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The medial prefrontal cortex (mPFC) is thought to be central for flexible behavioral adaptation. However, the causal relationship
between mPFC activity and this behavior is incompletely understood. We investigated whether transcranial direct current stimulation
(tDCS) over the mPFC alters flexible behavioral adaptation during reward-based decision-making, targeting Montreal Neurological
Institute (MNI) coordinates X =−8, Y = 62, Z = 12, which has previously been associated with impaired behavioral adaptation in
alcohol-dependent patients. Healthy human participants (n = 61) received either anodal (n = 30) or cathodal (n = 31) tDCS versus sham
tDCS while performing a reversal learning task. To assess the mechanisms of reinforcement learning (RL) underlying our behavioral
observations, we applied computational models that varied with respect to the updating of the unchosen choice option. We observed
that anodal stimulation over the mPFC induced increased choice switching after punishments compared with sham stimulation,
whereas cathodal stimulation showed no effect on participants’ behavior compared with sham stimulation. RL revealed increased
updating of the unchosen choice option under anodal as compared with sham stimulation, which accounted well for the increased
tendency to switch after punishments. Our findings provide a potential model for tDCS interventions in conditions related to flexible
behavioral adaptation, such as addiction.
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Introduction
Flexible behavioral adaptation is a crucial capacity to
survive in dynamic environments. To investigate behav-
ioral adaptation, instrumental reversal learning tasks
have been deployed in several studies (e.g. O’Doherty
et al. 2001; Cools et al. 2002). During reversal learning,
participants learn to choose between 2 different stimuli
depending on outcome probabilities. Over the course of
the task, outcome contingencies change abruptly and
unexpectedly, forcing participants to relearn action-
outcome contingencies and, thus, to flexibly adapt
behavior. One example to probe behavior in reversal
learning tasks on a computational level is reinforcement
learning (RL) from observed outcomes, such as rewards

or punishments, to repeat or adjust choices (Sutton
and Barto 1998). However, humans can adapt their
behavior flexibly by also taking into account unobserved
outcomes. Hence, on a computational level, flexible
behavioral adaptation during reversal learning can be
enhanced by counterfactual inference about unchosen
choice options (inference about the correlation of reward
probabilities). This process constitutes an extension of
incremental RL (Li and Daw 2011; Reiter et al. 2016).

Previous work has linked behavioral adaptation during
reversal learning to a frontostriatal circuitry comprising
the orbitofrontal cortex and the ventral striatum, as
well as medial prefrontal regions (Cools et al. 2002;
Morris et al. 2016; Izquierdo et al. 2017). The medial
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prefrontal cortex (mPFC) is suggested to play an essential
role in performance monitoring during such tasks
(Izquierdo et al. 2017). In particular, the ventromedial
prefrontal cortex (vmPFC) has been linked to abstract
inferences about higher-order structures during reversal
learning (Hampton et al. 2006). It was proposed that
the vmPFC encodes the value of the currently chosen
option, whereas the anterior prefrontal cortex encodes
the value of the unchosen choice option (Rushworth
et al. 2011). In a previous study by our research group
(Reiter et al. 2016), alcohol-dependent patients exhibited
a well-known impairment in flexibly adjusting behavior
compared with healthy participants. Computational
modeling of behavior revealed reduced updating of the
unchosen choice options after punishments as a process
underlying the disrupted behavioral adaptation. This
impairment was also related to reduced coding of neural
error signals incorporating values of the unchosen choice
option in the mPFC. However, from such clinical studies,
insight is inherently limited to what extent change in
mPFC activity is directly involved in modifying behavior.

In the current study, we aimed to investigate a
potential causal link between mPFC activity and flexible
behavioral adaptation in healthy adults. To this end,
we applied transcranial direct current stimulation
(tDCS) over the mPFC targeting a coordinate reported to
reflect interindividual differences in abstract inference
about unchosen choice options in a previous study
by our research group (Reiter et al. 2016). TDCS is a
noninvasive brain stimulation technique that modulates
cortical excitability and allows experimentally controlled
inferences about brain activity in a specific area and
associated behavior (Nitsche et al. 2000; Kuo and Nitsche
2015). Previous studies have shown behavioral effects on
decision-making induced by tDCS over prefrontal regions
(Bogdanov et al. 2015; Raja Beharelle et al. 2015; Häm-
merer et al. 2016; Soutschek et al. 2018). In the present
study, while receiving tDCS, participants performed the
same reversal learning task as used in our previous study
with alcohol-dependent patients (Reiter et al. 2016). In
addition to behavioral analyses of the observed behavior,
we sought to investigate the underlying mechanisms of
flexible decision-making by the means of computational
modeling of RL. Considering the heterogenous effects
of tDCS on cognitive functions (Jacobson et al. 2012),
we compared both anodal and cathodal stimulation
with sham stimulation without an a priori hypothesis
about the directionality of possible stimulation-induced
effects. Based on the findings of Reiter et al. (2016), we
hypothesized that anodal respectively cathodal tDCS
would lead to altered updating of the unchosen choice
option during RL compared with sham tDCS.

Materials and methods
Participants
Sixty-five healthy human participants were recruited.
Before participation, volunteers underwent a medical

examination to exclude any evidence for neurological
diseases or contraindications such as intake of regular
medication, including central nervous system-active
drugs. Four participants were excluded from analyses
due to inadequate task performance (see subsection
2.6.2 Model selection). Consequently, 61 participants
were included into analyses, out of which 30 participants
were part of an anodal tDCS group, receiving anodal
and sham stimulation (15 female, age: M = 26.3, SD = 4.1,
range = 20–35 years), and 31 participants were part of
a cathodal tDCS group, receiving cathodal and sham
stimulation (15 female, age: M = 27.0, SD = 3.2, range = 22–
38 years). Both groups received sham and the respective
verum stimulation in a fully counterbalanced within-
subjects design (Fig. 1C). All participants gave written
informed consent before the study and were financially
compensated for participation. The study was approved
by the local ethics committee of the University of Leipzig.

Experimental design
Participants were assigned to 1 of 2 groups, which did
not differ regarding age, graduation, or verbal intelligence
(German vocabulary test; Schmidt and Metzler 1992)
(see Table 1). Both groups were tested using a double-
blind, sham-controlled, within-subjects design. Impor-
tantly, groups differed with respect to the polarity of tDCS
received during verum stimulation, i.e. anodal or cathodal
stimulation, resulting in an anodal tDCS group (a-tDCS
group) and a cathodal tDCS group (c-tDCS group). Inter-
vals of as possible 1 week between testing sessions (test-
ing interval: M = 7.4, SD = 2.0, range = 6–21 days) avoided
potential carryover effects of stimulation. Experiments
were performed effectively during the same time in the
same subjects between 8:30 AM and 1:00 PM to avoid
potential interactions of daytimes. Gender was counter-
balanced within groups as was intervention order (sham
vs. verum stimulation).

Decision-making task
While receiving tDCS, participants performed a reward-
based decision-making task (Fig. 1A and B) as used pre-
viously (Reiter et al. 2016, 2017). Two versions of the
task with different stimuli were available and counter-
balanced within groups. In 160 trials, participants had
to choose between 1 of 2 cards, each represented by
a different geometric symbol. Stimuli were randomly
assigned to the left or right side. Within the stimulus
presentation time (1.5 s), participants had to press a
left or right button, after which the selected card was
highlighted along with monetary win (10 Eurocent coin)
or monetary loss (crossed 10 Eurocent coin) for 0.5 s.
A fixation cross was presented during the exponential
distributed, jittered intertrial interval (min. 1.0 s, max.
12.5 s). If no response was given on time, the message
“too slow” appeared. One of the 2 cards was associated
with a high reward probability (80%) and a low pun-
ishment probability (20%), whereas the inverted reward
probabilities pertained to the other card. Thus, outcome



Martin Panitz et al. | 3

Fig. 1. Task and study design; behavioral results on correct choices. A) Reward-based decision-making task. Exemplary trial sequence. B)
Anticorrelated structure of the task. One card had a reward probability of 80% along with a 20% probability for a punishment, with inverted reward
probabilities for the other stimulus. Reward contingencies were stable during the first 55 trials (“pre-reversal” phase) and the last 35 trials
(“post-reversal” phase), whereas during the intermediate 70 trials reward contingencies switched every 15 respective 20 trials (“reversal” phase). C)
Study design. Two independent groups (a-tDCS group and c-tDCS group) were recruited and tested in a within-subjects design, undergoing
interventions in fully balanced order. D) Behavioral data results on correct choices, i.e. choosing the card with 80% reward probability. In both groups, a
significant effect of phase was present, but no significant effect of stimulation was observed. Bar plot figures denote the mean with standard errors of
the mean as error bars and individual data points (gray: sham stimulation, red: anodal stimulation, blue: cathodal stimulation).

probabilities were perfectly anticorrelated, resulting in a
simple higher-order structure of the task. For the first
55 trials (“pre-reversal” phase), the reward contingencies
remained stable, whereas during the following 70 trials
(“reversal” phase) the reward contingencies switched 4
times, alternating after 15 or 20 trials. During the last
35 trials (“post-reversal” phase), the reward contingencies
were stable again. Due to the probabilistic nature of the
task, feedback could be either informative or misleading
(e.g. getting an informative reward vs. getting a mis-
leading punishment when choosing the option with the
80% reward probability). Because feedback was drawn
probabilistically, differences in proportion of the number
of informative and misleading events between a partic-
ipant’s 2 sessions were matched between individuals in
both the a-tDCS group and c-tDCS group. On every testing
day, participants got standardized instructions about the
task with a subsequent training of 20 practice trials

without any reversals using a different set of stimuli.
Before practicing, participants were informed that one of
the two cards had a superior chance of winning money
and that they should try to win as much money as possi-
ble, as the earned money would be paid out at the end of
testing. After the practice trials, instructions ended with
a notification that the “better card” could change during
the experiment and participants were told to be attentive
to such changes. No other information on reversals or the
anticorrelated task structure was provided. The reversal
learning task used in this study can be broken down
to an one-armed bandit task with stable and volatile
phases, comparable to studies by Iglesias et al. (2013) and
de Berker et al. (2016). Note that in the present task, a
reward was received in a win trial and a punishment was
received in a lose trial. By contrast, in the task applied
in the study by de Berker et al., no punishment was
received in a win trial and a punishment was received
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Table 1. Sample characteristics.

a-tDCS group (n = 30) c-tDCS group (n = 31) Test statistic

Age 26.3 ± 4.1 27.0 ± 3.2 t(59) = −0.71, P = 0.48
Gender 15 females/15 males 15 females/16 males χ2(1) = 0.02, P = 0.90
Smoking (smoking/non-smoking) 8/22 3/28 χ2(1) = 2.98, P = 0.084
Graduation (0 = none, 1 = secondary modern school-leaving

certificate, 2 = intermediate school-leaving certificate,
3 = university entrance qualification)

3.0 ± 0 3.0 ± 0

German vocabulary test (verbal intelligence) 34.1 ± 2.5 33.6 ± 2.4 t(59) = 0.88, P = 0.38
NEO-FFI neuroticism 14.0 ± 4.1 12.7 ± 3.8 t(59) = 1.31, P = 0.20
NEO-FFI extraversion 20.4 ± 4.1 21.6 ± 3.2 t(59) = −1.29, P = 0.20
NEO-FFI openness to experience 22.1 ± 3.8 20.5 ± 3.7 t(59) = 1.71, P = 0.092
NEO-FFI agreeableness 20.5 ± 3.8 19.2 ± 3.8 t(59) = 1.30, P = 0.20
NEO-FFI conscientiousness 23.4 ± 3.3 24.6 ± 3.6 t(59) = −1.36, P = 0.18
Barratt Impulsiveness Scale 61.9 ± 8.0 59.3 ± 8.7 t(59) = 1.19, P = 0.24
UPPS premeditation 32.6 ± 4.4 32.1 ± 3.5 t(59) = 0.49, P = 0.62
UPPS urgency 34.6 ± 4.7 35.7 ± 4.5 t(59) = −0.97, P = 0.33
UPPS sensation seeking 26.9 ± 7.0 27.1 ± 8.1 t(59) = −0.10, P = 0.92
UPPS perseverance 30.6 ± 4.8 32.6 ± 3.8 t(59) = −1.82, P = 0.074
UPPS total 124.7 ± 13.2 127.5 ± 11.1 t(59) = −0.92, P = 0.36
BDI-II 6.1 ± 6.1 4.9 ± 4.5 t(59) = 0.87, P = 0.39
STAI 37.6 ± 8.5 35.8 ± 6.9 t(59) = 0.90, P = 0.37

Group means are reported with standard deviations; for group comparisons, independent samples t-tests or χ2 tests were used.

in a lose trial. Further, in the study by Iglesias et al., in
2 subsamples, a win trial was represented by a reward
and a lose trial was represented by omitting the reward,
whereas in a third subsample no rewards or punishments
were received.

Transcranial direct current stimulation
For noninvasive brain stimulation, a direct current
of 1 mA was delivered for 20 min using a battery-
driven DC stimulator (neuroConn, Germany). Target
of our stimulation protocol was the mPFC based on
its potential key role in enabling flexible value-based
decision-making (Fellows and Farah 2003, 2005, 2007;
O’Doherty et al. 2003; Rushworth et al. 2009, 2011,
2012; O’Doherty 2011; Glascher et al. 2012). Using
neuronavigation (Brainsight Version 2; Rogue Research,
Canada) and a standard brain, one stimulation electrode
(4 × 4 cm, current density: 0.0625 mA/cm2) was placed
over the mPFC region targeting MNI coordinates: X = −8,
Y = 62, Z = 12, reflecting peak statistics of interindividual
differences in coding of neural signatures incorporating
values of the unchosen option, which were linked to
interindividual differences in behavior, reported in a
previous study by our research group (Reiter et al. 2016).
The reference electrode (10 × 10 cm, current density:
0.01 mA/cm2) was centrally placed on Cz according to the
electroencephalography (EEG) 10-20 system. The small
size of the stimulation electrode intentionally maximized
the current density in the cortical target region in
order to promote the desired modulation of cortical
excitability, whereas the large size of the reference
electrode minimizes current density in the underlying
cortex in order to enhance focality of tDCS (Nitsche
and Doemkes 2007). The electrodes were attached to the

participants’ heads using elastic straps in a pair of saline-
soaked sponges. To minimize impedance, the scalp was
carefully cleaned with 70% isopropyl alcohol pads before
attaching the electrodes to the head. The impedance
of stimulation electrodes was always kept below 10 kΩ

for each participant. To minimize side effects, such as
itching or tingling sensations, current was ramped up
and down for 30 s before and after stimulation. During
verum stimulation, current was delivered for 20 min,
while during sham stimulation current was maintained
for only 30 s. Five minutes after the onset of stimulation,
the experimental task was started. At the end of each
testing session, all participants were asked about their
estimate whether sham or verum stimulation was admin-
istered. Successful blinding was tested by questionnaires
applying binomial tests on false/right ratings at a P-
level of 0.05. Figure 2 illustrates the positioning of the
electrodes and a simulation of the induced electric
field for anodal stimulation. Simulations were based on
computations performed by SimNIBS software, version
3.2.1 (Opitz et al. 2015; Thielscher et al. 2015). Using a
standard head model, the following parameters were set
for simulation: electrode shape = rectangular; electrode
size = 4 × 4 cm respectively 10 × 10 cm; electrode
type = electrode + sponge; electrode thickness = 2 mm;
sponge thickness = 4 mm; sponge size = 4.5 × 4.5 cm.
The outcome of the simulation showed that a large area
of the prefrontal cortex was affected by tDCS. Though
estimated electric field peak values lay mainly in dorso-
lateral prefrontal areas, simulation illustrated relatively
high electric field values in the target region of the mPFC.

Behavioral data analysis
The behavioral raw data were analyzed within MATLAB
(The MathWorks, version 9.1.0.441655, R2016b) with
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Fig. 2. Illustration of electrode positioning and simulation of the induced electric field for anodal stimulation. Simulations show the calculations of the
electric field induced by the verum stimulation condition in the anodal tDCS group (direct current: 1 mA). A) Lateral view on the left hemisphere
congruent with a sagittal plane through MNI dimension X = −8. The stimulation target (MNI coordinates: X = −8, Y = 62, Z = 12) is depicted as a white
circle outlined in black, marked by a black arrow. B) Frontal view.

behavioral performance quantified as choices of the
stimulus with the 80% reward probability (correct
choices). Furthermore, we investigated the effect of
previous feedback (reward vs. punishment) on subse-
quent choices. To this end, we calculated stay behavior
depending on the feedback in the previous trial (win-
stay vs. lose-stay). Subsequently, the outcome variables
correct choices and stay behavior were each analyzed in
JASP (JASP Team, JASP Version 0.12.1, 2020) using a mixed-
design analysis of variance (ANOVA) with the within-
subjects factors stimulation (sham stimulation, verum
stimulation), phase (pre-reversal phase, reversal phase,
post-reversal phase), and, in the case of stay behav-
ior, feedback (reward, punishment) and the between-
subjects factor group (a-tDCS group, c-tDCS group). In
case of violated assumptions of sphericity, we report
Greenhouse–Geisser corrected F-values.

Computational modeling of behavior
To investigate the underlying mechanisms of flexible
reward-based decision-making, we formalized learning
and decision-making processes via computational mod-
els of RL. In RL, values are learned from past experiences
and choices are made based on maximized expected
value (Sutton and Barto 1998). For all models, expecta-
tions are updated via a reward prediction error (RPE) δ:

δ
(k)
Q C

= R(k) − Q(k)
c (1)

with Q(k)
c denoting the expectation for receiving a reward

or punishment on trial k and R(k) representing the

actually received outcome. The RPE is used to update
expectation of the next trial and is weighted by the
learning rate α:

Q(k+1)
c = Q(k)

c + αδ
(k)
Q C

(2)

So far, the agent updates expectations for the chosen
stimulus only, which we refer to as single update
(“SU”). An agent could also update expectations about
the unchosen stimulus, thereby learning about the
anticorrelated structure of the task. In such a model,
which we refer to as double update (“DU”), an increase
of the expectation for the chosen card connotes a
decrease of the expectation for the unchosen card uc. The
expectation for the unchosen stimulus is computed as
follows:

Q(k)
uc = 1 − Q(k)

c (3)

The prediction error of the unchosen stimulus δ
(k)

Q uc
is

written as:

δ
(k)
Q uc

= −R(k) − Q(k)
uc (4)

Thus, the expectation for the unchosen stimulus
Q(k+1)

uc is updated following:

Q(k+1)
uc = Q(k)

uc + αδ
(k)
Q uC

(5)
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To account for possible interindividual differences
regarding the extent of updating the unchosen stimulus,
we implemented a model where learning about the
unchosen choice option is weighted by an additional
parameter κ, which we refer to as individually double
update (“iDU”) (Reiter et al. 2016, 2017):

Q(k+1)
uc = Q(k)

uc + καδ
(k)
Q uc

(6)

RL models could include one learning rate α, indepen-
dent of the kind of feedback received (“1α”). We addition-
ally implemented models with separate learning rates for
reward and punishment trials, αrew and αpun (“2α”) (Reiter
et al. 2016). For all models, in order to link learning to
actual choices, we transformed learned expectations for
each trial, i.e. Q(k), to choice probabilities by deploying a
logistic function, the softmax:

p (a) = exp (βQ (a))
∑

exp (βQ (a′))
(7)

The softmax equation includes the parameter β, which
reflects inverse decision noise, with a high β leading to
choices tightly determined by choice expectations and a
low β leading to more stochastic choices. Taken together,
the model space was formed out of the factors “updating”
(SU, DU, iDU) and “learning rate” (1α, 2α), resulting in a
total of 6 models (SU-1α-β, DU-1α-β, iDU-1α-β, SU-2α-β,
DU-2α-β, iDU-2α-β).

Alternatively, we analyzed a larger model space com-
prising additional hierarchical Bayesian learning models
with a dynamic learning rate (specifically, the hierar-
chical Gaussian filter, HGF) (Mathys 2011; Mathys et al.
2014) as well as decision models capturing choice rep-
etition independent of learning as comparably applied
in a study by Deserno et al. (2020). Because we had a
specific hypothesis about updating of unchosen choice
options within the RL framework (Reiter et al. 2016), this
additional analysis, which was not part of our set of a pri-
ori hypotheses, is reported as part of the Supplementary
Material.

Model fitting

Maximum-a-posteriori estimates of model parame-
ters were derived utilizing the HGF toolbox version 3
(included in the open source software collection TAPAS,
https://translationalneuromodeling.github.io/tapas/).
For optimization, a quasi-Newton algorithm was applied.
Prior means and variances of model parameters were
chosen in accordance with previous studies (Reiter et al.
2016; Deserno et al. 2020). See Table 2 for a summary of
prior means and variances.

Model selection

For relative model comparison, we applied random-
effects Bayesian model selection (RFX-BMS; Stephan

Table 2. Prior means and variances of parameters used in
computational models.

Prior mean Prior variance

Learning models
α (1α) 0.5 1
αrew (2α) 0.5 1
αpun (2α) 0.5 1
κ (iDU) 0.1 1

Decision model
β 1 1

et al. 2009) using the VBA-toolbox (Daunizeau et al. 2014)
to obtain the posterior probabilities (PP), exceedance
probabilities (XP), and protected exceedance probabilities
(PXP). PP represent the estimated model frequencies of
the models considered. The XP represent the posterior
probabilities that any given model is more frequent
than all others. The PXP adjust XP for the possibility
that differences can occur by chance (Rigoux et al.
2014). We examined whether model frequencies were
different between the a-tDCS and the c-tDCS group by
applying between-groups RFX-BMS, and whether model
frequencies were equal across stimulation conditions
across both groups by performing within-subjects RFX-
BMS. In case of model stability both between-groups and
within-subjects, RFX-BMS on the pooled log evidences
was applied.

In addition, participants not fit better than chance by
any model were identified using a binomial test on the
percentage of choices explained by the model derived
from negative log-likelihood relative to the number of
trials (see Huys et al. 2012; Schlagenhauf et al. 2014) and
excluded from the analysis (a-tDCS group: 1 participant,
c-tDCS group: 3 participants). Excluding those subjects
did not change the results (see Supplementary Material).

To further demonstrate the validity of the model to
capture the empirical data, we ran 10,000 simulations
of the task per tested session based on the inferred
parameters of the winning model and subsequently—
using the mean of the respective 10,000 simulations—
performed the same analysis on the simulated choice
data as on the observed data.

Model parameters

Because of our a priori hypothesis that tDCS alters learn-
ing about unchosen choice options, we analyzed the
learning rate for updating the unchosen choice option
αuc resp. αrew_uc and αpun_uc (where, in the case of models
with one learning rate, αuc is the product of κ times
α and, in the case of models with 2 separate learning
rates, αrew_uc and αpun_uc are the products of κ times
αrew and αpun, respectively) using a mixed-design ANOVA
with within-subjects factor stimulation (sham stimu-
lation, verum stimulation) and between-subjects factor
group (a-tDCS group, c-tDCS group).

https://translationalneuromodeling.github.io/tapas/
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Neuropsychological testing
To assess the influence of tDCS on general cognitive
capacities, participants completed a working memory
task, the Digit Span Backwards Test (Wechsler 1955),
and a task on cognitive speed, the Digit Symbol Sub-
stitution Test (Wechsler 1955). The 2 tasks were per-
formed after completing the reversal learning task on
both testing sessions. Using JASP, test scores were ana-
lyzed by a mixed-design ANOVA with within-subjects
factor stimulation (sham stimulation, verum stimulation)
and between-subjects factor group (a-tDCS group, c-tDCS
group), respectively. To ensure that participants in the
2 groups did not differ in important traits and charac-
teristics, we assessed self-report questionnaires on per-
sonality traits (NEO-FFI; Borkenau and Ostendorf 2007),
impulsivity (Barratt Impulsiveness Scale; Preuss et al.
2008; UPPS Impulsive Behavior Scale; Schmidt et al. 2008),
depressive symptoms (Beck Depression Inventory BDI-
II; Beck et al. 1996), and anxiety (State Trait Anxiety
Inventory STAI; Laux et al. 1981) and applied independent
samples t-tests for group comparisons (see Table 1).

Results
Stimulation protocol
All participants tolerated the stimulation well and
blinding was effective as participants could not detect
whether they received sham or verum stimulation (a-
tDCS group: sham stimulation proportion (false/right) =
0.50/.50, P = 1.0, anodal stimulation proportion (false/
right) = 0.47/.53, P = 0.86; c-tDCS group: sham stimula-
tion proportion (false/right) = 0.52/.48, P = 1.0, cathodal
stimulation proportion (false/right) = 0.58/.42, P = 0.47).

Behavior in the decision-making task
No significant stimulation effects were observed on
choosing the stimulus with the higher reward proba-
bility, i.e. correct choices (main effect of stimulation,
F(1,59) = 0.03, P = 0.86; stimulation × group interaction,
F(1,59) = 0.39, P = 0.53; stimulation × phase × group
interaction, F(2,118) = 0.20, P = 0.82). As expected, a signif-
icant effect of phase indicated performance differences
between the 3 phases of the task (main effect of
phase, F(1.62,95.73) = 48.59, P < 0.001, partial η2 = 0.45; see
Fig. 1D).

Regarding stay behavior, we found a significant stim-
ulation × feedback × group interaction (F(1,59) = 5.23,
P = 0.026, partial η2 = 0.08). As expected, a main effect
on feedback indicated that participants stayed more
with the previous choice after rewards compared with
punishments (main effect of feedback, F(1,59) = 388.04,
P < 0.001, partial η2 = 0.87). Furthermore, all other main
effects or interactions were not significant (stimulation
× group interaction, F(1,59) = 3.29, P = 0.075; all other
P-values >0.16). To follow up the 3-way interaction,
we conducted a repeated measures ANOVA on stay
behavior for each group. A significant stimulation ×
feedback interaction was observed in the a-tDCS group

(F(1,29) = 5.40, P = 0.027, partial η2 = 0.16; for all P-values
see Table 3), whereas no significant effects linked to
stimulation were found in the c-tDCS group (all P-
values >0.30). In the a-tDCS group, post hoc paired-
samples t-tests revealed that participants stayed less
with the previous choice after punishments under
anodal stimulation compared with sham stimulation
(lose-stay: t(29) = 2.74, P = 0.010, Cohen’s d = 0.50; sham
stimulation: mean = 0.59, SD = 0.14, anodal stimulation:
mean = 0.53, SD = 0.19; see Figure 3), whereas there was
no difference in stay behavior after rewards (win-stay:
t(29) = −0.45, P = 0.66). For an illustration of feedback-
specific stay behavior split into the 3 phases of the task,
see Supplementary Fig. 1.

Computational modeling
Between-groups RFX-BMS showed a high probability that
both groups had the same model frequencies (PP = 0.99).
Furthermore, in both groups, between-conditions RFX-
BMS revealed strong evidence for model stability across
stimulation conditions, i.e. within-subjects model sta-
bility (a-tDCS group, XP = 1.00, PXP = 0.98; c-tDCS group,
XP = 1.00, PXP = 1.00). RFX-BMS on the pooled log evi-
dences revealed that the model with individual double
updating and one learning rate was the relatively best-
fitting model (iDU-1α-β: PP = 0.39, XP = 0.72, PXP = 0.72;
see Fig. 4).

Regarding the model parameters of the best-fitting
model (iDU-1α-β), we observed a significant stimulation
× group interaction in the mixed-design ANOVA on
the model parameter αuc (F(1,59) = 4.93, P = 0.030, par-
tial η2 = 0.08; main effect of stimulation F(1,59) = 4.10,
P = 0.047, partial η2 = 0.07; main effect of group F(1,59) =
0.24, P = 0.63). Consistent with the behavioral results,
follow-up repeated measures ANOVA on the model
parameter αuc performed for each group showed a
significant effect of stimulation in the a-tDCS group
(F(1,29) = 7.74, P = 0.009, partial η2 = 0.21), but no effect of
stimulation in the c-tDCS group (F(1,30) = 0.02, P = 0.88).
Post hoc within-subjects parameter comparison using
paired-samples t-tests or, in the case of non-normality,
Wilcoxon signed-rank tests revealed increased updating
of the unchosen choice option, represented by model
parameter αuc, under anodal stimulation compared with
sham stimulation in the a-tDCS group (αuc: W = 350.00,
P = 0.015, matched rank biserial correlation r = 0.51; for
completeness, we report within-subjects comparisons of
all model parameters; κ: t(29) = 2.16, P = 0.040, Cohen’s
d = 0.39; all other P-values >0.60; see Table 4 and Fig. 5A).
In the c-tDCS group, consistent with the absence of a
behavioral effect, we observed no significant within-
subjects parameter differences (β: W = 156.00, P = 0.073;
all other P-values >0.20, see Table 4). Notably, in the a-
tDCS group, the change on αuc was significantly corre-
lated with the observed change on lose-stay behavior
induced by anodal stimulation (ρ = −0.48, P = 0.0083, see
Fig. 5B).

https://academic.oup.com/cercorcomms/article-lookup/doi/10.1093/cercorcomms/tgac006#supplementary-data
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Table 3. Behavioral data analysis.

Stimulation F(1,29) = 3.64, P = 0.066, partial η2 = 0.11
Feedback F(1,29) = 185.02, P < 0.001, partial η2 = 0.86
Phase F(2,58) = 0.29, P = 0.75, partial η2 = 0.01
Stimulation × feedback F(1,29) = 5.40, P = 0.027, partial η2 = 0.16
Stimulation × phase F(1.61,46.65) = 2.22, P = 0.13, partial η2 = 0.07
Feedback × phase F(2,58) = 0.34, P = 0.72, partial η2 = 0.01
Stimulation × feedback × phase F(2,58) = 2.90, P = 0.063, partial η2 = 0.09

Repeated measures ANOVA on stay behavior in the a-tDCS group with factors stimulation (sham stimulation, verum stimulation), feedback (reward, punishment),
and phase (pre-reversal, reversal, post-reversal).

Fig. 3. Behavioral data results for feedback-specific stay behavior. In the a-tDCS group A), participants stayed significantly less after punishments
during anodal stimulation compared with sham stimulation, while no significant effects were observed in the c-tDCS group B). Displayed are
percentages of staying with the same card after receiving a punishment or reward for sham and stimulation condition in both groups as well as the
individual difference scores between stimulation (anodal resp. cathodal) and sham condition. Bar plot figures denote the mean with standard errors of
the mean as error bars and individual data points; asterisk indicates a significant difference at P < 0.05.

Simulated choice data based on the inferred param-
eters of the best-fitting iDU-1α-β model reproduced the
effect on lose-stay behavior in the a-tDCS group (stim-
ulation × feedback interaction, F(1,29) = 3.43, P = 0.074,
partial η2 = 0.11; see Fig. 5C).

Neuropsychology
Analyzing the Digit Span Backwards Test revealed a main
effect of group (F(1,59) = 5.24, P = 0.026, partial η2 = 0.08).

However, this was qualified by a significant stimulation
× group interaction (F(1,59) = 4.14, P = 0.047, partial
η2 = 0.07). Repeated measures ANOVA within each group
showed a significant main effect of stimulation in the
a-tDCS group (F(1,29) = 5.72, P = 0.024, partial η2 = 0.17),
whereas we found no significant effect of stimulation
in the c-tDCS group (F(1,30) = 0.26, P = 0.61). In the a-
tDCS group, post hoc testing revealed an impairment
in working memory as measured with the Digit Span
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Fig. 4. Bayesian model selection. RFX-BMS revealed that a model with individual double updating and one learning rate was the relatively best-fitting
model (iDU-1α-β). We show the posterior probabilities and the protected exceedance probabilities of the 6 models. iDU, individually weighted
double update; 1α, one learning rate; 2α, separate learning rates for rewards and punishments; β, decision parameter representing inverse decision
noise.

Table 4. Within-subjects comparisons of model parameters of the best-fitting iDU-1α-β model.

a-tDCS group c-tDCS group

Sham
stimulation

Anodal
stimulation

Test statistic Sham
stimulation

Cathodal
stimulation

Test statistic

Learning parameters
α 0.44 ± 0.16 0.47 ± 0.19 W = 255.00, P = 0.66 0.50 ± 0.17 0.48 ± 0.17 W = 186.00,

P = 0.23
κ 0.33 ± 0.12 0.41 ± 0.15 t = 2.16, P = 0.040, Cohen’s

d = 0.39
0.36 ± 0.13 0.37 ± 0.13 W = 263.00,

P = 0.78
αuc (i.e. κ∗α) 0.14 ± 0.06 0.20 ± 0.13 W = 350.00, P = 0.015,

rank-biserial r = 0.51
0.18 ± 0.10 0.18 ± 0.11 W = 232.00,

P = 0.77
Decision parameter

β 5.98 ± 3.00 5.58 ± 2.33 W = 210.00, P = 0.66 6.62 ± 3.82 5.60 ± 2.25 W = 156.00,
P = 0.073

Means and standard deviations; paired-samples t-tests (t-statistics, P-values, in case of statistical significance effect sizes by Cohen’s d) or, in case of non-
normality as examined by Shapiro–Wilk tests, Wilcoxon signed-rank tests (W-statistics, P-values, in case of statistical significance effect sizes by the matched
rank biserial correlation r).

Backwards Test under anodal compared with sham
stimulation (W = 296.50, P = 0.031, matched rank biserial
correlation r = 0.46, Wilcoxon signed-rank test; sham
stimulation: mean = 8.43, SD = 2.64, anodal stimulation:
mean = 7.70, SD = 2.20). We found no significant correla-
tion between the change in working memory induced by
anodal stimulation and either the change on lose-stay
behavior induced by anodal stimulation (r = 0.18, P = 0.35)
or the change on the learning parameter αuc (ρ = −.09,
P = 0.64) in the a-tDCS group. We observed no significant
effects regarding cognitive speed as measured with the
Digit Symbol Substitution Test (all P-values >0.70).

Discussion
In the present study, we examined the effect of tDCS
over the mPFC on reversal learning in healthy adults.
We observed that anodal tDCS modified participants’
adaptive behavior such that participants showed an

increased tendency to switch after punishments. Our RL
model accounted for this effect by enhanced learning
about the respective unchosen choice option under
anodal tDCS compared with sham stimulation. In
contrast, we observed no behavioral effect for cathodal
tDCS compared with sham stimulation. This suggests
that flexible behavioral adaptation, specifically lose-
stay behavior, and a related specific aspect of learning,
namely learning about the unchosen choice option, are
directly malleable by anodal but not cathodal tDCS over
the mPFC.

In terms of correct choices, we did not find significant
differences between stimulation conditions. This may be
due to the investigated sample of largely high-educated
participants, who performed the task very well. However,
in the a-tDCS group, compared with sham tDCS, anodal
tDCS induced a subtle but specific change in the way
participants managed the task, namely a tendency to
switch more frequently after punishments. This finding
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Fig. 5. Computational modeling. A) Within-subjects parameter comparison. The parameter αuc was significantly higher under anodal stimulation
compared with sham stimulation in the a-tDCS group. Small circles indicate individual values; error bars denote standard errors of the mean; asterisk
indicates a significant difference at P < 0.05. 
 αuc, i.e. the difference score between anodal and sham stimulation regarding αuc. Triangles display
individual values; error bars denote standard errors of the mean. B) Correlation between computational learning parameter change and observed
behavioral change. The change on the parameter αuc correlated with the change on lose-stay behavior induced by anodal stimulation in the a-tDCS
group. C) Results for feedback-specific stay behavior on simulated data based on the inferred parameters in the a-tDCS group. The effect of less
staying with the previous choice after punishments during anodal stimulation compared with sham stimulation in the empirical data of the a-tDCS
group was reproduced with simulated data based on the inferred parameters of the iDU-1α-β model (10,000 simulations per subject and stimulation
condition). Bar plot figures denote the mean with standard errors of the mean as error bars and simulated data points.

on lose-stay behavior relates to an important aspect
of handling the task that is critical to performance, as
dealing with punishments is crucial when differentiating
about reversals from stable phases (informative vs. unin-
formative punishment). Comparison of the computa-
tional model parameters suggests an underlying process:
increased updating of the unchosen choice option under
anodal stimulation compared with sham stimulation.
We interpret this as an increase of inference about
the alternative choice option under anodal stimulation.
After a punishment, a higher parameter κ determines
a sharper increased value for the unchosen choice
option; thus, the forgone rewarding option becomes more
attractive. Put differently, with a higher κ an agent

becomes more sensitive to negative feedback through
consideration of reward at the alternative choice, which
results in an enhanced propensity to switch choices
after punishments. At the same time, a higher κ should
also lead to a propensity to stay more after rewards.
However, in the present study, we found no significant
difference regarding “win-stay” in the a-tDCS group,
although participants descriptively stayed more after
rewards under anodal stimulation. Due to the task
structure, win-stay behavior is generally beneficial and
a high percentage of win-stay is a prerequisite for a
good performance of the task. Furthermore, switching
after a win is counterintuitive in such tasks. Participants
included in the analysis of the present study indeed
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followed this strategy, represented in a high, almost at
ceiling, percentage of “win-stay,” rendering it unlikely to
detect within-subjects stimulation changes. Besides, the
present sample was characterized by high education,
above average intelligence, and limited age range, which
may contribute to this homogenous win-stay behavior.
Further studies with participants of different educational
levels, intelligence, and age ranges and/or the utilization
of a modified task could advance the understanding of
potential tDCS effects on win-stay behavior. In addition
to RL, we also applied a different modeling approach,
namely the HGF framework. While we had a specific
hypothesis within the RL framework, the HGF models
were performed as add-on analyses, following the
application of similar models to the same task in a study
by Deserno et al. (2020). In the present study, one of the
HGF models showed the best relative model fit, but the
specific HGF learning parameters did not account well
for the observed behavioral effects (see Supplementary
Material). Notably, as described in more detail in the
Supplementary Material, the 2 modeling approaches
as applied in our study differed with respect to the
implementation of updating of the unchosen choice
option.

We observed altered lose-stay behavior in the a-
tDCS group, which was linked to a value-based learning
effect through computational modeling of behavior.
This contrasts with a study by Hämmerer et al. (2016),
in which anodal tDCS over the vmPFC decreased
the percentage of correct choices during value-based
decision-making, which was reflected in an increase in
the randomness of choices in computational modeling.
Different methodological procedures, especially different
task design characteristics (e.g. slowly drifting “random
walks” reward probabilities), likely contributed to this
divergence. On the other hand, the results of the current
study are in line with previous work examining the
influence of prefrontal tDCS on behavioral adaptation.
For example, a study by Raja Beharelle et al. (2015),
which used a similar stimulation electrode montage as
in our study, showed that tDCS over the right frontopolar
cortex (FPC) altered the offset between exploration and
exploitation during a reward-based decision-making
task. In particular, they found that anodal tDCS lead to
higher sensitivity to recent negative prediction errors on
exploitative choices, resulting in participants more likely
to explore and choose 1 of 2 alternative options. This
finding fits well with our behavioral finding that par-
ticipants were more likely to switch after punishments
under anodal stimulation. This similarity is remarkable
despite the differences in tasks and modeling. A study by
Boorman et al. (2009), which investigated the relationship
between adaptive behavior and frontal cortex activity
using functional magnetic resonance imaging measures,
found that activity of bilateral FPC during a 2-armed
bandit task was associated with what they termed
“relative unchosen probability.” This term refers to the
representation of the relation between unchosen and

chosen choice probabilities, hereby gathering inference
about the relative advantage in favor of a switch to
the alternative choice option. They reported an effect
of the “relative unchosen probability” in the FPC to be
accompanied by a higher probability to switch to the
better choice option. Although the task and modeling
were more specifically designed compared with our
reversal learning task, the findings resonate well with
our modeling approach and finding on learning about the
unchosen choice option. As the simulation of the tDCS-
induced electric field showed, our tDCS intervention
likely modulated cortical activity in the—particularly
left—FPC, thereby possibly enhancing constantly made
inferences about a potential favorable behavioral switch.
In a study by Manuel et al. (2019), tDCS over the
vmPFC differentially modulated emotion-induced delay
discounting in healthy participants, highlighting the
role of the vmPFC in the interplay between reward and
emotion. Specifically, they found a tendency towards
more impulsive choices following the presentation
of positive pictures in high impulsivity trials under
cathodal tDCS and reduced impulsivity following neutral
pictures in low impulsivity trials compared with both
positive and negative induction under anodal tDCS.
The study suggests that the investigation of brain–
behavior relationship via tDCS interventions may also
depend on the emotional context in which the behavior
is probed. Future work could use similar paradigms to
further investigate the contextual interrelation between
emotions and value-based decision-making and the
underlying neural mechanisms.

Our finding of altered lose-stay behavior is in line with
previous research on behavioral adaptation in regard to
serotonergic transmission (Cools et al. 2011). den Ouden
et al. (2013) related lose-stay behavior to a genetic poly-
morphism encoding the serotonin transporter, whereas a
polymorphism associated with the dopamine transporter
influenced perseveration after reversals. It appears plau-
sible that the current intervention affected the seroton-
ergic circuit, given the role of the mPFC in serotonergic
processing, e.g. afferences from the mPFC to the dorsal
raphe nucleus (Celada et al. 2001). Previous studies sug-
gest that anodal tDCS enhances functions of serotonergic
transmission (Das et al. 2016) and evidence has been
found that extracellular serotonin levels affect anodal
(and cathodal) tDCS effects on motor cortex excitability
(Nitsche et al. 2009). Thus, one might speculate that in
the present study, anodal tDCS might have led to altered
functioning of the serotonergic system.

Given the often limited options in the treatment
of neuropsychiatric disorders, tDCS is a promising,
well-tolerated, easy-to-use, and inexpensive tool for
therapeutic settings. Indeed, tDCS previously showed
beneficial effects in neuropsychiatric conditions such
as alcohol dependence (Boggio et al. 2008; da Silva et al.
2013; Klauss et al. 2014), drug addiction (Batista et al.
2015), depression (Mutz et al. 2018), or schizophrenia
(Reinhart et al. 2015a, 2015b). Regarding alcohol use
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disorder, Holla et al. (2020) showed that prefrontal
tDCS improved whole-brain network efficiency and
increased functional connectivity of a specific prefrontal
network in alcohol-dependent patients. However, a
recent meta-analysis found no significant effect of
tDCS on alcohol-related craving (Mostafavi et al. 2020).
Our stimulation target in the mPFC was based on the
representations of neural activation differences found
in alcohol-dependent patients compared with healthy
participants (Reiter et al. 2016). In the study by Reiter
et al., on the computational level, alcohol-dependent
patients showed an impaired integration of unchosen
choice options during reversal learning as reflected in
the same parameter as affected by anodal tDCS in the
present study. Thus, our results may suggest that anodal
tDCS via the mPFC could improve deficits in flexible
behavioral adaptation after punishments in alcohol-
dependent patients. It should be noted, however, that
the observed behavior of the alcohol-dependent patients
was considerably impaired compared with the behavior
in our present tDCS study. Moreover, the mean values for
both age and the estimated learning parameters differed
substantially between the 2 studies.

In relation to attention deficit hyperactivity disorder
(ADHD), Nejati et al. (2021) showed that anodal tDCS over
the right vmPFC coupled with cathodal tDCS over the
left dorsolateral prefrontal cortex (dlPFC) enhanced per-
formance during a delay-discounting task and decreased
risk-taking behavior in children with ADHD, indicating
an interaction between the vmPFC and the dlPFC that is
important for reward processing in children with ADHD.

It should be noted that improvements in a particular
task achieved via tDCS may not translate into relevant
benefits in daily life (e.g. symptoms, recovery) and that
intra- and interindividual differences in response to tDCS
may be important to consider for successful clinical
interventions. Kambeitz et al. (2020) recently presented
a promising option to predict tDCS response in patients
with an unipolar depressive episode by applying pre-
dictive machine learning models based on clinical and
neuropsychological characteristics. Effects of tDCS on
neurocognitive measures, as in our reversal learning task,
could serve as mediators to promote a better under-
standing of the heterogeneity seen in tDCS treatment
effects on symptoms. This could inform why and how
tDCS is beneficial in some individuals but not others.

In the current study, we did not observe effects of
cathodal stimulation on decision-making behavior. This
is in line with other tDCS studies relevant to decision-
making, which also found significant behavioral effects
for anodal but not for cathodal tDCS (Bogdanov et al.
2015; Soutschek et al. 2018). In general, considering
the results of numerous tDCS studies, the former
presumption that anodal stimulation always causes
excitatory and cathodal stimulation always causes
inhibitory effects, is no longer reasonable, particularly
regarding cognitive domains (Jacobson et al. 2012;
Bestmann et al. 2015; Parkin et al. 2015), supporting

the hypothesis that the effects of tDCS on executive
functions are multifaceted. For example, in the current
study, we observed that anodal stimulation led to an
impairment in working memory in the a-tDCS group
examined via the Digit Span Backwards Test. Notably,
this effect was not related to the behavioral effect seen
during reversal learning. Working memory capacity has
been associated with anticorrelated activity between
mPFC and dlPFC (Keller et al. 2015); thus, anodal tDCS
of mPFC might have altered this balance in our study.
This further underlines that multiple cognitive processes
are likely modulated by tDCS targeting the prefrontal
cortex. Further research might apply tDCS designs that
combine multiple tasks to examine cross-domain and
domain-specific effects of tDCS on executive functions
and cognitive processes such as working memory and
decision-making.

In the present study, we report a medium effect size
(Cohen’s d = 0.50) for the observed behavioral difference
on lose-stay behavior in the a-tDCS group. Although only
a few tDCS studies in the context of decision-making
report effect sizes, our effect sizes fit relatively well to
comparable tDCS studies albeit some studies report even
large effect sizes, e.g. Soutschek et al. (2018) reported a
comparable effect size (Cohen’s d = 0.46), Manuel et al.
(2019) reported medium to large effect sizes (partial η2

of 0.11, 0.17, and 0.22), and Ouellet et al. (2015) reported
large effect sizes (partial η2 of 0.20 and 0.16) for the
observed behavioral effects. Notably, Polanía et al. (2018)
stated that one might except a high variability regarding
effect sizes when placing of the active electrode is based
on scalp measurements, which was the case in the latter
study by Ouellet and colleagues. In general, the wide
variability of tDCS study protocols presents a hurdle in
the preparation of meta-analyses (Polanía et al. 2018) and
effect sizes reported in current tDCS studies should be
interpreted with caution.

Although the target region in the mPFC was carefully
selected based on previous research, the stimulation
protocol of our experiment has some notable limitations.
Firstly, we did not stimulate an active control region in
order to better understand the regional specificity of
tDCS effects over the mPFC (Polanía et al. 2018). Further,
using neuronavigation based on data of individual brain
scans instead of one standard reference brain would
have enhanced anatomical specificity of the tDCS target
region. In addition, an approach to enhance focality of
electric fields could be to implement smaller electrodes
or high-definition tDCS montages. However, this comes
at the cost of increased interindividual variability of
the electric fields (Mikkonen et al. 2020). Moreover,
in order to better understand the neural signatures
underlying the behavioral changes observed in our
intervention, research combining stimulation protocols
with concurrent neuroimaging methods is warranted.
Our study suggests a causal relationship between
mPFC activity and specific decision-making processes.
However, taking into account the inherent limitations of
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tDCS, such as restricted focality (Nitsche and Doemkes
2007), and the results of our tDCS simulation, it is
likely that the observed effects are not the result
of a specific manipulation of mPFC activity, but the
outcome of complex physiological interactions caused by
neuromodulation of the mPFC and other—in particular
dorsolateral—prefrontal areas. Notably, to date, there is a
vivid debate in the field regarding the underlying physio-
logical and associated behavioral effects of transcranial
electrical stimulation (Liu et al. 2018; Vöröslakos et al.
2018; Khatoun et al. 2019; Krause et al. 2019a, 2019b),
e.g. on whether the electric fields induced by common
stimulation protocols directly alter the excitability of
neurons and to what extent behavioral effects might
be due to indirect effects of stimulation such as the
involvement of glial cells (Monai et al. 2016) or activation
of peripheral nerves (Fertonani et al. 2015).

In sum, the results of our study point towards a
causal relationship between choice switching after
punishments during reversal learning and prefrontal
cortex function manipulated by anodal tDCS over the
mPFC. We demonstrate that flexible adaptive behavior
and a related specific aspect of learning, namely learning
about the unchosen choice option, are directly malleable
by anodal tDCS. Our observations could serve as a model
for further research aimed at alleviating suffering in
patients who exhibit alterations in flexible behavioral
adaptation.
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