR2) were associated with develop-
ment of VKH syndrome in several (Asian) populations 
(online supplementary table 8; table 1).

systemic AIds
Defined systemic diseases occurred also on CPI treatment, 
which include diseases that affect a number of organs 
or tissues, some of which have been described above 
(eg, MG, coeliac disease, UC, CD, RA). Other reported 
CPI-induced systemic diseases, potentially severe, include 
sarcoidosis and SLE.15 36

CPI-induced sarcoidosis may complicate treatment 
continuation because enlarged lymph nodes might be 
misdiagnosed as disease progression. Sarcoidosis is an 
inflammatory disease, associated with granulomas in 
affected organs, most often in the lymph nodes. Any 
organ can be affected, and cases of lung, cutaneous, 
muscular and neurological sarcoidosis have been 
reported after administration of CPI (table 1). The 
aetiology is largely unknown, although presumably an 
aberrant T-cell immune response leads to the formation 
of granulomas. GWAS have linked different suscepti-
bility loci to sarcoidosis (online supplementary table 9; 
table 1).

Another well-defined systemic disease is SLE, an AID 
that is characterised by autoantibodies, most commonly 
antinuclear antibodies, affecting various body tissues. 
Only one case of lupus nephritis was described so far 
in a patient who received monotherapy of ipilimumab, 
in parallel with an immune complex-mediated kidney 
injury. Despite the fact that GWAS studies have identi-
fied 47 susceptibility loci for SLE (table 1), the number 
of reported cases of SLE is too low.

dIsCussIon
CPI (combinations) are becoming more and more 
standard therapies in stage IV melanoma, lung cancer, 
renal cell cancer and bladder cancer. They are currently 
tested in other cancer types, and in (neo)adjuvant 
settings in earlier stage cancers. Moving these effective 
therapies towards adjuvant and neoadjuvant approaches 
in stage III disease in a curative setting makes the need 
for biomarkers for response and severe AEs even more 
important.7 68 Unfortunately, there are currently no reli-
able biomarkers to predict occurrence of severe irAEs in 
response to CPI therapy. This urged us to write this review 
about several susceptibility loci identified for various AIDs 
which might also be relevant for irAEs, and could be a 
basis for correlative studies in CPI patient cohorts.

The development of high-throughput sequencing 
technologies has driven the discovery of more than 300 
susceptibility loci for AID. In this review, we selected, in 
our view, the most important susceptible loci that poten-
tially can predict treatment-induced irAEs (sorted by level 
of challenge to identify and treat). Multiple reported risk 
loci are shared between AID (which are underlined in 
table 1), and are known to affect immune functions, such 
as antigen presentation, cytokine signalling, NF-κβ tran-
scriptional regulation and T-cell activation/inhibition. 
Other genes are specific for a certain AID and reflect 
their role in their unique pathology.23
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Previous studies discovered that some susceptible loci 
are known to contribute more significantly to AID than 
other loci, which is explained by their effect size.23 69 
Here, we considered reported genes that were proven 
to contribute more significantly to autoimmune suscep-
tibility than other reported genes of highest importance. 
One of the previously reported susceptibility loci with 
large effect size is the HLA locus in T1D, in which 30% of 
disease liability is attributed to the HLA locus, compared 
with 9% for other loci discovered across the rest of the 
genome with GWAS.70 71 Another previously reported 
susceptibility locus with large effect size, which was iden-
tified by linkage analysis, is NOD2 for CD (increasing risk 
to develop CD 20 to 40-fold when carrying mutations 
in both NOD2 alleles).72 73 In addition, candidate gene 
studies revealed several key discoveries, in which variants 
in PTPN22 and CTLA-4 (both also reported in this review) 
were most notable. PTPN22 was shown to be associated 
with T1D (OR 2.31), RA (present in approximately 28% 
of the RA population and in 17% of unaffected popula-
tion) and Graves’ disease (present in approximately 14% 
of the Graves’ disease population and in 8% of unaf-
fected population).74–77 CTLA-4 was shown to be asso-
ciated with T1D (OR 1.79), RA (OR 1.23) and alopecia 
(OR 1.44).78–80 However, for many other genes identified 
by GWAS their contribution to autoimmunity remains to 
be examined, potentially having small effect size.23 This 
makes it more difficult to report potential susceptibility 
loci that are implicated to be of highest importance to 
predict irAEs. Therefore, we suggest that reported risk 
loci with largest effect size should be assessed in order to 
determine their relevance as a predictive biomarker for 
(organ-specific) toxicity.

We propose to prioritise on irAEs that cause permanent 
damage and can be life threatening, as a high chance on 
such irAEs might alter the physicians’ decision to not treat 
with CPI combinations. Although the reported cases for 
some of these serious irAEs (neuropathies, cardiomyopa-
thies, nephritis) are less frequent, the given anticipated 
increase in the use of (combination) CPI to treat cancer 
will result in a rise in the number of reported cases over 
the coming years. Moreover, these therapies move towards 
adjuvant and neoadjuvant approaches in stage III disease 
with the intent to cure patients, which makes reduction in 
irreversible (severe) irAEs even more important. There-
fore, clinical strategies should be developed to predict 
these toxicities, in which the proposed susceptible loci for 
AID could potentially serve as biomarkers for these serious 
irAEs.

Understanding the various immunological and non-im-
munological parameters associated with efficacy and 
toxicity of CPI, as well as other (promising) immuno-
therapies, will improve our treatment decision-making in 
a more refined and personalised manner. The ‘Cancer 
Immunogram’ we developed does not take the occur-
rence of (severe) AEs into account.81 In order to impli-
cate the likelihood of AEs to occur, predictive biomarkers 
are urgently required.

The recognition of risk factors would assist in identi-
fying patients who are not optimally fit for CPI therapy, 
in whom use of alternative schedules or drugs would be 
potentially advantageous to reduce toxicities. Adjust-
ment of dose of anti-CTLA-4 in patients at risk for severe 
irAEs is one possibility to reduce immune-related toxic-
ities. Currently, there are studies in stage IV and stage 
III melanoma underway testing alternative combination 
schemes with the aim to reduce toxicity while preserving 
efficacy.82 83 In addition, poor candidates for CPI therapy 
may benefit from additional surveillance and prompt 
aggressive treatment when AEs occur, or even prophy-
lactic treatment with other immune-modulatory medica-
tions, which are not T-cell inhibitory.84–86

One could argue that treatment-induced irAEs may 
be related to AID, but differences in pathology of irAEs 
and AID are undeniable, such as flare episodes (not 
chronic vs chronic disease), the time to onset, which 
is weeks for treatment-related irAE, in contrast to auto-
immune which usually develops more slowly.37 These 
differences may also affect the chance that identified 
susceptible loci for AID have a predictive value for 
treatment-related toxicities. Nevertheless, we hypothe-
sise that the environmental component, in this case CPI 
therapy, may trigger underlying inflammatory disease 
in genetic predisposed individuals, resulting in a more 
rapid onset of autoimmune-like symptoms. Moreover, 
response to treatment of CPI-related irAEs and AID is 
quite similar, such as susceptibility to corticosteroids 
and secondary immune-modulating agents, such as 
TNF-(R)-blocking agents.

Moreover, polymorphisms of PD-1 and CTLA-4 are 
associated with various autoimmune conditions (T1D, 
thyroiditis, Graves’ disease, coeliac disease, SLE, RA) 
to which the observed treatment-related irAEs clearly 
share clinical features,87 especially (inherited) changes 
in CTLA-4 expression and susceptibility for developing 
AID.88 Treatment with anti-CTLA-4 and/or anti-PD-1 
antibodies prevents their regulation of peripheral immu-
nological tolerance mechanism, which potentially could 
have a similar effect as changed expression in genetic 
polymorphism-associated AID. A better knowledge of the 
biology and ancillary genomics of the development of 
irAEs may provide more conclusive insight whether irAEs 
occur as a consequence of the patient’s immunological 
profile (eg, polymorphisms or HLA status).

Altogether, the recognition of potential risk factors to 
identify predisposed individuals for CPI treatment-in-
duced toxicities is desired, because the number of 
patients affected by irAEs will most certainly increase 
in the following years as a result of more patients being 
exposed to immune CPI (more indications and adjuvant 
treatment indications). First, we foresee an increase in 
combination immunotherapy as the standard of care 
resulting in more reported severe treatment-induced 
toxicities.4 Furthermore, combination of established CPI 
with drugs targeting other related inhibitory immune 
checkpoints, including LAG-3, V-type immunoglobulin 
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domain-containing suppressor of T-cell activation, 
B and T-lymphocyte attenuator and T-cell immuno-
globulin-mucin domain 3,89–92 or agonistic antibodies 
targeting co-stimulatory molecules such as OX-40, CD27, 
CD28, CD137 and glucocorticoid-induced TNF-re-
lated protein,89–92 may result in more irAEs. Therefore, 
biomarkers that predict immune CPI treatment-induced 
toxicities will remain of high value, in which AID-associ-
ated susceptibility loci are potentially good candidates 
warranting further investigation.

ConClusIon
In spite of the beneficial effect of immune CPI therapy 
in patients with cancer, continuation of its use can be 
restricted by increased irAEs. As the indications for CPI 
are extending almost monthly, and we will soon move CPI 
to (neo)adjuvant settings, the number of patients experi-
encing irAEs will increase steadily. Incorporation of new 
predictive biomarkers that could exclude poor candidates 
(patients who are not responding and have high chance 
of severe toxicities) for this novel therapeutic modality 
would be of high value, especially since CPI therapy in 
stage III disease is moving towards a curative setting. The 
susceptible loci reported in this review could potentially 
function as a tool to identify predisposed individuals who 
experience (severe) irAEs in response to CPI therapy. 
Initially one needs to focus on loci with large effect size to 
establish reliably correlations with irAEs. For this, multi-
national initiative will be required collecting data from 
thousands of patients treated with CPIs.
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