
Tang et al. 
BMC Medical Informatics and Decision Making          (2022) 22:278  
https://doi.org/10.1186/s12911-022-02018-x

RESEARCH

Joint modeling strategy for using electronic 
medical records data to build machine 
learning models: an example of intracerebral 
hemorrhage
Jianxiang Tang1†, Xiaoyu Wang3†, Hongli Wan1,2, Chunying Lin1,2, Zilun Shao1,2, Yang Chang1,2, Hexuan Wang1,2, 
Yi Wu1,2, Tao Zhang1,2* and Yu Du2,4* 

Abstract 

Background:  Outliers and class imbalance in medical data could affect the accuracy of machine learning models. For 
physicians who want to apply predictive models, how to use the data at hand to build a model and what model to 
choose are very thorny problems. Therefore, it is necessary to consider outliers, imbalanced data, model selection, and 
parameter tuning when modeling.

Methods:  This study used a joint modeling strategy consisting of: outlier detection and removal, data balancing, 
model fitting and prediction, performance evaluation. We collected medical record data for all ICH patients with 
admissions in 2017–2019 from Sichuan Province. Clinical and radiological variables were used to construct models 
to predict mortality outcomes 90 days after discharge. We used stacking ensemble learning to combine logistic 
regression (LR), random forest (RF), artificial neural network (ANN), support vector machine (SVM), and k-nearest 
neighbors (KNN) models. Accuracy, sensitivity, specificity, AUC, precision, and F1 score were used to evaluate model 
performance. Finally, we compared all 84 combinations of the joint modeling strategy, including training set with and 
without cross-validated committees filter (CVCF), five resampling techniques (random under-sampling (RUS), random 
over-sampling (ROS), adaptive synthetic sampling (ADASYN), Borderline synthetic minority oversampling technique 
(Borderline SMOTE), synthetic minority oversampling technique and edited nearest neighbor (SMOTEENN)) and no 
resampling, seven models (LR, RF, ANN, SVM, KNN, Stacking, AdaBoost).

Results:  Among 4207 patients with ICH, 2909 (69.15%) survived 90 days after discharge, and 1298 (30.85%) died 
within 90 days after discharge. The performance of all models improved with removing outliers by CVCF except 
sensitivity. For data balancing processing, the performance of training set without resampling was better than that 
of training set with resampling in terms of accuracy, specificity, and precision. And the AUC of ROS was the best. For 

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​
mmons.​org/​publi​cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Open Access

†Jianxiang Tang and Xiaoyu Wang contributed equally to this work

*Correspondence:  statzhangtao@scu.edu.cn; 456duyu@163.com

1 Department of Epidemiology and Health Statistics, West China School 
of Public Health and West China Fourth Hospital, Sichuan University, 
Chengdu, Sichuan, People’s Republic of China
2 Health Emergency Management Research Center, West China‑PUMC 
C.C. Chen Institute of Health, Sichuan University, Chengdu, Sichuan, 
People’s Republic of China
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12911-022-02018-x&domain=pdf


Page 2 of 13Tang et al. BMC Medical Informatics and Decision Making          (2022) 22:278 

Background
With the development of information technology, medi-
cal data is becoming huge. Many researchers analyze 
electronic medical records data to provide reference 
for medical diagnosis, treatment, and prognosis. And 
machine learning methods have been widely used in 
medical field. However, medical data may suffer from 
outliers and class imbalance, which could affect the per-
formance of machine learning models [1, 2]. Therefore, 
it is necessary to effectively process outliers and imbal-
anced data in modeling to improve the accuracy of model 
prediction.

Outlier detection is the process of finding observations 
that are far from most of the observations. Many stud-
ies have shown that removing outliers will improve clas-
sification accuracy [3–7]. Podgorelec et  al. and Li et  al. 
used outlier detection techniques to remove the detected 
outliers from training set, and improved the classifica-
tion accuracy of machine learning methods [5, 7]. There 
is a lot of outlier detection techniques, and there is no 
consensus on which method should be used. The cross-
validated committees filter (CVCF) [8] is an ensemble fil-
ter based on majority voting. CVCF has no complicated 
parameter settings, and does not need to set threshold 
for dividing outliers and inliers [8, 9]. Therefore, this 
study adopts CVCF as an example for outlier detection 
and removal in modeling.

The performance of machine learning can be affected 
by class imbalance [1]. In general, the performance of 
classifier decreases with the increase of imbalanced 
ratio (IR, the ratio of majority class and minority class). 
However, IR is not the only factor affecting the perfor-
mance of classifiers. Class overlapping is also responsi-
ble for the decrease in performance of classifiers [10]. 
Although the IR is not very high, the performance of 
the classifier can significantly decrease when the classes 
are highly overlapped. A hybrid resampling method 

called synthetic minority oversampling technique and 
edited nearest neighbor (SMOTEENN) [11] was pro-
posed not only to balance the training set but also to 
remove noisy examples lying on the wrong side of the 
decision border, which might be caused by SMOTE 
[11]. And, some studies also showed that the model 
performance after hybrid resampling was better than 
that of single resampling [11, 12]. Therefore, several 
commonly used resampling methods, such as random 
under-sampling (RUS), random over-sampling (ROS), 
adaptive synthetic sampling (ADASYN) [13], Border-
line SMOTE [14], and SMOTEENN, are used to bal-
ance the training set.

Machine learning methods can discover non-linear 
relationships and explore deeper information in data, 
and they have great potential for prediction. Although 
machine learning methods are widely used, the perfor-
mance of machine learning methods will vary from one 
data to another, and no one method can always perform 
well for all data. For example, in the field of intracerebral 
hemorrhage (ICH) mortality and prognosis prediction. 
Guo et  al. used logistic regression (LR), random forest 
(RF), support vector machine (SVM), and other methods 
to predict 90-day functional outcome of patients with 
ICH, and LR had the highest AUC of 0.89 [15]. Bacchi 
et al. used four methods, including LR, RF, decision trees 
(DT), and artificial neural network (ANN), to predict in-
hospital mortality of patients with stroke, and LR per-
formed the best with an AUC of 0.90 [16]. Nie et al. used 
nearest neighbors, DT, ANN, AdaBoost, RF to predict in-
hospital mortality of patients with cerebral hemorrhage 
in intensive care units, and RF had the highest AUC of 
0.819 [17]. The other four studies also achieved good per-
formance (high AUC) using RF [18–21]. Lim et al. used 
SVM to predict 30-day mortality and 90-day poor func-
tional outcome of ICH patients with good AUC perfor-
mance of 0.9 and 0.883, respectively [22].

seven models, the average accuracy, specificity, AUC, and precision of RF were the highest. Stacking performed best 
in F1 score. Among all 84 combinations of joint modeling strategy, eight combinations performed best in terms of 
accuracy (0.816). For sensitivity, the best performance was SMOTEENN + Stacking (0.662). For specificity, the best 
performance was CVCF + KNN (0.987). Stacking and AdaBoost had the best performances in AUC (0.756) and F1 score 
(0.602), respectively. For precision, the best performance was CVCF + SVM (0.938).

Conclusion:  This study proposed a joint modeling strategy including outlier detection and removal, data balancing, 
model fitting and prediction, performance evaluation, in order to provide a reference for physicians and research-
ers who want to build their own models. This study illustrated the importance of outlier detection and removal for 
machine learning and showed that ensemble learning might be a good modeling strategy. Due to the low imbal-
anced ratio (IR, the ratio of majority class and minority class) in this study, we did not find any improvement in models 
with resampling in terms of accuracy, specificity, and precision, while ROS performed best on AUC.

Keywords:  Mortality outcome prediction, Intracerebral hemorrhage, Machine learning, Ensemble learning, Outlier 
detection, Imbalanced data
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Stacking ensemble learning [23] which combines differ-
ent single classifiers usually performs better than a single 
classifier [24]. And, it has been increasingly used in medi-
cine in recent years and achieved good performance, for 
example, predicting the prognosis of patients with gli-
oma [25], predicting adult outcomes in childhood-onset 
ADHD [26], predicting the recurrence of colorectal can-
cer [27]. Therefore, we use stacking ensemble learning 
to combine different machine learning methods which 
were applied in the prognosis and mortality prediction of 
patients with ICH.

In this study, we propose a joint modeling strategy to 
provide reference for physicians and researchers who 
want to build their own models. It consists of outlier 
detection and removal, data balancing, model fitting and 
prediction, performance evaluation.

Materials and methods
Data sources
This is a retrospective study, and the data was extracted 
from the database of Comprehensive Data Collection 
and Decision Support System for health statistics in 
Sichuan Province (CDCDS). This database was built by 
the Sichuan government on January 1, 2017 and covers 
all ICH admissions in the province. It includes the infor-
mation of medical records from all general hospitals and 
community hospitals in Sichuan. We collected medical 
records information for all ICH patients with admissions 
in 2017–2019. Patients were identified by International 
Classification of Diseases, Tenth Revision, Clinical Modi-
fication (ICD-10-CM). The patients with nontraumatic 
intracerebral hemorrhage (I61) were considered in the 
study.

Medical record information includes clinical and radio-
logical information of the patient at the time of hospitali-
zation. Clinical variables included age, gender, Glasgow 
Coma Scale (GCS) score at admission, the presence of 
chronic comorbidity (hypertension and diabetes), treat-
ment (surgery or not), and infection or not. GCS score 
at admission was estimated and determined by physi-
cians. Hypertension and diabetes are either diagnosed by 
doctors or self-reported by patients. Treatment refers to 
whether or not patients had surgery while in the hospital. 
Infection refers to whether patients developed infection 
after surgery.

Radiological variables were determined by clinicians 
using head computed tomography (CT) scans, including 
ICH location (supratentorial superficial, supratentorial 
deep, cerebellar, brain stem, intraventricular hemorrhage 
(IVH)), hematoma volume (measured by the ABC/2 
method). ICH location and hematoma volume were esti-
mated and determined by physicians. These variables 

were regularly collected during hospitalization of patients 
with ICH.

The outcome of this study was whether patients died 
within 90 days after discharge. The 90-day mortality was 
from Ministry of Civil Affairs through unique personal 
identification numbers.

Variable selection
We divided age into five categories (40–54, 55–64, 65–74, 
75–84, ≥ 85 years). According to clinical criteria, GCS 
score at admission was divided into three categories (13–
15, 9–12, 3–8), indicating mild coma, moderate coma, 
and severe coma respectively.

In this study, the data has only 10 independent vari-
ables, which are not high-dimensional data, so univari-
ate analysis was used to select variables. Because the data 
are all categorical variables, the chi-square test or Fisher 
exact test was used to select variables.

The results of univariate analysis showed that age and 
diabetes have no statistical significance. Considering 
that the P value of age was close to 0.05 and age was an 
important factor for ICH, the age variable was used for 
modeling in this study. Therefore, in addition to diabe-
tes, 9 predictors were used for modeling, including age, 
gender, GCS score  at admission, hypertension, surgery, 
infection, ICH location, supratentorial hemorrhage vol-
ume, and infratentorial hemorrhage volume.

Joint modeling strategy
Physicians can use information of patients with ICH at 
the time of hospitalization to predict 90-day mortal-
ity after discharge. After ICH patients are admitted to 
the hospital and treated (after relevant variables were 
collected), the physicians could give advice to patients 
(whether to continue treatment or not) based on clinical 
experience and a prediction of model. However, for phy-
sicians and researchers, there are many factors that need 
to be considered in modeling, such as outliers, imbal-
anced data, model selection, and parameter tuning. This 
study shows the use of different methods for handling 
outliers, imbalanced data and model selection. This joint 
modeling strategy includes the following steps: outlier 
detection and removal, data balancing, model fitting and 
prediction, performance evaluation. To emphasize the 
importance of outlier removal and data balancing pro-
cessing, we compared the model performance with and 
without the corresponding processing. The flow chart is 
shown in Fig. 1.

We used 10-fold cross-validation (CV) to estimate the 
results of models, and the IR of each fold remained the 
same. The final results were the average of the results of 
10 test sets. The 95% confidence interval (95% CI) of the 
results were estimated from the results of the 10 test sets.
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Step 1 outlier detection and removal
In this study, we used CVCF to detect and remove out-
liers. The R 4.0.2 and “NoiseFiltersR” library were used 
to implement the CVCF. The parameters of CVCF were 
set to the default settings in R. We removed outliers 
detected by CVCF from the training set before further 
analysis.

In this study, missing values were not processed 
because there were no missing values.

Step 2 data balancing
Although the IR of this study is not very high, we still 
want to provide physicians with reference for imbal-
anced data processing methods.

Five resampling methods, including random under-
sampling (RUS), random over-sampling (ROS), adaptive 
synthetic sampling (ADASYN), Borderline SMOTE, 
SMOTEENN, were used to balance the training set 
according to outcome variable. The python 3.8.3 and 
scikit-learn library were used to implement resampling 
methods. The parameters of resampling methods were 
set to the default settings in python.

Step 3 model fitting and prediction
Stacking ensemble learning was used to combine dif-
ferent machine learning methods which were applied in 
the prediction of patients with ICH.

It consists of a two-stage modeling process. In the first 
stage, different methods (base classifiers) are built on 
the training set. In the second stage, the meta classifier 
is trained with the results of the base classifiers as input 
and the true labels of training set as output. In this study, 
logistic regression (LR), random forest (RF), artificial 
neural network (ANN), support vector machine (SVM), 
and k-nearest neighbors (KNN), which were commonly 
used, were used as the base classifiers. There is no general 
criterion for the selection of the meta classifier. There-
fore, LR, the classical method, was chosen as the meta 
classifier. The stacking model is shown in Fig. 2.

Ensemble learning generally includes bagging, boost-
ing, and stacking. Therefore, we also compared three 
ensemble learning methods. For bagging, random forest 
(RF) was chosen because it is commonly used and robust 
[28]. For boosting, we chose the most famous and classic 
methods called AdaBoost [29]. All combinations of the 
joint modeling strategy are shown in Table 1. The optimal 

Fig. 1  The joint modeling strategy flowchart
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parameters for each model were selected by grid search 
using 5-fold cross validation, and the parameter settings 
were shown in Table 2.

Step 4 performance evaluation
We used the confusion matrix for the performance evalu-
ations [30]. Confusion matrix represents counts from 
predicted and actual values. In this study, six indicators 
were selected to evaluate model performance, namely 
accuracy, sensitivity (recall), specificity, precision (Posi-
tive Predictive Value, PPV), F1 score, the area under the 
receiver operating characteristics curve (AUC). We chose 
0.5 as the threshold to obtain all these metrics. A larger 
value for all these six indicators indicates better model 
performance.

All analyses were performed using R 4.0.2 and Python 
3.8.3.

Results
Descriptive analysis and variable selection
A total of 4207 patients with ICH were considered in this 
study. The baseline characteristics for all patients are pre-
sented in Table  3. Among 4207 patients, 2909 (69.15%) 

survived 90 days after discharge and 1298 (30.85%) died 
within 90 days after discharge. In the univariate analy-
ses, age group and diabetes were not statistically signifi-
cant. Considering that 99.76% of the patients in this study 
did not have diabetes, and diabetes was not statistically 
significant, diabetes was not included in the prediction 
models in this study.

Comparison of training set with and without CVCF
Figure  3 shows the average performance of LR, RF, 
ANN, SVM, KNN, Stacking and AdaBoost on training 
set with and without CVCF. As can be seen from the 
figure, with CVCF, the accuracy, specificity, and preci-
sion of all models were improved, but the sensitivity 
was the opposite. The AUC of training set with CVCF 
were better than that of training set without CVCF, 
except for stacking model. Similarly, the F1 score of 
all models except LR improved with CVCF. Overall, 
removing the detected outliers from training set could 
improve the performance of some machine learning 
models.

Comparison of training set with and without resampling
We calculated the performance of 7 models under each 
resampling method and ranked from largest to smallest. 
The smaller the rank is, the better the resampling method 
performs under the data of this study. Table 4 shows the 
average performance of 7 models under each resampling 
method. Table  5 shows the rank of the average perfor-
mance of each resampling method.

As illustrated in Tables  4 and 5, the accuracy, speci-
ficity, and precision of the training set without resa-
mpling were better than that of the training set with 
resampling, but the sensitivity was the opposite. Among 
the five resampling methods, SMOTEENN showed the 

Fig. 2  Stacking model

Table 1  All combinations of joint modeling strategy

Step Method Number

Outlier detection and removal Without CVCF,
With CVCF

2

Data balancing processing Original, RUS, ROS, ADASYN,
Borderline SMOTE, 
SMOTEENN

6

Models LR, RF, ANN, SVM, KNN, Stack-
ing,
AdaBoost

7

Total – 84
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greatest increase in sensitivity. The resampling methods 
can improve the sensitivity of models, but at the cost of 
reducing the specificity. For AUC and F1 score, different 
models performed differently under different resampling 
methods. Combining the performance of each model, the 
AUC of training set with ROS was the highest. The F1 
score of training set with RUS was the highest, followed 
by ROS. Taking all indicators into account, training set 
with RUS performed the best, followed by training set 
with ROS and training set without resampling.

Comparison of 7 models
Table 4 shows the performance of each model under dif-
ferent resampling methods. Table 6 shows the rank of the 
average performance of each model.

As illustrated in Tables 4 and 6, different models per-
formed differently on different resampling methods. 
The average accuracy, specificity, AUC and precision of 
RF were the highest, indicating that RF performed best 
in distinguishing between patient survival and death. 
Stacking had good performance in the two indicators of 
F1 score (ranked 1st), and sensitivity (ranked 2nd). Tak-
ing all indicators into account, RF performed best, fol-
lowed by ANN, AdaBoost and stacking. Compared with 
LR, SVM, KNN, the performances of ensemble learn-
ing were better. For physicians who do not know what 
model to choose, ensemble learning may be a good 
choice.

Comparison of all 84 combinations of the joint modeling 
strategy
Table  7 shows the performance of all 84 combinations 
of joint modeling strategy. The performance with 95% 
CI of all 84 combinations of joint modeling strategy 
is shown in Additional file  1. There were eight combi-
nations that performed the best in terms of accuracy 

(0.816), namely AdaBoost, CVCF + ANN, CVCF + SVM, 
CVCF + Stacking, CVCF + RUS + Stacking, 
CVCF + BSMOTE + SVM, CVCF + SMOTEENN + SVM, 
and CVCF + SMOTEENN + AdaBoost. For sensitiv-
ity, the best performance was SMOTEENN + Stack-
ing (0.662). For specificity, the best performance was 
CVCF + KNN (0.987). For AUC, the best performance 
was Stacking (0.756). For precision, the best performance 
was CVCF + SVM (0.938). For F1 score, the best perfor-
mance was AdaBoost (0.602). Taken together, the joint 
modeling strategy of CVCF and ensemble learning per-
formed better.

Discussion
Taking ICH as an example, this study presented a joint 
modeling strategy considering outliers, imbalanced data, 
model selection, parameter tuning, in order to provide 
a reference for physicians and researchers interested in 
constructing similar models. The results of this study 
show that it is necessary to adopt a joint modeling strat-
egy that considers multiple processing and modeling 
methods, which can improve the performance of models.

The results of this study illustrate that removing the 
detected outliers from training set could improve the 
performance of models. Patients of ICH may get worse 
or even die after discharge for competitive risks, such 
as recurrence of ICH, thrombus dislodgement, infec-
tion. We did not collect information about these com-
petitive risks and therefore there was no way to predict 
them. Those deaths that were unpredictable with the 
information we collected were removed from the train-
ing set by CVCF, but kept in the test set, as similar situ-
ations may still occur in future datasets. Therefore, this 
may be the reason why the sensitivity of the model of 
the training set with CVCF decreased compared to the 
model of the training set without CVCF. In addition, 
iForest [31] is also a good choice for outlier detection, 

Table 2  The parameter settings

–: No parameter needed to be tunned; *: The optimal value was automatically tuned by R software; **: The parameters ranges were automatically selected by R 
software

Models Packages Parameters to be tuned Parameters ranges Optimal parameters

LR – – – –

RF randomForest mtry: number of randomly selected
variables

mtry = 1:9 mtry = 5

ANN nnet size: numbers of hidden units,
decay: weight decay

Size = 1:9,
Decay = (0, 0.1, 0.01, 5e-4)

Size = 5,
Decay = 0.01

SVM Kernlab sigma: Sigma*
, C: cost

Kernel = Radial basis function Kernel,
C = (0.25, 0.50, 1) **

C = 1

KNN – k: number of neighbors k = (5, 7, 9) ** k = 5

Stacking caretEnsemble – – –

AdaBoost fastAdaboost nIter: number of trees nIter=(10,20,50,100,150,200,300,500) nIter = 20
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but requires multiple attempts to select optimal param-
eters. There were only ten variables in this study, so 
variable selection was relatively simple. In case of more 
variables, more complex methods can be considered, 
such as Least Absolute Shrinkage and Selection Opera-
tor (LASSO) [32].

In terms of data balancing processing, due to the 
low IR in this study, all resampling methods did not 
improve the model performance compared to no 

resampling. But our study also compared 5 resam-
pling methods, which could provide some insights. In 
the case of a large number of minority samples in this 
study, ROS achieved the best AUC, which was consist-
ent with the findings of Batista et al. Batista et al. [11] 
showed that SMOTE + Tomek and SMOTE + ENN 
were more suitable for data sets with a small number 
of minority instances. For data sets with larger number 
of minority instances, the ROS could be a good choice 

Table 3  Patient baseline characteristics

*: The P value of diabetes was calculated by Fisher exact test; The P values of the remaining variables were calculated by chi-square test

Death
(n = 1298) (%)

Survival
(n = 2909) (%)

χ
2 P*

Age 9.10 0.059

 40–54 308 (23.7) 591 (20.3)

 55–64 294 (22.7) 648 (22.3)

 65–74 434 (33.4) 1032 (35.5)

 75–84 235 (18.1) 551 (18.9)

 ≥ 85 27 (2.1) 87 (3.0)

Gender 28.92 < 0.001

 Male 788 (60.7) 1506 (51.8)

 Female 510 (39.3) 1403 (48.2)

GCS 23.51 < 0.001

 13–15 1158 (89.2) 2706 (93.0)

 9–12 107 (8.3) 175 (6.0)

 3–8 33 (2.5) 28 (1.0)

Hypertension 13.98 < 0.001

 No 977 (75.3) 2338 (80.4)

 Yes 321 (24.7) 571 (19.6)

Diabetes 0.08 0.509

 No 1294 (99.7) 2903 (99.8)

 Yes 4 (0.3) 6 (0.2)

Surgery 148.11 < 0.001

 No 1057 (81.4) 2725 (93.7)

 Yes 241 (18.6) 184 (6.3)

Infection 786.05 < 0.001

 No 811 (62.5) 2780 (95.6)

 Yes 487 (37.5) 129 (4.4)

ICH location 168.50 < 0.001

 Supratentorial superficial 1001 (77.1) 2480 (85.3)

 Supratentorial deep 132 (10.2) 239 (8.2)

 Cerebellar 81 (6.2) 157 (5.4)

 Brain stem 82 (6.3) 9 (0.3)

 IVH 2 (0.1) 24 (0.8)

Supratentorial hemorrhage volume 185.46 < 0.001

 < 30ml 1040 (80.1) 2733 (93.9)

 ≥ 30ml 258 (19.9) 176 (6.1)

Infratentorial hemorrhage volume 6.15 0.013

 < 10ml 1285 (99.0) 2898 (99.6)

 ≥ 10ml 13 (1.0) 11 (0.4)
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Fig. 3  The average performance of 7 models on training set with and without CVCF
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Table 4  The average performance of 7 models under each resampling method

*BSMOTE: Borderline SMOTE; Acc: Accuracy; Sen: Sensitivity; Spe: Specificity; Pre: Precision; F1: F1 score; Bold indicates the best value

Resampling Models Average

LR RF ANN SVM KNN Stacking AdaBoost

Acc* Original 0.792 0.812 0.812 0.811 0.797 0.815 0.815 0.808
RUS 0.786 0.801 0.799 0.790 0.795 0.794 0.800 0.795

ROS 0.784 0.796 0.796 0.781 0.780 0.790 0.794 0.789

ADASYN 0.768 0.785 0.777 0.769 0.777 0.781 0.782 0.777

BSMOTE* 0.751 0.766 0.767 0.758 0.756 0.762 0.763 0.760

SMOTEENN 0.738 0.732 0.733 0.738 0.744 0.727 0.730 0.735

Average 0.770 0.782 0.781 0.774 0.775 0.778 0.781 0.777

Sen* Original 0.408 0.425 0.426 0.428 0.382 0.436 0.443 0.421

RUS 0.493 0.466 0.471 0.492 0.469 0.484 0.464 0.477

ROS 0.499 0.477 0.489 0.511 0.452 0.499 0.479 0.487

ADASYN 0.470 0.480 0.484 0.500 0.480 0.492 0.480 0.484

BSMOTE* 0.514 0.501 0.502 0.511 0.496 0.520 0.504 0.507

SMOTEENN 0.534 0.540 0.541 0.545 0.504 0.553 0.545 0.537
Average 0.486 0.482 0.486 0.498 0.464 0.497 0.486 0.486

Spe* Original 0.962 0.984 0.985 0.982 0.982 0.984 0.981 0.980
RUS 0.916 0.952 0.947 0.924 0.942 0.933 0.950 0.938

ROS 0.911 0.940 0.933 0.901 0.927 0.920 0.935 0.924

ADASYN 0.902 0.921 0.908 0.889 0.909 0.911 0.917 0.908

BSMOTE* 0.857 0.885 0.887 0.869 0.871 0.871 0.879 0.874

SMOTEENN 0.829 0.819 0.819 0.826 0.851 0.805 0.812 0.823

Average 0.896 0.917 0.913 0.898 0.914 0.904 0.912 0.908

AUC​ Original 0.728 0.740 0.748 0.736 0.730 0.740 0.745 0.738

RUS 0.738 0.749 0.740 0.737 0.734 0.734 0.736 0.738

ROS 0.736 0.751 0.750 0.744 0.734 0.747 0.743 0.744
ADASYN 0.729 0.738 0.732 0.732 0.715 0.716 0.719 0.726

BSMOTE* 0.734 0.740 0.733 0.734 0.720 0.730 0.730 0.732

SMOTEENN 0.726 0.721 0.724 0.727 0.705 0.692 0.719 0.716

Average 0.732 0.740 0.738 0.735 0.723 0.726 0.732 0.732

Pre* Original 0.835 0.927 0.928 0.920 0.905 0.925 0.912 0.907
RUS 0.730 0.831 0.821 0.786 0.787 0.801 0.825 0.797

ROS 0.724 0.798 0.800 0.743 0.738 0.776 0.789 0.767

ADASYN 0.691 0.773 0.755 0.737 0.733 0.764 0.765 0.745

BSMOTE* 0.638 0.736 0.733 0.724 0.701 0.728 0.729 0.713

SMOTEENN 0.640 0.691 0.686 0.698 0.681 0.684 0.692 0.682

Average 0.710 0.793 0.787 0.768 0.758 0.780 0.785 0.769

F1* Original 0.546 0.581 0.582 0.582 0.535 0.591 0.595 0.573

RUS 0.585 0.590 0.591 0.591 0.585 0.591 0.587 0.589
ROS 0.587 0.591 0.596 0.590 0.558 0.593 0.589 0.586

ADASYN 0.554 0.579 0.574 0.574 0.571 0.582 0.577 0.573

BSMOTE* 0.558 0.573 0.575 0.571 0.558 0.577 0.571 0.569

SMOTEENN 0.560 0.561 0.563 0.570 0.553 0.564 0.563 0.562

Average 0.565 0.579 0.580 0.580 0.560 0.583 0.580 0.575
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because it is less computationally expensive and it 
could provide competitive results with the more com-
plex methods [11].

For model selection, this study showed that ensemble 
learning might be a good choice, such as RF, AdaBoost, 
and Stacking. For stacking, researchers can choose meth-
ods commonly used in their fields as base classifiers. The 
most classic LR was selected as the meta classifier in this 
study, and researchers can try other more complex meth-
ods as meta classifier to obtain better performance.

This study has some strengths. Firstly, the data of this 
study is large and comes from multi-center population of 
Sichuan Province. Secondly, stacking was used to com-
bine several common machine learning methods. Finally, 
the joint modeling strategy considering outliers, imbal-
anced data, model selection, and parameter tuning was 
presented to achieve good prediction performance.

Meanwhile, this study inevitably has several limita-
tions. Firstly, this study is a retrospective design with 
the inherent risk of bias and lack of a validation cohort. 
Secondly, this study did not have information about early 
withdrawal of care, which was an important confounder 
in ICH research.

The results of this study could shed light upon future 
work in several ways. First of all, external validation is 
needed to test the generalizability of this model. Besides, 

more predictive factors could be considered in this 
model, so as to improve the prediction performance. 
Finally, the parameters in this model were selected auto-
matically by software using grid searching, which may 
result in sub-optimal parameters selection. Further work 
can focus on expanding the range of parameters selec-
tion and considering more comprehensive selection of 
base and meta classifiers, so as to improve the predictive 
efficiency.

Conclusion
This study used information of patients with ICH at the 
time of hospitalization to predict 90-day mortality after 
discharge. We proposed a joint modeling strategy that 
takes into account outliers, imbalanced data, model 
selection, and parameter tuning, in order to provide ref-
erence for physicians and researchers. This study illus-
trated the importance of outlier detection and removal 
for machine learning and showed that ensemble learn-
ing might be a good modeling strategy. Due to the low 
IR in this study, we did not find obvious improvement of 
models with resampling methods in terms of accuracy, 
specificity, and precision. However, our results also vali-
dated that ROS performed comparable to more complex 
methods on AUC in the case of a large number of minor-
ity samples.

Table 6  The rank of the average performance of each model

*Lower rank is better; Sum = sum of ranks of six indicators; Rank = rank of sum of ranks

Accuracy Sensitivity Specificity AUC​ Precision F1 score Sum* Rank*

LR 7 4 7 4.5 7 6 35.5 7

RF 1 6 1 1 1 5 15 1

ANN 2.5 4 3 2 2 3 16.5 2

SVM 6 1 6 3 5 3 24 5

KNN 5 7 2 7 6 7 34 6

Stacking 4 2 5 6 4 1 22 4

AdaBoost 2.5 4 4 4.5 3 3 21 3

Table 5  The rank of the average performance of each resampling method

*BSMOTE: Borderline SMOTE; Lower rank is better; Sum = sum of ranks of six indicators; Rank = rank of sum of ranks

Accuracy Sensitivity Specificity AUC​ Precision F1 score Sum* Rank*

Original 1 6 1 2.5 1 3.5 15 2.5

RUS 2 5 2 2.5 2 1 14.5 1

ROS 3 3 3 1 3 2 15 2.5

ADASYN 4 4 4 5 4 3.5 24.5 4

BSMOTE* 5 2 5 4 5 5 26 5

SMOTEENN 6 1 6 6 6 6 31 6
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Table 7  The performance of all 84 combinations of joint modeling strategy

CVCF Resampling Models Accuracy Sensitivity Specificity AUC​ Precision F1

No Original LR 0.787 0.424 0.948 0.733 0.784 0.550

No Original RF 0.811 0.426 0.983 0.743 0.920 0.581

No Original ANN 0.809 0.415 0.985 0.751 0.925 0.572

No Original SVM 0.807 0.420 0.979 0.725 0.903 0.571

No Original KNN 0.798 0.395 0.977 0.737 0.886 0.545

No Original Stacking 0.813 0.435 0.981 0.756 0.916 0.588

No Original AdaBoost 0.816 0.455 0.977 0.743 0.897 0.602

No RUS LR 0.777 0.518 0.893 0.738 0.684 0.589

No RUS RF 0.789 0.498 0.919 0.750 0.736 0.592

No RUS ANN 0.784 0.504 0.909 0.739 0.714 0.590

No RUS SVM 0.766 0.547 0.864 0.728 0.644 0.591

No RUS KNN 0.785 0.485 0.920 0.744 0.730 0.581

No RUS Stacking 0.773 0.533 0.881 0.745 0.669 0.591

No RUS AdaBoost 0.786 0.496 0.915 0.738 0.727 0.587

No ROS LR 0.774 0.527 0.884 0.736 0.671 0.589

No ROS RF 0.784 0.513 0.906 0.750 0.708 0.594

No ROS ANN 0.778 0.537 0.886 0.750 0.681 0.599

No ROS SVM 0.751 0.572 0.830 0.740 0.603 0.586

No ROS KNN 0.775 0.458 0.917 0.733 0.713 0.555

No ROS Stacking 0.767 0.557 0.860 0.752 0.642 0.596

No ROS AdaBoost 0.778 0.514 0.897 0.740 0.690 0.588

No ADASYN LR 0.761 0.516 0.870 0.722 0.640 0.570

No ADASYN RF 0.757 0.523 0.862 0.737 0.629 0.569

No ADASYN ANN 0.740 0.531 0.834 0.711 0.591 0.557

No ADASYN SVM 0.726 0.564 0.798 0.718 0.556 0.558

No ADASYN KNN 0.748 0.514 0.853 0.706 0.610 0.556

No ADASYN Stacking 0.749 0.548 0.839 0.718 0.605 0.574

No ADASYN AdaBoost 0.751 0.523 0.853 0.706 0.615 0.564

No BSMOTE* LR 0.729 0.584 0.794 0.732 0.562 0.571

No BSMOTE RF 0.720 0.570 0.788 0.737 0.549 0.558

No BSMOTE ANN 0.720 0.564 0.791 0.724 0.548 0.555

No BSMOTE SVM 0.701 0.584 0.755 0.720 0.520 0.547

No BSMOTE KNN 0.707 0.563 0.771 0.718 0.529 0.543

No BSMOTE Stacking 0.710 0.602 0.758 0.733 0.529 0.561

No BSMOTE AdaBoost 0.713 0.572 0.776 0.721 0.538 0.552

No SMOTEENN LR 0.680 0.603 0.715 0.718 0.497 0.539

No SMOTEENN RF 0.651 0.646 0.654 0.696 0.459 0.534

No SMOTEENN ANN 0.652 0.642 0.656 0.706 0.459 0.533

No SMOTEENN SVM 0.661 0.645 0.669 0.707 0.474 0.542

No SMOTEENN KNN 0.683 0.570 0.735 0.686 0.501 0.526

No SMOTEENN Stacking 0.638 0.662 0.628 0.672 0.449 0.531

No SMOTEENN AdaBoost 0.645 0.654 0.642 0.703 0.460 0.535

Yes Original LR 0.797 0.393 0.977 0.722 0.885 0.543

Yes Original RF 0.812 0.424 0.986 0.737 0.933 0.581

Yes Original ANN 0.816 0.436 0.985 0.745 0.931 0.592

Yes Original SVM 0.816 0.436 0.986 0.746 0.938 0.593

Yes Original KNN 0.796 0.368 0.987 0.724 0.924 0.525

Yes Original Stacking 0.816 0.436 0.986 0.725 0.933 0.593

Yes Original AdaBoost 0.814 0.431 0.985 0.747 0.927 0.587

Yes RUS LR 0.794 0.468 0.939 0.738 0.775 0.582

Yes RUS RF 0.814 0.433 0.984 0.748 0.925 0.588
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