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PTPRO-related CD8+ T-cell
signatures predict prognosis
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Background: Poor immunogenicity and extensive immunosuppressive T-cell

infiltration in the tumor immunemicroenvironment (TIME) have been identified

as potential barriers to immunotherapy success in “immune-cold” breast

cancers. Thus, it is crucial to identify biomarkers that can predict

immunotherapy efficacy. Protein tyrosine phosphatase receptor type O

(PTPRO) regulates multiple kinases and pathways and has been implied to

play a regulatory role in immune cell infiltration in various cancers.

Methods: ESTIMATE and single-sample gene set enrichment analysis (ssGSEA)

were performed to uncover the TIME landscape. The correlation analysis of

PTPRO and immune infiltration was performed to characterize the immune

features of PTPRO. Univariate and multivariate Cox analyses were applied to

determine the prognostic value of various variables and construct the PTPRO-

related CD8+ T-cell signatures (PTSs). The Kaplan–Meier curve and the receiver

operating characteristic (ROC) curve were used to estimate the performance of

PTS in assessing prognosis and immunotherapy response in multiple validation

datasets.

Results:High PTPRO expression was related to high infiltration levels of CD8+ T

cells, as well as macrophages, activated dendritic cells (aDCs), tumor-

infiltrating lymphocytes (TILs), and Th1 cells. Given the critical role of CD8+ T

cells in the TIME, we focused on the impact of PTPRO expression on CD8+ T-

cell infiltration. The prognostic PTS was then constructed using the TCGA

training dataset. Further analysis showed that the PTS exhibited favorable
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prognostic performance in multiple validation datasets. Of note, the PTS could

accurately predict the response to immune checkpoint inhibitors (ICIs).

Conclusion: PTPRO significantly impacts CD8+ T-cell infiltration in breast

cancer, suggesting a potential role of immunomodulation. PTPRO-based PTS

provides a new immune cell paradigm for prognosis, which is valuable for

immunotherapy decisions in cancer patients.
KEYWORDS

breast cancer, PTPRO, prognosis, immune cell, TILs, immunotherapy response indicator,
PTPRO-related CD8+ T-cell marker genes signature
Introduction

Immunotherapy emerged as a new promising therapeutic

approach for breast cancer, especially in triple-negative breast

cancer (TNBC), and has been approved in combination with

chemotherapy, radiation, and targeted therapeutics (1, 2).

However, most types of cancers are recognized as “cold”

tumors characterized by poor immunogenicity and T-cell

dysfunction in the tumor immune microenvironment (TIME),

which have been considered obstacles to immunotherapy

efficacy. TNBC is more responsive to immunotherapy than

other breast cancer subtypes as it has more tumor-infiltrating

lymphocytes (TILs), higher expression of programmed cell death

ligand-1 (PD-L1) on tumor and immune cells, and a higher

number of non-synonymous mutations (3, 4). Although TNBC

has a greater response rate to immune checkpoint inhibitors

(ICIs) than other breast cancer subtypes, monotherapy response

rates remain extremely low, with only 5% of unselected patients

responding and 23% of PD-L1-positive patients responding (5,

6). Currently, three validated biomarkers (mismatch repair

deficiency, PD-L1, and TILs) have been adopted for selecting

patients and predicting clinical benefit from single-agent ICIs (2,

7). However, the coordination between cancer cells and the

immune system in breast cancer is a dynamic, evolving, and

complex biological process, which needs to discover more

comprehensive immune-related biomarkers (2). Therefore,

identifying effective indicators of immunotherapy response is

critical for immunotherapy in breast cancers.

Tumor-infiltrating CD8+ T cells are associated with the

clinical benefit of ICI therapy in many cancers (8). However,

given that CD8+ T cells become dysfunction states (tolerance,

ignorance, anergy, and exhaustion, respectively) during cancer

development, most patients are unable to maintain a long-term

response to immunotherapy (9). Currently, there is not any

effective indicator to predict which patients will respond, even

though much effort has been made. The mechanisms that

determine clinical response to immunotherapy remain largely
02
unknown. Emerging technologies (such as spatially resolved

transcriptomics, bulk and single-cell transcriptomics, single-

nucleus RNA-seq, and epigenetic profiling) have allowed us to

initially characterize the features of CD8+ T-cell heterogeneity

and the regulatory mechanisms of CD8+ T-cell differentiation

and dysfunction (9, 10). More recently, CD8+ tissue-resident

memory T (TRM) cells were revealed by single-cell RNA

sequencing (scRNA-seq) on breast cancer T cells (11). These

T-cell subsets are characterized by high expression levels of

immune checkpoint molecules and effector proteins and

contribute to patient prognosis and response to anti-PD-1

therapy in TNBC (11, 12). The scRNA-seq has provided

important insights into the features of TRM cells, and hence

can aid in the development of effective immunotherapy targeting

T cells; however, the molecular basis of T-cell dysfunction states

in breast cancer remains elusive (11). It is necessary to refine the

indicators that allow for the identification of CD8+ T-cell

phenotypes and to explore the regulatory mechanisms of

CD8+ T cells, especially in other breast cancer subtypes except

for TNBC (11, 13, 14).

The protein tyrosine phosphatases (PTPs) catalyze the

dephosphorylation of specific target protein tyrosine kinases

(PTKs) as a common means of regulating cellular signal

transduction and play an important regulatory role in immune

cell signaling (15, 16). Protein tyrosine phosphatase receptor

type O (PTPRO), a member of the PTP family, has been

reported that it can function as a tumor suppressor and

prognostic factor in various cancers (16–19). Furthermore,

downregulation of PTPRO by aberrant hypermethylation in

various cancer types, including lung cancer, hepatocellular

carcinoma (HCC), breast cancer, esophageal cancer, and

leukemia, suggests that it may be a therapeutic candidate for

epigenetic therapy (20–24). Additionally, given the regulatory

functions of PTPRO in immune cells, we and other groups have

begun to focus on the roles of PTPRO in tumor immunity (16).

Our recent study indicated that tumor-derived exosomal

PTPRO could ameliorate the immunosuppressive tumor
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microenvironment (ITM) and inhibit breast tumor cell

metastasis by resetting tumor-associated macrophages (TAMs)

(25). We also found that PTPRO could predict patient prognosis

and be significantly associated with the immune infiltrate of

clear cell renal cell carcinoma (ccRCC) (26). Another study

further confirmed that PTPRO is a therapeutic target and

promotes the infiltration of immune cells including CD8+ T

cells, macrophages, dendritic cells, and neutrophils in pancreatic

cancer (27). However, little is known about PTPRO’s role in the

immunotherapy response in breast cancer. In this study, we

provide evidence that PTPRO as a potential immune indicator

and PTPRO-related CD8+ T-cell signatures (PTSs) can be used

to predict prognosis and immunotherapy response in breast

cancer patients.
Materials and methods

Data collection and reprocessing

The RNA-seq data contained 130 patient samples (from the

series GSE65194), and 251 patient samples (from the series

GSE3494) were obtained from the Gene Expression Omnibus

(GEO) database. ScRNA-seq profiling of two primary TNBCs

was obtained from GSE110686. The Cancer Genome Atlas

(TCGA) breast cancer RNA-seq profiling [in the form of

fragments per kilobase million (FPKM)], mutation data, and

corresponding clinicopathological data were obtained from

TCGA database. RNA-seq expression data of 3,273 breast cancer

samples (GSE96058) in the form of log2 (FPKM + 0.1) and

corresponding clinicopathological characteristics were obtained

from the GEO database. RNA-seq profiling of 1,904 breast cancer

samples (METABRIC) and corresponding clinicopathological

characteristics were derived from the cBioPortal. The profiling in

the form of FPKM or log2 (FPKM + 0.1) was converted into

transcripts per kilobase million (TPM) values and was further log2-

transformed [log2 (TPM + 0.1)] (28).
Associations between PTPRO and the
infiltration of immune cells

The “ESTIMATE” R package was utilized to calculate the

immune scores, stromal scores, and ESTIMATE scores,

respectively, which can be used to evaluate the abundance of

immune cells and stromal cells in the breast cancer

microenvironment. The infiltration and function of immune

cells were quantified by single-sample gene set enrichment

analysis (ssGSEA) via the “gsva” R package. Among the

GSE65194 and GSE3494 datasets with complete gene

expression data, samples based on PTPRO expression were

divided into high (upper 50%) and low (lower 50%)

expression groups, respectively.
Frontiers in Immunology 03
Patients

Breast cancer patients (n = 30) were obtained from the

Cancer Hospital affiliated to Shantou University Medical

College, undergoing surgical treatment at the Department of

Surgery, during the period from 2010 to 2013. All patients

received primary treatment by surgery followed by adjuvant

radiotherapy, chemotherapy, or hormone therapy. The mean

age of the patients was 50 years (range: 20–75 years). The clinical

research protocols of this study were reviewed and approved by

the Ethics Committee of Shantou University Medical College

(IRB serial number: #04-070). Written informed consent was

obtained from the patients in accordance with the principles

expressed in the Declaration of Helsinki.
Immunohistochemical analysis

Immunohistochemistry (IHC) staining was performed as

previously described (18, 19). In brief, 4-µm sections from

representative breast cancer tumor tissue were cut from

formalin-fixed paraffin-embedded specimens and underwent

deparaffinization, rehydration, endogenous peroxidase

blocking, and antigen retrieval. The following primary

antibodies were used: PTPRO (Cat# sc-365654, Santa Cruz,

CA, USA), and CD8 (Cat# ab101500, Abcam, Cambridge,

UK). Furthermore, the primary antibodies were incubated at

4°C overnight. Then, the sections were incubated with

horseradish peroxidase (HRP)-conjugated secondary

antibodies at room temperature for 1 h, followed by color

development with 3,3′-diaminobenzidine (DAB) substrate kit

(DAKO, Glostrup, Denmark). The nuclei were counterstained

with hematoxylin.

The percentage of PTPRO expression in the tumor cells was

scored using the following scales: 0, negative; 1, ≤10%; 2, 11%–

50%; 3, 51%–75%; and 4, >75%. The intensity of staining was

scored using the following scales: 1, weak staining; 2, moderate

staining; and 3, strong staining. The percentage (P) and intensity

(I) of the cytoplasm or membrane expression were multiplied to

generate a numerical score (S = P*I), which was modified from

previous studies (19).
Identification of PTPRO-related CD8+

T-cell marker genes

The “Seurat” and “SingleR” packages were used to analyze

the scRNA-seq data (29). Cells with a number of detectable

genes less than 200 and genes detected less than 3 cells were

moved. We performed principal component analysis (PCA)

with 1,500 variable genes to cluster the single cells followed by

t-distributed stochastic neighbor embedding (t-SNE) with the

first 20 PCA components using the RunPCA and RunTSNE
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functions, respectively. The “SingleR” R package was utilized for

cell-type annotation, which works by comparing the

transcriptome of every single cell with reference datasets.

Absolute log2 fold change > 0.5 and an adjusted P < 0.05 were

used to define the marker genes. After that, expression

correlation assays between PTPRO with CD8+ T-cell marker

genes were conducted using Spearman’s coefficient correlation

among the TCGA dataset.
Construction and validation of a
prognostic signature in breast cancer

The cases from the TCGA breast cancer datasets were

included for the construction of the prognostic model.

Univariate Cox analysis of overall survival (OS) was

complemented to screen PTPRO-related CD8+ T-cell marker

genes with prognostic values. The multivariate Cox proportional

hazards model was established using statistically significant

genes from the univariate Cox analysis. The independent

prognostic factors were evaluated by the multivariate Cox

proportional hazard regression model. The risk scores of the

patients were established as follows: risk score = b1 x1 + b2 x2 +
… + bixi. In this formula, xi was the expression value of each

gene obtained from the prognostic model, while bi was the

corresponding coefficient. The Kaplan–Meier method was used

for survival analysis, and the samples were divided into high and

low groups according to the median value of the risk score. The

prognostic model’s prediction capability was quantified by the

receiver operating characteristic (ROC) curve using the R-

package “timeROC” (30).
Construction of the nomogram

Based on the results of the multivariable Cox regression

analysis, a nomogram integrating clinicopathological parameters

(including age, stage, TNM stage, and risk score) was developed

through the R package “rms.” All of these points are added up

for each individual to generate a total point, which can predict

the 1-, 3-, and 5-year survival probability of breast cancer

patients. The calibration curve was plotted to evaluate the

nomogram’s discrimination. The predictive accuracy of the

nomogram was quantified by the concordance index (C-index).
Genomic and clinical datasets with anti‐
PD‐L1 therapy

A urothelial carcinoma cohort (298 cases with complete

clinical characteristics) that received the anti‐PD‐L1 therapy

from the IMvigor210 cohort was used to analyze and explore

the predictive accuracy of the prognostic signature (31). RNA-
Frontiers in Immunology 04
seq profiling and the corresponding clinicopathological

characteristics were obtained from the Creative Commons

3.0 License. The count value was transformed into the log2
(TPM + 1) value.
Statistical analysis

Student’s t-tests were used to compare the normal

distributions between two groups, and the Wilcoxon rank-sum

test was performed to compare the non-normal distributions

between two groups. The prognostic factors were evaluated via

the univariate and multivariate Cox regression models, and

further construction of the prognostic model was established

through the “survival” and “survminer” R packages. The

multivariable analysis model was constructed with variables

with a P-value < 0.15 in the univariable analysis (32). Then, in

the multivariate model, 11 candidate genes (P-value < 0.15) were

selected because correlations can play an important role to build

better prognostic models (33). In the TCGA, METABRIC,

GSE96058, and IMvigor210 datasets, patients were grouped

according to high or low risk based on median risk scores

(34). Survival analysis was measured using the Kaplan–Meier

method. Then, the log-rank test was performed to analyze the

significance of disparity. The “timeROC” R package was

performed to evaluate the accuracy of the prognostic model.

The “ClusterProfiler,” “org.Hs.eg.db,” and “enrichplot” R

packages were utilized for the GSEA analysis. The statistical

analysis was performed using R software (version 4.1.0). P-value

<0.05 was considered to be statistically significant.
Results

The role of PTPRO on breast cancer
tumor microenvironment

As shown in Figure 1, the TCGA cohort was used as the

training cohort, with 1,034 patients having a survival time of more

than 30 days included. The METABRIC and GSE96058 cohorts

were viewed as the external validation cohorts, consisting of 1,904

and 3,069 patients with survival data, respectively. To investigate the

influence of PTPRO on the TIME, we explored the correlation

between PTPRO expression and immune cell distribution. Through

ESTIMATE, we found that samples with low PTPRO had

significantly lower immune scores than the high PTPRO samples

(Supplementary Figure S1A, GSE65194; Supplementary Figure S1B,

GSE3494). We further evaluated the correlation between PTPRO

and immune status and found that the enrichment scores for 16

immune cell types and 13 immune-related pathways were lower in

the PTPRO-low group than in the PTPRO-high group, indicating

that patients in the PTPRO-high group may have better immune

status and immune function (Figure 2A, Supplementary Figure
frontiersin.org
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S1C, GSE65194; Figure 2B, Supplementary Figure S1D, GSE3494).

Notably, in two GEO cohorts, five immune cell types, namely,

CD8+ T cells, macrophages, activated dendritic cells (aDCs), TILs,

and Th1, were found to be significantly more abundant in the

PTPRO-high group (Figure 2C). It is well known that CD8+ T cells

are the central subpopulation of cytotoxic T cells, which are

primarily responsible for eliminating tumor cells (35). Given the

importance of CD8+ T-cell infiltration in the TIME, the relationship

between CD8+ T-cell infiltration levels and PTPRO expression was

further investigated. The results showed that PTPRO expression

was significantly positively related to CD8+ T-cell infiltration levels

in the TISIDB database (Figure 2D). Furthermore, we performed

the IHC staining assay to analyze PTPRO and CD8 expression in 30

human breast cancer tissues (Figure 2E). Tumor infiltration of

CD8+ T cells was significantly higher in tumors with higher PTPRO

expression than in tumors with low PTPRO expression (r = 0.914;

P < 0.001) (Supplementary Figure S1E). Collectively, these results

suggest that PTPRO plays an essential role in mediating the

reprogramming of TIME, thereby suppressing tumor progression.
Construction of prognostic PTPRO-
related PTS

Given that TIME’s immune profile, including CD8+ T-cell-

related genes, has been shown to correlate with prognosis (36,

37), and based on PTPRO’s regulatory role in promoting CD8+

T-cell infiltration, we further investigated the association
Frontiers in Immunology 05
between CD8+ T-cell-related genes and PTPRO. By analyzing

the scRNA-seq data from the GSE110686 cohort, 127 CD8+ T-

cell marker genes were confirmed (Figure 3A, Supplementary

Figure S2A). Among them, 56 CD8+ T-cell-related genes were

subsequently identified to be significantly associated with

PTPRO (filtering thresholds were set as R > 0.3, P < 0.05) in

the TCGA dataset (Supplementary Table 1). Next, the TCGA

breast cancer dataset was used as the training cohort to evaluate

the prognostic value of the above 56 genes. A total of 31 genes

(SRGN, SERPINB9, ICOS, CD74, TNFRSF1B, CXCR6, BIRC3,

TIGIT, CTLA4, APOBEC3G, TRAC, CD69, SIRPG, GZMA,

CD52, CST7, RGS1, CD8A, GZMK, SPOCK2, ZNF683,

GBP2, CCL5, HCST, NKG7, KLRB1, CTSW, CD8B, TRGC2,

PGAM1, and PIM2) were found to contribute to the OS as

revealed by the univariate Cox proportion hazards regression

analysis (Supplementary Figure S2B). A multivariate Cox

regression analysis revealed that 11 candidate genes were

determined and subsequently used to create a prognostic

signature (i.e., PTS) (Figure 3B). The PTS risk score for

predicting prognosis was calculated using the formula: PTS

risk score = TNFRSF1B expression × (0.5385) + BIRC3

expression × (−0.2625) + TIGIT expression × (0.2949) +

APOBEC3G expression × (−0.2651) + CD69 expression ×

(0.3853) + RGS1 expression × (−0.1672) + CCL5 expression

× (−0.3752) + NKG7 expression × (0.4308) + KLRB1 expression

× (−0.6283) + CTSW expression × (−0.2624) + PGAM1

expression × (0.2686) (Supplementary Table 2).

The corresponding PTS risk scores were calculated for each

breast cancer patient in the training cohort (Figure 3C). The

median value of the PTS risk score was used as the cutoff value to

divide patients into low-risk (n = 517) and high-risk (n = 517)

groups. The distribution of PTS risk score and patient survival

status revealed that patients with high risk died sooner than

those with low risk (Figure 3D). Consistently, patients with high

risk had a significantly shorter OS than patients with low risk

(P < 0.001, Figure 3E). ROC analysis was performed to interpret

the predictive performance of PTS risk score, and the results

showed that the AUCs for 1-, 3-, and 5-year OS were 0.700,

0.713, and 0.688, respectively (Figure 3F). Furthermore, GSEA

showed that immune-related gene sets were enriched in patients

with low-risk score (Supplementary Figure S2C). Therefore, our

findings suggest that PTS risk score has a high specificity and

sensitivity for predicting the OS of breast cancer patients.
Validation of the prognostic value of PTS
risk score

To evaluate the robustness of the PTS, we tested its

predictive power in two independent validation cohorts from

the METABRIC and GSE96058 datasets. Risk scores were

calculated for patients in two cohorts using the same formula

generated in the training cohort (Figures 4A, B). Similar to the
FIGURE 1

The flowchart of signature construction and verification.
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training cohort, patients with high risk died sooner than those

with low risk (Figures 4C, D). Patients were then separately

classified into high-risk groups (METABRIC, n = 951;

GSE96058, n = 1,534) and low-risk groups (METABRIC,

n = 952; GSE96058, n = 1,535) based on the median values

of the risk score. Patients in the low-risk group had a

s ignificant ly bet ter OS than those with high r isk

(METABRIC, P < 0.001; GSE96058, P < 0.001) (Figures 4E,

F). Moreover, the AUCs for 1-, 3-, and 5-year OS of this

classifier were 0.647, 0.523, and 0.532 in METABRIC and

0.633, 0 .633, and 0.616 in GSE96058, respectively

(Figures 4G, H), further confirming the prognostic role of

the PTS.
Frontiers in Immunology 06
Independence of the PTS risk score from
other clinical characteristics

In order to better understand the utility of the PTS in predicting

the OS of breast cancer patients, the risk score and clinical features

were integrated into the univariate and multivariate analyses

(Figure 5). The multivariate analysis revealed that low-risk score

remained significantly associated with favorable OS even after

adjusting for other clinical characteristics. The risk score for OS

was 1.891 (95%CI=1.547–2.312,P<0.001; Figure 5A) in theTCGA

training set, 2.122 (95%CI=1.296–3.475,P=0.003; Figure 5B) in the

METABRIC validation set, and 1.289 (95% CI = 1.076–1.544,

P = 0.006; Figure 5C) in the GSE96058 validation set. Together,
A B

D

E

C

FIGURE 2

Characterization of protein tyrosine phosphatase receptor type O (PTPRO) in breast cancer tumor microenvironment. Comparison of the
ssGSEA scores between the PTPRO-high group and the PTPRO-low group in the GSE65194 (A) and GSE3494 (B) cohorts. (C) Overlapped
immune cell types correlated with PTPRO expression in the two cohorts. (D) The dot plots displayed the correlations between PTPRO
expression and the infiltration pattern of CD8+ T cells in TISIDB. (E) Representative IHC staining indicates higher PTPRO levels correlated with
increased CD8+ T-cell infiltrates in human breast cancer. Scale bars: 100 mm (left panel), 50 mm (right panel). ns, not significant; *P < 0.05;
**P < 0.01; ***P < 0.001 by Student’s t-test.
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thesedata stronglydemonstrate that theprognostic signaturederived

from PTPRO-associated immunomodulators was an independent

predictor of OS in breast cancer patients.
Construction and evaluation of a
prognostic nomogram

Based on the findings of multivariate analysis, we constructed a

nomogrammodel employing clinical factors, such as risk score, age,

and stage. By calculating the score of the aforementioned variables

for each patient, we can predict the individuals’ 1-, 3-, and 5-year
Frontiers in Immunology 07
OS probability (Supplementary Figure S3A). The calibration curves

further revealed that the nomogram performed well in predicting

breast cancer patients’ survival (Supplementary Figures S3B–D).

The C-index of the nomogram was 0.747, which shows that it has a

good capacity for discrimination.
The prognostic value of PTS in patients
with anti-PD-L1 therapy

To investigate the potential clinical efficacy of PTS in

immunotherapy, we examined the distribution of checkpoint-
A B

D

E
F

C

FIGURE 3

Construction of the PTPRO-related CD8+ T-cell signature (PTS) in the training set. (A) t-SNE plot depicted various cell types. (B) The prognostic
signature was developed by multivariate analysis of candidate genes that were associated with the overall survival (OS) of breast cancer patients in
the training set. (C) Breast cancer patients in the training set were divided into high-risk and low-risk groups based on the median value of the risk
score. (D) Breast cancer patients’ survival status and risk score distribution in the training set. (E) Kaplan–Meier curve analysis of OS between the
high-risk and low-risk groups in the training set. (F) ROC curves of the risk score to predict the 1-, 3-, and 5-year OS in the training set.
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related genes (LAG3, HAVCR2, PDCD1LG1, IDO1, TIGIT,

PDCD1, PD-L1, and CTLA-4) and tumor mutation burden

(TMB) in different PTS subgroups and found that LAG3,

PDCD1LG1, IDO1, TIGIT, PDCD1, PD-L1, and CTLA-4 were

upregulated in patients with low risk in the TCGA training set

(Supplementary Figure S4A), while TMB was higher in patients
Frontiers in Immunology 08
with high risk (Supplementary Figure S4B). Furthermore, we

evaluated the predictive value of TMB by ROC analysis in the

IMvigor210 cohort (urothelial carcinoma dataset), and we did

observe that TMB does not outperform at a predictive advantage

(Supplementary Figure S4C). Since anti-PD-L1 immunotherapy

has emerged as a promising anticancer treatment (38), we next
A B

D

E F

G H

C

FIGURE 4

Validation of the prognostic value of risk score in independent cohorts. Breast cancer patients in the training set were separated into high-risk
and low-risk groups based on the median value of risk score in the METABRIC cohort (A) and the GSE96058 cohort (B). Breast cancer patients’
survival status and risk score distribution in the METABRIC cohort (C) and the GSE96058 cohort (D). Kaplan–Meier curves of OS between the
high-risk and low-risk groups in the METABRIC cohort (E) and the GSE96058 cohort (F). ROC curves showed the performance of risk score in
predicting the 1-, 3-, and 5-year OS in the METABRIC cohort (G) and the GSE96058 cohort (H).
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investigated the prognostic value of the risk score for

immunotherapy in the IMvigor210 cohort of patients treated

with anti-PD-L1. Patients with high risk who received

atezolizumab had significantly shorter OS than patients with

low risk (Figure 6A). Moreover, the AUCs for the 8-, 16-, and

24-month OS of this classifier were 0.597, 0.612, and 0.834 in the

IMvigor210 cohort (Figure 6B), respectively. Patients with low

risk had better immunotherapeutic responses (Figures 6C, D).

Therefore, rather than TMB, the predictive value of PTS in

immunotherapy may benefit from the upregulation of the

checkpoint-related genes.
Discussion

Here, we found that phosphatase PTPRO exhibits potential as

an immune modulator, and PTPRO-based PTS is an independent

prognostic indicator for prognosis and associated with
Frontiers in Immunology 09
immunotherapeutic responses. We first used ESTIMATE and

ssGSEA to determine whether PTPRO expression is associated

with the levels of CD8+ T-cell infiltration in breast cancer immune

infiltrates. Then, using scRNA-seq data, we identified 56 CD8+ T-

cell-related genes that were significantly associated with PTPRO.

Furthermore, 11 candidate genes (TNFRSF1B, BIRC3, TIGIT,

APOBEC3G, CD69, RGS1, CCL5, NKG7, KLRB1, CTSW, and

PGAM1) were identified and used to build the risk model.

Finally, the PTS-based risk score was used to predict prognosis

and immunotherapeutic response, and it performed well inmultiple

validation datasets.

CD8+ T cells are one of the major effector cells in

immunotherapy. However, when T cells are exposed to cancer

antigens repeatedly, they differentiate into dysfunctional states (39,

40). Furthermore, T-cell receptor (TCR)-mediated signaling

pathways are required for the establishment and progression of

T-cell dysfunction (39, 40). Earlier studies have already proven that

coordinated interactions between PTKs and PTPs play a key role in
A

B

C

FIGURE 5

The prognostic values of PTS risk score in breast cancer. Univariate and multivariate Cox regression analyses of the PTS risk score in the TCGA
training dataset (A), METABRIC validation dataset (B), and GSE96058 validation dataset (C) regarding OS.
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TCR-mediated signaling and then affect immune responses (41).

Additionally, PD-L1-mediated immunosuppression is controlled

largely by the activation of EGFR, MEK/ERK, NF-kB, PI3K/Akt,
COX2/mPGES1/PGE2, JAK/STAT1, or JAK/STAT3 pathways,

some of which are regulated by PTPRO (16, 42, 43). Therefore,

our previous and other findings suggest that PTPRO, as an

immunosuppressor, regulates immune infiltrates, shedding new

light on immunotherapy (26, 27, 44). In this study, 11 PTPRO-

related CD8+ T-cell marker genes were chosen to construct a

PTPRO-based risk score. Our results showed that patients with

low-risk scores had a significantly longer OS than those with high-

risk scores in the METABRIC and GSE96058 datasets. Moreover,

we established a prognostic nomogram based on the risk score and

several important clinical variables for predicting individuals’

survival probability. The calibration curves revealed a higher

consistency between the actual and predicted values for 1-, 3-,

and 5-year OS.

We also investigated the prognostic value of risk score in anti-

PD-L1 therapy to see if it can accurately predict the potential clinical

efficacy of immunotherapy. We found that checkpoint-related genes

(LAG3, PDCD1LG1, IDO1, TIGIT, PDCD1, PD-L1, and CTLA-4)
Frontiers in Immunology 10
were upregulated in patients with low risk in the TCGA training set.

High TMB is associated with longer survival in patients treated with

ICIs in multiple cancer types (45). We found that patients in the

high-risk group had higher TMB levels in this study. Furthermore, in

the IMvigor210 cohort, TMB had a poor predictive value. According

to a recent study, high TMB only predicts PD-L1 blockade

responsiveness in approximately 25% of several cancer types where

high TMB correlates with CD8+ T-cell infiltration of the tumor (46).

Numerous studies have shown that high TMB does not correlate

with CD8+ T-cell infiltration and overall response rates (ORR) to

ICIs in glioma, TNBC and prostate cancer (47). Due to the lack of

broad ICI approval, a biomarker to optimize patient selection is most

urgently needed. Furthermore, we found that the predictive value of

risk score in immunotherapy response was validated in the

IMvigor210 cohort, that is, a high-risk score predicted poorer

survival and a poor response to immunotherapy. As a result of

our findings, the predictive value of PTS in immunotherapy may

benefit from increased expression of checkpoint-related genes rather

than TMB. With technological advancements, a large number of

high-dimensional databases and bioinformatics tools will emerge in

the future, and PTPRO-based PTS warrants further extension and
A B

DC

FIGURE 6

The prognostic value of PTS in patients with anti-PD-L1 therapy. (A) Kaplan–Meier curves of OS between the high-risk and low-risk groups in
the IMvigor210 cohort. (B) ROC curves showed the performance of the risk score in predicting the 8-, 16-, and 24-month OS in the IMvigor210
cohort. (C, D) Risk score in patients with different responses to PD-1 treatment [complete response (CR), progressive disease (PD), partial
response (PR), and stable disease (SD)].
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investigation. Furthermore, this is a retrospective study based on

omics data, which requires additional experimental validation,

particularly the regulatory effect of PTPRO on CD8+ T-cell

markers or immune infiltration.

In summary, we found that PTPRO may play a role in

antitumor immunity regulation. The immune indicator PTPRO-

based PTS-related risk score can pre-evaluate the response to

immunotherapy. We conclude that patients with low-risk breast

cancer, as defined by high CD8+ T-cell infiltration and elevated

expression of checkpoint-related genes, should have a better

prognosis and clinical benefit from either monotherapy or

combined immunotherapy.
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