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ABSTRACT

Due to their simple architecture and control mechanism, regulatory RNA modules are attractive building blocks
in synthetic biology. This is especially true for riboswitches, which are natural ligand-binding regulators of gene
expression. The discovery of various tandem riboswitches inspired the design of combined RNA modules with
activities not yet found in nature. Riboswitches were placed in tandem or in combination with a ribozyme or
temperature-responsive RNA thermometer resulting in new functionalities. Here, we compare natural examples
of tandem riboswitches with recently designed artificial RNA regulators suggesting substantial modularity of
regulatory RNA elements. Challenges associated with modular RNA design are discussed.

Tandem arrangement of natural riboswitches

Our view on RNA function was long reduced to the transfer of
genetic information from DNA to protein level. With the
discovery of ribozymes as catalytic RNAs that execute their
own excision, RNA molecules received attention as mediators
of gene regulation.' Since then manifold regulatory RNAs have
been identified and characterized in diverse species. A wide-
spread class of RNA regulators is the so-called riboswitch, a
natural metabolite or ion sensor. Riboswitches consist of an
aptamer domain that binds small molecules with high specific-
ity. Ligand binding to the aptamer domain is transmitted to an
expression platform, which regulates expression of the down-
stream gene.>* While the aptamer domain is highly conserved
for recognition of the cognate ligand, the expression platform is
variable and can modulate different cellular processes like tran-
scription termination, translation initiation or mRNA stability
with transcription termination being the most prevalent mech-
anism of riboswitch-mediated regulation. In bacteria, ribos-
witches typically reside in 5 untranslated regions (5'UTRs) of
mRNAs, allowing them to react to changes of cellular metabo-
lites before the full-length mRNA is transcribed or translated
into a protein.*

In addition to individual riboswitches, several riboswitch
pairs have been found in nature. The most common tandem
arrangement exists in the 5UTRs of the gcvT mRNA of diverse
bacterial species like Bacillus subtilis or Vibrio cholerae.” Two
glycine sensor domains are separated by a short linker
(Fig. 1A). Both aptamers can bind one molecule of glycine in
the bulge of helix P3.° Cooperative glycine binding leads to
dimerization of both aptamers, in which stem P1 of the first
aptamer provides the scaffold for the dimer interface. The
dimerization of both aptamers stabilizes stem P1 of the second
aptamer leading to structural rearrangements in the expression
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platform allowing transcription of glycine catabolism genes.
The glycine riboswitch represents together with the adenine
riboswitch one of the rare on-switches that positively regulates
gene expression.”

Two complete riboswitches are located in the fenA-
5'UTR of Bacillus anthracis. Here, both riboswitches indi-
vidually control termination of transcription by sensing thi-
amine pyrophosphate (TPP) (Fig. 1B).® Each riboswitch
represents an off-switch that terminates transcription pre-
maturely upon TPP binding. The serial fusion of 2 ribos-
witches decreases the ligand concentration needed to
modulate gene expression. A riboswitch consisting of a sin-
gle aptamer domain and expression platform requires an
~80-fold change in metabolite concentration to switch gene
expression from 90 to 10%. The combined activity of the
tandem riboswitch reduces the required metabolite concen-
tration from ~80-fold to 40-fold.®

A similar arrangement of 2 riboswitches sensing the same
ligand was found in the bhmT-5'UTR of the marine a-proteo-
bacterium Pelagibacter ubique. Two consecutive riboswitches
sense S-adenosylmethionine (SAM).” However, the first ribos-
witch controls transcription termination, while the second
riboswitch sequesters the ribosome binding site in presence of
SAM (Fig. 1C). As high intracellular SAM levels would directly
lead to transcription termination by the first riboswitch, it was
suggested that the translational riboswitch could act as a
backup system, which inhibits translation of bhmT when SAM
concentrations increase after transcriptional regulation has
already occurred.

A more complicated arrangement was described for Bacillus
clausii, where the metE-5"UTR harbors 2 transcriptional ribos-
witches, which are affected by different ligands.'"’ The first
riboswitch reduces transcription upon SAM binding, while the
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Figure 1. Tandem riboswitches occurring in nature. (A) In the glycine gcvT-5'UTR of B. subtilis and V. cholerae 2 glycine aptamers control a single expression platform.®
(B) Two consecutive TPP riboswitches regulate transcription termination in the tenA-5'UTR of B. anthracis.'® (C) In the bhmT-5'UTR of Pelagibacter ubique a transcriptional
riboswitch is followed by a translational riboswitch both controlling gene expression in response to SAM.® (D) The metE-5'UTR of B. clausii harbors 2 riboswitches that reg-
ulate transcription termination independently depending on 2 chemical inputs.® Revised from reference.*’” RNAP: RNA polymerase, TPP: thiamine pyrophosphate, SAM: S-
adenosylmethionine, AdoCbl: adenosylcobalamin, fourU: fourU motif, SD: Shine-Dalgarno sequence, AUG: translational start codon.

second riboswitch recognizes coenzyme BI12 (AdoCbl)
(Fig. 1D). Both riboswitches partially inhibit transcription of
metE encoding an enzyme that converts homocysteine to
methionine. As a second enzyme (MetH) was found that

catalyzes the same reaction more efficiently, it was suggested
that SAM and AdoCbl repress expression of the less efficient
MetE enzyme if sufficient amounts of MetH are present in the
cell.'"?



Synthetic RNA regulators: From single to tandem
arrangements

The ever growing number of natural riboswitches has raised
considerable interest in synthetic biology and biotechnol-
ogy,”’14 in particular when the first tandem riboswitches were
discovered. A major objective of synthetic biology is the engi-
neering of RNAs with novel functionalities, which can be
achieved through recombination of already existing RNA
elements or by de novo design.'®

Aptamer-driven riboswitches are attractive building blocks
in synthetic biology because RNA modules with specificity for
any ligand of choice can be generated by the SELEX technology
(systematic evolution of ligands by exponential enrich-
ment),'®'” SELEX enriches aptamers by an in vitro selection
process that is based on iterative cycles of incubation of an
RNA pool with the favored ligand and removal of unbound
RNAs by washing steps. Using this method, several aptamers
had been engineered de novo long before the first natural ribos-
witches were discovered.'"® Among these synthetic aptamers is
the highly selective theophylline aptamer, which discriminates
between the structurally related compounds theophylline and
caffeine just by the presence of an H and a CH; group, respec-
tively.'"” The theophylline aptamer served as backbone for
several designer riboswitches with unprecedented functionali-
ties. For instance, a theophylline riboswitch regulates transla-
tion by a helix slippage mechanism.*® The riboswitch is
positioned close to the ribosomal binding site, thereby hinder-
ing ribosome access. Ligand binding shifts the riboswitch by
one nucleotide into a position that allows ribosome binding
and translation initiation. In another approach, the theophyl-
line aptamer was used to engineer transcriptional on-switches
de novo.”" The theophylline aptamer was separated from a
sequence with partial complementarity to the aptamer by a
spacer region ranging from 6 to 20 nucleotides in length. In the
absence of theophylline, a terminator composed of the aptamer
3’-part, the spacer region and a poly(U) tail inhibited transcrip-
tion, while the binding-competent structure allowed read-
through (Fig. 2A). The theophylline aptamer was also used to
construct a series of ligand-inducible riboswitches that control
translation in various Gram-negative and Gram-positive bacte-
ria.*? In every species at least one of the 5 tested riboswitches
repressed translation in the absence of theophylline and
provided a clear increase in gene expression (at least 25-fold)
when the ligand was present.

A prerequisite for the design of more complex RNA-based
devices is that the used RNA elements retain their functions in
a foreign genetic context. Several studies demonstrated that
regulatory RNA elements from different sources can be com-
bined in a modular fashion. Coupling of aptamer domain and
expression platforms from different riboswitches demonstrated
their high variability.” Six aptamer domains, including 2 syn-
thetic aptamers (theophylline and tetracycline) were fused to
the expression platforms of the metE, yit] or lysC riboswitches
from B. subtilis (Fig. 2B). Each aptamer was able to direct the
chosen expression platform in in vitro transcription studies as
well as in an in vivo reporter gene system in Escherichia coli.
The main criteria for the selection was that aptamer domain
and expression platform did not overlap in their sequence
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requirements in the riboswitch P1 helix.?®> Thus, chimeric
riboswitches could be engineered by a simple combination of
already existing building blocks suggesting a profound modu-
larity of regulatory RNA elements.

A general drawback of RNA-based systems is that they often
suffer from high background activity and a low dynamic
range.”>** To reduce background activity and increase the
dynamic range, riboswitches can be toggled in series as demon-
strated for synthetic theophylline or tetracycline ribos-
witches.>>*® A serial arrangement of 2 or 3 transcriptional
theophylline riboswitches drastically reduced read-trough by
the RNA polymerase in E. coli, while addition of a second or
third copy of the tetracycline aptamer improved the strength of
regulation in a GFP-based reporter gene system in yeast.”>?°
To control gene expression in response to more than one sig-
nal, multi-input systems can be constructed by the assembly of
RNA modules specific for the desired input pathways.

A number of novel functionalities have been generated by
such combinatorial approaches. For instance, catalytic RNA
cleavage of a ribozyme was coupled to ligand sensing of an
aptamer domain leading to a so-called aptazyme, in which
ligand binding triggers mRNA cleavage.””*® The synthetic the-
ophylline aptamer or the natural TPP aptamer were used to
replace hairpin III of a hammerhead ribozyme from Schisto-
soma mansonii. A communication module derived from 3 to 6
randomized nucleotides was necessary for a functional connec-
tion of both elements (Fig. 2C). Aptazymes that cleaved the
mRNA in response to the cognate ligands theophylline and
TPP were designed. The theophylline aptazyme cleaved the
mRNA in presence of the ligand thereby liberating the SD
sequence and initiating translation of the mRNA. Interestingly,
in a screen for aptazymes based on the TPP aptamer both posi-
tive and negative regulators were found.”” A similar design con-
sisting of the theophylline RNA aptamer and a hammerhead
ribozyme was reported to be functional in yeast* demonstrat-
ing that at least theophylline aptazymes are applicable in differ-
ent kingdoms of life and retain their functionality in various
genetic contexts.

A follow-up study demonstrated that ribozyme cleavage can
also be triggered by a temperature shift. The hammerhead ribo-
zyme was fused to a temperature-responsive RNA hairpin,
called RNA thermometer (RNAT).*® RNATs form tempera-
ture-sensitive RNA structures’' allowing translation of the
mRNA only at elevated temperatures. At low temperatures a
stable hairpin is formed in the 5'UTR, which occludes the
Shine-Dalgarno (SD) sequence thereby inhibiting binding of
the 30S ribosomal subunit. With increasing temperatures, the
RNAT hairpin unfolds partially and releases the SD sequence
leading to translation initiation. Replacement of hairpin III of
the hammerhead ribozyme by an RNAT resulted in an out-
come opposite to natural RNATs. While typical RNATSs induce
translation at high temperatures, the synthetic thermozyme
cleaves the mRNA at low temperatures (when the overall struc-
ture is intact) thereby liberating the SD sequence. In contrast,
high temperatures unfold the RNAT, inhibit the cleavage reac-
tion and prevent translation (Fig. 2D).

Another design strategy used tetracycline aptamers to medi-
ate pre-mRNA splicing in yeast.”” The efficiency of regulation
could be improved when the construct with the highest
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Figure 2. Synthetic tandem riboswitches. (A) The theophylline aptamer domain was coupled to an expression platform resulting in the first synthetic transcriptional on
switch. (B) An RNA chimera consisting of aptamers and expression platforms from different riboswitches was designed without the need of a communication module. (C)
An aptazyme was constructed by fusing the hammerhead ribozyme to the TPP or theophylline aptamer, respectively. (D) The temperature responsive fourU RNAT hairpin
was substituted against hairpin |ll of the hammerhead ribozyme leading to temperature dependent mRNA cleavage. (E) Tandem arrangement of riboswitch and RNAT
leads to transcriptional and translational control by the two inputs ligand binding and temperature sensing. (F) An RNAT is integrated into a riboswitch aptamer resulting
in a temperature controlled riboswitch. RNAP: RNA polymerase, TPP: thiamine pyrophosphate, Theo: theophylline, fourU: fourU motif, SD: Shine Dalgarno sequence, AUG:
translational start codon. Positions of inserted spacers or communication modules are labeled with orange boxes.

regulation factor was combined with a second tetracycline
aptamer that controlled translation initiation. This led to an
increase of reporter gene activity from 16-fold for the single
aptamer controlling splicing to 32-fold for the tandem arrange-
ment regulating splicing and translation.

Motivated by these successful mix-and-match strategies, we
engineered several novel RNA regulators based on riboswitch
and RNAT activity.” In a first strategy we designed a tandem
arrangement of riboswitch and RNAT (Fig. 2E). Two transcrip-
tional off-switches binding TPP*** or lysine’**® and one on-
switch recognizing theophylline were placed in front of the
fourU RNAT from Salmonella enterica® resulting in a 2-input
system controlled on the transcriptional and translational level
by ligand binding and temperature sensing, respectively. Only
the proper combination of elevated temperature and presence
or absence of a ligand, depending on whether an on- or off-
switch was used, led to efficient expression of the downstream
gene. Contrary to known natural tandem arrangements, the

riboswitch-RNAT fusions respond to a chemical and a physical
cue. They control gene expression on 2 layers and are able to
reduce background activity as compared with the individual
control elements.”

In a second approach, riboswitches were rendered suscepti-
ble to temperature by the substitution of an internal hairpin of
the riboswitch aptamer domain by an RNAT (Fig. 2F). The
tenA TPP riboswitch®**> and the IysC lysine riboswitch®®>®
from B. subtilis were used as scaffold for the design of these
thermoswitches. By the exchange of one hairpin in the ribos-
witch aptamer domain against the RNAT, the riboswitch
acquired temperature sensing ability. Ligand binding to the
aptamer is only possible at low temperatures when the RNAT
hairpin is in a stable double-stranded conformation and main-
tains the aptamer structure. A temperature upshift unfolds the
RNAT hairpin thereby deforming the ligand-binding pocket
and impeding the conformational switch to the off-state.”
Thus, the conformation of the RNAT hairpin controls the



regulatory outcome of the riboswitch in a temperature-depen-
dent manner resulting in a thermosensitive riboswitch.

Challenges of synthetic RNA design

Over the last years, numerous new RNA regulators have been
engineered by combination of naturally occurring RNA ele-
ments or via de novo design using in vitro selection or compu-
tationally designed RNA sequences. A common challenge of
RNA design remains that the regulatory outcome of the engi-
neered RNAs are difficult to predict and the functionality of
every newly designed regulator has to be tested in vivo, prefera-
bly directly in the organism of choice. Occasionally, RNA mod-
ules can be combined directly without further optimization,
whereas other engineered RNA regulators need extensive
improvement to be functional. A study by Ceres and coworkers
demonstrated that riboswitch aptamer domains, including nat-
ural and synthetic aptamers, can be mixed and matched with
expression platforms derived from 3 riboswitches.”’ The chosen
expression platform was controlled by the cognate ligand of
each aptamer and no spacer or communication modules were
necessary for cooperation of both domains (Fig. 2B). In con-
trast, the aptazymes consisting of the hammerhead ribozyme
and the TPP or theophylline aptamers and the thermozyme
comprising the hammerhead ribozyme coupled with an RNAT
needed comprehensive follow-up work. Hundreds of variants
had to be screened in vivo to find a few functional constructs
that triggered ribozyme activity in response to the cognate
ligand or in response to temperature.”’zg’30 Short sequences of
3 to 6 randomized nucleotides were used to connect the
selected RNA modules and to facilitate communication
between mRNA cleavage and ligand binding or temperature
sensing (Fig. 2C). Several screening strategies like colorimetric
assays,* flow cytometry*' or motility assays** have been devel-
oped to facilitate a fast and efficient survey of new regulators.

In some cases 2 individual RNA components can be fused to
a functional regulator with only minor adjustments. For
instance, linkers of a defined length can be used to reduce back-
ground activity as shown for the transcriptional theophylline
on-switches.”’ Most of the designed theophylline riboswitches
displayed low on/off ratios but background activity could be
strongly reduced when a 19 nt spacer was inserted between the
terminator and the ribosomal binding site of the downstream
reporter gene (Fig. 2A). Moreover, the dynamic range could be
improved by toggling 2 or 3 of the engineered riboswitches in
series thereby increasing the on/off ratio from 3-fold to 10-fold
or 23-fold.>® Spacer sequences can also be applied to overcome
folding problems when 2 RNAs are connected. In our study, a
linker of 20 nt was inserted between the theophylline-sensing
riboswitch and the consecutive fourU RNAT to guarantee cor-
rect folding of each individual element (Fig. 2E).>> While the 2
off-switches used in our study could be combined with the
RNAT without further improvement, the thermoswitch based
on the TPP riboswitch needed insertion of single nucleotides as
spacers to ensure that riboswitch activity depended on temper-
ature (Fig. 2F). In contrast, the thermoswitch adapted from a
lysine riboswitch was functional at the first attempt although
the structure of the lysine aptamer is more complex than the
TPP aptamer structure.”
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The examples presented in this article demonstrate that reg-
ulatory RNA elements can be mixed and matched in various
combinations but often require adjustments to be functional in
the desired fashion. It is not at all clear why some RNAs are
more suitable than others. The ongoing discovery of new ribos-
witches,*>** ribozymes** and RNA thermometers,*® opens new
playgrounds for the artificial arrangement of sensory and regu-
latory RNA modules.
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