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Simple Summary: Detection of circulating tumor cells (CTCs) in the blood of cancer patients is a
challenging issue, since they adapt to the biochemical and physical landscape of the bloodstream.
We approached the issue of CTC identification on a biophysical level. For the first time, we recorded
the mechanical deformation profiles of potential CTCs, which were isolated from the blood of breast
cancer patients, at the force regime of the deforming blood flow. Mechanical fingerprints of CTCs
were significantly different from healthy white blood cells. We used machine learning to further
evaluate the differences and identify discrimination criteria. Our results suggest that mechanical
characterization of CTCs at low forces is a promising path towards CTC detection.

Abstract: Circulating tumor cells (CTCs) are a potential predictive surrogate marker for disease moni-
toring. Due to the sparse knowledge about their phenotype and its changes during cancer progression
and treatment response, CTC isolation remains challenging. Here we focused on the mechanical
characterization of circulating non-hematopoietic cells from breast cancer patients to evaluate its
utility for CTC detection. For proof of premise, we used healthy peripheral blood mononuclear cells
(PBMCs), human MDA-MB 231 breast cancer cells and human HL-60 leukemia cells to create a CTC
model system. For translational experiments CD45 negative cells—possible CTCs—were isolated
from blood samples of patients with mamma carcinoma. Cells were mechanically characterized
in the optical stretcher (OS). Active and passive cell mechanical data were related with physiolog-
ical descriptors by a random forest (RF) classifier to identify cell type specific properties. Cancer
cells were well distinguishable from PBMC in cell line tests. Analysis of clinical samples revealed
that in PBMC the elliptic deformation was significantly increased compared to non-hematopoietic
cells. Interestingly, non-hematopoietic cells showed significantly higher shape restoration. Based on
Kelvin–Voigt modeling, the RF algorithm revealed that elliptic deformation and shape restoration
were crucial parameters and that the OS discriminated non-hematopoietic cells from PBMC with an
accuracy of 0.69, a sensitivity of 0.74, and specificity of 0.63. The CD45 negative cell population in the
blood of breast cancer patients is mechanically distinguishable from healthy PBMC. Together with cell
morphology, the mechanical fingerprint might be an appropriate tool for marker-free CTC detection.

Keywords: circulating tumor cells; CTCs; optical stretcher; cell mechanics; breast cancer

1. Introduction

One reason for metastatic relapse in patients with breast cancer is hematogenous
spread during early disease stages when single tumor cells detach from the primary tumor
site and enter the vascular system [1]. Therefore, circulating tumor cells (CTCs) in the blood
might be useful as predictive markers to monitor treatment response in the clinical setting
and the risk of relapse through distant metastasis. Yet, their ability to change phenotypical,
mechanical and functional properties during cancer growth and treatment leads to a variety
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of subpopulations that complicate the use of CTCs as a biomarker. Heterogeneity and the
low concentration among blood cells make it very challenging to isolate and characterize
CTCs [2]. Up-to-date no gold standard exists for the isolation of CTCs. Although controver-
sially discussed, CellSearch is the only FDA approved assay for the detection and counting
of CTCs in breast cancer patients. The procedure is based on the epithelial cell adhesion
molecule (EpCAM), which is expressed on cells of epithelial origin but not on hematopoi-
etic cells [3]. Detected cells are defined as CTCs when they are positive for the surface
marker EpCAM and the intracellular cytokeratins 8, 18 and 19. Furthermore, CTCs are
supposed to have a negative counterstain against the leucocyte marker CD45 and a positive
nuclear DNA staining. This approach is complicated and assumes that CTCs express the
same molecules as the host tissue. However, in order to leave the primary tumor site, the
precursor cells of CTCs might undergo the reversible process of epithelial–mesenchymal
transition (EMT), which allows them to change from epithelial to mesenchymal cells [4].
During EMT, altered polarization of the actin cytoskeleton goes along with decreased cy-
tokeratin and increased vimentin expression. Thus, CTCs with mesenchymal or EMT-like
features might be missed when using detection methods based on EpCAM [5,6]. Up to
now various EpCAM-independent approaches like density gradient centrifugation [7],
microfiltration dependent on size and deformability [8], other 2D- and 3D membrane
microfilters [9,10], microfluidic approaches using bioelectric properties [11] and several
CTC chambers, -channels and -chips [12–14] commonly based on distinct cellular and
biophysical differences between CTCs and blood cells are available [15–18]. A promising
method is the so-called negative CTC selection by depletion of hematopoietic cells using
magnetically labeled antibodies against CD45 to enrich non-hematopoietic cells in the
remaining cell suspension [19,20]. These non-hematopoietic cells include possible CTC
candidates with not only epithelial but also mesenchymal- or stem-cell-like characteristics.
Morphological criteria define cancer cells as cells with an enlarged nucleus-to-cytoplasm
ratio and a large cell size [21]. These cytological properties are associated with altered
mechanical characteristics such as dynamic modification of the cytoskeletal stiffness [22].
Cancer cells exhibit a lower mechanical resistance with respect to healthy tissue [23,24]
and hence might be privileged to migrate into distant organs [25]. Additionally, surface
charge and electrical properties were reported to be affected by altered cellular stiffness [26].
The cytoskeleton of eukaryotic cells is highly adaptive—even without changes in gene
expression regulated by its accessory proteins—causing variability in cell behavior without
phenotypical changes [27]. Due to phenotypical, mechanical and functional changes during
cancer progression and treatment, isolation of CTC subpopulations remains challenging
and cannot be guided by the phenotype alone; cell mechanics have to be considered equally.

The purpose of the present study was to characterize the mechanics of non-hematopoietic
cells from breast cancer patients to evaluate the utility of material parameters for CTC
separation from blood. It has been shown that separation from white blood cells based on
mechanical properties is possible for the leukemia cell line Jurkat and for the breast and
prostate cancer cell lines MDA-MB-231 and LNCaP C4-2, [22,24]. For the first time, we
investigated the cell deformation behavior concerning the active and passive mechanical
resistance of CD45 negative cells from the blood of breast cancer and present our findings
as a proof of premise of mechanical phenotyping. The OS allows quantitative measurement
of mechanical resistance of cells in suspension. By a Gaussian dual beam trap cells are
deformed non-invasively and the relative deformation is measured in a step stress creep
experiment [24,28–34]. The OS works with a low pulling stress at the order of one Pa,
stretching the cells by a few percent over the duration of several seconds, similar to the
deforming blood flow [35,36]. Cells exhibit passive viscoelastic and active mechanical
properties. Therefore, rheological models, such as our extended Kelvin–Voigt model,
which combines a linear elastic spring and linear viscous dash pot with an active linear
contractility term, can be applied to analyze the cell mechanics of the measured cells [37].
Furthermore, a random forest machine learning algorithm, which is a cascade of individual
decision trees, has proven to be robustly applicable as a test of the prediction power
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to detect non-hematopoietic cells [38]. We were able to show that defining mechanical
fingerprints of non-hematopoietic cells might be a promising approach to detect CTCs in
patients’ blood. By choosing no other identifier for possible breast cancer derived CTCs
than the absence of CD45, we could characterize these rare cells on the most basic level. A
more focused study of non-hematopoietic cells carrying different markers that have been
reported to be associated with CTCs would complement the prediction power even further.

2. Materials and Methods
2.1. Study Population, Blood Samples and Informed Consent

Patients with mamma carcinoma who received anticancer treatment in the University
of Leipzig Medical Center were consecutively included in this study after agreeing and
signing a written informed consent in accordance with the requirements of our institution’s
board of ethics (internal reference number: No. 216/18-ek). Patient demographics are
described in Table 1.

Table 1. Clinico-pathological characteristics. Patients were included after agreeing and signing a
written informed consent.

Characteristic Mamma Carcinoma

(n = 14) *

Age (years) 26–85
Median 63

Histology
ductal 10
lobular 2
mixed 2
Stage

T0 1
Tis 3
T1 7
T2 3

Lymphnode
N0 10
N1 2
Nx 2

Grade
G1 5
G2 4
G3 5

Subtype
luminal A 4
luminal B 4

HER2 enriched 1
triple negative 3

DCIS 2
Setting

primary 12
recurrent 2
Therapy

neoadjuvant CT 3
neoadjuvant endocrine 3

adjuvant CT 1
adjuvant endocrine 9

adjuvant RT 1
adjuvant Trastuzumab 1

none 1
* For proof of premise experiments, we analyzed peripheral blood mononuclear cells (PBMCs) obtained from
3 healthy donors compared to 2 breast cancer patients. For translational experiments, we used blood samples
from patients with mamma carcinoma (n = 12). Hence, the experimental design results in the total number of
14 patients with mamma carcinomas (n = 14).

2.2. Cell Culture

Stably transfected GFP-expressing MDAMB 231 cells were obtained from Cell Bi-
olabs, Inc. (San Diego, CA, USA) and maintained under standard conditions at 37 ◦C
in a 95% air and 5% CO2 atmosphere [39,40]. Cells were cultured in DMEM containing
4.5 g/L glucose, l-glutamine (Cat.No. FG 0435, Biochrom, Cambridge, United Kingdom)
supplemented with 10% fetal bovine serum (Cat.No. S 0615, Biochrom) and 100 U/mL
penicillin/streptomycin. HL-60 cells were obtained from ATCC (Manassas, VA, USA) and
maintained under standard conditions at 37 ◦C in a 95% air and 5% CO2 atmosphere
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suspended in DMEM containing 4.5 g/L glucose, l-glutamine (Cat.No. FG 0435, Biochrom)
supplemented with 20% fetal bovine serum (Cat. No. S 0615, Biochrom) and 100 U/mL
penicillin/streptomycin.

2.3. Sample Preparation and CTC Enrichment

For a paradigmatic test system, healthy peripheral blood mononuclear cells (PBMCs)
were isolated from whole blood by buoyant density gradient centrifugation (1600× g,
20 ◦C, 20 min). Epithelial MDA-MB 231 breast cancer cells were detached using 0.025%
Trypsin/EDTA (PAA) and resuspended in culture medium. HL-60 leukemia cells are
cultured in suspension and were corrected for the right concentration by centrifugation and
resuspension. MDA-MB-231 and HL-60 cells were mixed with healthy PBMC, respectively,
to mimic CTCs in the OS measurement.

For translational experiments, blood samples were collected from breast cancer pa-
tients one day before surgery and processed within 12 h after collection. Briefly, 10 mL
peripheral venous blood were diluted with 10 mL PBS and carefully layered into a tube
containing 16 mL Ficoll–Paque (GE-Healthcare, Buckinghamshire, United Kingdom) below
a porous barrier. After buoyant density gradient centrifugation (1600× g, 20 ◦C, 20 min) the
interphase consisting of PBMC and CTCs was removed and washed. The remaining red
blood cells were removed using magnetic particles coated with antibodies against human
glycophorin a (CD235a MicroBeads, 130-050-501, Miltenyi Biotec, Bergisch Gladbach, Ger-
many). The cell suspension was then incubated with microbeads directed against human
CD45 to deplete hematopoietic cells according to the manufacturer’s instructions (CD45
MicroBeads, 130-045-801, Miltenyi Biotec, Bergisch Gladbach, Germany; Figure 1).
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Figure 1. Sample preparation and measurement: 1. Whole blood sample diluted with PBS; 2. density
gradient centrifugation; 3. depletion of red blood cells using microbeads against glycophorin a and
4. resulting PBMC were resuspended and (A) spiked with MDA-MB 231 breast cancer cells and
HL-60 leukemia cells for proof of premise experiments to mimic CTC samples or (B) incubated with
microbeads against CD45 to deplete hematopoietic cells and thus enrich possible CTC candidates
from clinical samples. Spiked respective remaining cell suspensions were applied to the optical
stretcher and rheological parameters were measured.

2.4. Cell Rheological Measurements

Details of the Optical Stretcher are described elsewhere [26,41]. For cell line tests,
we measured cells at 875 mW laser power for 5 s at 37 ◦C cell temperature during the
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measurements. A stretching time period of 5 s, during which the cell is exposed to a
step stress, is sufficient to capture the cell’s entire mechanical fingerprint including active
contractions. After the step stress, laser power was set back to trapping power that just
holds the cell, and the relaxation of the cell from being stretched was observed for 2 s.
Since differences in the relative deformation of our clinical samples between CTCs and
PBMC were not as clear, we decided to increase the measurement time to 10 s and added
a set of three different step stresses generated by increasing laser powers. During the
measurement of a sample, for each individual single cell measured, the laser power was
set in random order to either 400, 800 or 1200 mW. Observation time for the relaxation was
again 2 s. For every single cell, the deformation and relaxation behavior were recorded
using phase contrast microscopy simultaneously obtaining additional data such as cell size
and brightness of the cell body. An edge detection algorithm tracked the short and the long
axis of the cells during their deformation. From the relative change of the long axis the
relative deformation is calculated. The elliptic deformation is then defined as the relation
between the long axis and short axis. Plotted over time, these rheological parameters
describe the deformation of a cell during the step stress and relaxation phase.

2.5. Kelvin–Voigt Fitting

To numerically describe the deformation behavior, we fit a viscoelastic Kelvin–Voigt
model to the deformation curves [34,42]. In its original form, it consists of a spring in
parallel to a dashpot. We extended this model by introducing an active contraction of the
cell in response to the step stress resulting in a linear decrease of the step stress with time,
since the contraction counteracts the optical stretching force. We refer to this additional
contractility parameter as activity in Pa/s [34]. These models were fitted to the relative and
elliptic deformation curves over the entire duration and over the first 2 s of the step stress
period. For examples of Kelvin–Voigt fitting see Appendix A, Figure A2. The obtained
passive and active rheological parameters for the tested cells and the goodness of the model
fit were fed into the data matrix of the random forest (RF) algorithm to evaluate whether
these parameters distinguish CTCs from blood cells.

2.6. Machine Learning

CTC candidates and PBMC were classified using the RF machine learning algo-
rithm [43], which consists of various individual decision trees, whereby each tree makes
a single prediction after splitting the data according to a purity measure. The RF is par-
ticularly suitable for our study, since this algorithm does not assume any underlying
distribution of the data. As an ensemble of decision trees, it presents a robust algorithm
meaning that outliers have minor influence on predictions and examination of decisive pa-
rameters is possible. For a detailed explanation of all features and the prediction procedure,
please see Appendix B.

2.7. Statistical Analysis

All significance tests presented in this study are two sample Kolmogorov–Smirnov
tests, as distributions were typically not normal. They were performed using Matlab 2019b.

3. Results
3.1. Optical Stretching Reveals Significant Differences in the Resistance between White Blood Cells,
MDA-MB 231 and HL-60

In proof of premise experiments, we tested whether discrimination of malignant cells
and white blood cells using the OS is possible, akin to other mechanical techniques [22,23].
In a first step, we investigated mechanical profiles of PBMC samples from healthy donors
(n = 3) compared to PBMC from breast cancer patients (n = 2). The mechanical properties
were without significant differences (Figure 2A). Therefore, data obtained from PBMC
measurements were pooled to serve as a reference for further analysis (n = 5). Subsequently,
we measured the mechanical characteristics of epithelial breast cancer cells from the highly
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invasive cell line MDA-MB 231, which represents a mesenchymal-like phenotype, and
HL-60 leukemia cells, which are naturally habitant in blood. All cell populations, PBMC,
MDA-MB 231 cells and HL-60 cells behaved mechanically differently in the OS. Comparing
the three deformation patterns, we were able to establish significantly disparate mechanical
profiles (p < 0.001; Figure 2B). In comparison to MDA-MB 231 cells, PBMC were much
softer and showed more than a twofold elevated relative deformation (median relative
deformation MDA-MB 231 = 0.012, median relative deformation PBMC = 0.028). HL-60
cells showed a median relative deformation of 0.023 entailing that they were softer than
breast cancer cells but stiffer than PBMC. We quantitatively described the cell deformation
behavior using our extended Kelvin–Voigt model (Appendix A, Figure A2) and added
optical and morphologic descriptors obtained from phase contrast imaging such as cell
radius, brightness of the cell and initial shape to our analysis (for complete description
of the parameters used, please follow the link in Appendix B). The resulting data matrix
consisted of 5284 cells with 76 parameters each and was analyzed by a RF algorithm to
distinguish whether individually measured cells were PBMC, HL-60 or MDA-MB 231 cells.
The RF distinguished these cell types with an accuracy of 0.93, a sensitivity of 0.86 and a
specificity of 0.96. Excluding the morphological and optical parameters cell radius, cell area
and relative cell brightness, which were decisive for the prediction, accuracy decreased to
0.78, sensitivity to 0.66 and specificity to 0.86. The following parameters were important
for the classification: (1) Degree of rotation during the experiment: some cells, when
irregularly shaped, rotate around one or multiple axes during the stretch. (2) Elasticity:
Young’s modulus as determined by the Kelvin–Voigt fits. (3) Shape restoration: cells tend
to contract towards their initial shape after being elongated in the optical stretcher, which
can be quantified by subtracting the elongation after relaxation from the elongation after
stretching. (4) Fit errors: when cells exhibit a very clear viscoelastic deformation behavior,
the Kelvin–Voigt fits do not differ much from the actual deformation curve—when the
deformation is noisy, or cannot be well described by the models, the error gets larger.

Cancers 2021, 13, x FOR PEER REVIEW 7 of 19 
 

 

important for the classification: (1) Degree of rotation during the experiment: some cells, 
when irregularly shaped, rotate around one or multiple axes during the stretch. (2) Elas-
ticity: Young’s modulus as determined by the Kelvin–Voigt fits. (3) Shape restoration: cells 
tend to contract towards their initial shape after being elongated in the optical stretcher, 
which can be quantified by subtracting the elongation after relaxation from the elongation 
after stretching. (4) Fit errors: when cells exhibit a very clear viscoelastic deformation be-
havior, the Kelvin–Voigt fits do not differ much from the actual deformation curve—when 
the deformation is noisy, or cannot be well described by the models, the error gets larger. 

 
Figure 2. Relative deformation curves of blood cells and MDA-MB 231 and HL-60. (A) PBMC from 
healthy donors (cyan line, n = 3) and from patients with breast cancer (magenta line, n = 2) exhib-
ited the same deformation behavior, here shown in a representative example at 1200 mW stretch-
ing power. Data obtained from PBMC measurements were pooled to serve as a reference for fur-
ther analysis (n = 5). Relative deformations and elliptic deformations of the samples were not dis-
tinguishable (for elliptic deformations see Appendix A, Figure A1). (B) We analyzed the relative 
deformation of PBMC samples (green line). We then measured the relative deformation of breast 
cancer cells from the highly invasive breast cancer cell line MDA-MB 231 (red line) and the leuke-
mia cell line HL-60 (blue line). The deformation patterns of the three cell types were significantly 
different (p < 0.001) at 875 mW. In comparison to MDA-MB 231 cells, PBMC were much softer and 
showed a more than twofold elevated relative deformation (median relative deformation MDA-
MB 231 = 0.012, median relative deformation PBMC = 0.028). HL-60 was softer than MDA-MB 231, 
but stiffer than PBMC (median relative deformation HL-60 = 0.023). Elliptic deformation showed 
the same trend and statistically significant differences (p < 0.001, Appendix A, Figure A1). 

3.2. Elliptic Deformation and Shape Restoration Discriminate Blood Cells and CTC Candidates 
from Mamma Carcinoma 

After demonstrating that the OS permits cell-mechanics-based discrimination of can-
cer cells from white blood cells, clinical samples from patients with breast cancer (n=12) 
were investigated. Density gradient centrifugation followed by depletion of erythrocytes 
and leucocytes using microbeads against glycophorin a and CD45 were performed as de-
scribed in the methods section. Subsequently, the remaining non-hematopoietic cells, 
which are potential CTCs, were measured in the OS. The mean proportion of CD45 nega-
tive, non-hematopoietic cells in relation to the CD45 positive, hematopoietic population 
was 3.26% in samples from breast cancer patients, and 0.25% in samples from healthy 
donors (Appendix A, Table A1). In total, we analyzed 3641 non-hematopoietic cells de-
rived from 12 patients with breast cancer. Measurements were carried out using three 
different laser powers P1 = 400 mW, P2 = 800 mW and P3 = 1200 mW, resulting in three 
different step stresses (estimates of the step stresses: σ1 = 0.38 Pa, σ2 = 0.76 Pa and σ3 = 1.14 
Pa, corresponding estimates of the peak stretching force: F1 = 80 pN, F2 = 160 pN and F3 = 
240 pN) [26]. Testing cells at three different laser powers covers a broader force regime, 
which may trigger different responses from cells. In total, 2541 CD45 positive PBMC from 
three healthy donors and two patients with breast cancer were measured under the same 

Figure 2. Relative deformation curves of blood cells and MDA-MB 231 and HL-60. (A) PBMC from
healthy donors (cyan line, n = 3) and from patients with breast cancer (magenta line, n = 2) exhibited
the same deformation behavior, here shown in a representative example at 1200 mW stretching power.
Data obtained from PBMC measurements were pooled to serve as a reference for further analysis
(n = 5). Relative deformations and elliptic deformations of the samples were not distinguishable (for
elliptic deformations see Appendix A, Figure A1). (B) We analyzed the relative deformation of PBMC
samples (green line). We then measured the relative deformation of breast cancer cells from the
highly invasive breast cancer cell line MDA-MB 231 (red line) and the leukemia cell line HL-60 (blue
line). The deformation patterns of the three cell types were significantly different (p < 0.001) at 875
mW. In comparison to MDA-MB 231 cells, PBMC were much softer and showed a more than twofold
elevated relative deformation (median relative deformation MDA-MB 231 = 0.012, median relative
deformation PBMC = 0.028). HL-60 was softer than MDA-MB 231, but stiffer than PBMC (median
relative deformation HL-60 = 0.023). Elliptic deformation showed the same trend and statistically
significant differences (p < 0.001, Appendix A, Figure A1).
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3.2. Elliptic Deformation and Shape Restoration Discriminate Blood Cells and CTC Candidates
from Mamma Carcinoma

After demonstrating that the OS permits cell-mechanics-based discrimination of can-
cer cells from white blood cells, clinical samples from patients with breast cancer (n=12)
were investigated. Density gradient centrifugation followed by depletion of erythrocytes
and leucocytes using microbeads against glycophorin a and CD45 were performed as
described in the methods section. Subsequently, the remaining non-hematopoietic cells,
which are potential CTCs, were measured in the OS. The mean proportion of CD45 negative,
non-hematopoietic cells in relation to the CD45 positive, hematopoietic population was
3.26% in samples from breast cancer patients, and 0.25% in samples from healthy donors
(Appendix A, Table A1). In total, we analyzed 3641 non-hematopoietic cells derived from 12
patients with breast cancer. Measurements were carried out using three different laser pow-
ers P1 = 400 mW, P2 = 800 mW and P3 = 1200 mW, resulting in three different step stresses
(estimates of the step stresses: σ1 = 0.38 Pa, σ2 = 0.76 Pa and σ3 = 1.14 Pa, corresponding
estimates of the peak stretching force: F1 = 80 pN, F2 = 160 pN and F3 = 240 pN) [26].
Testing cells at three different laser powers covers a broader force regime, which may
trigger different responses from cells. In total, 2541 CD45 positive PBMC from three healthy
donors and two patients with breast cancer were measured under the same conditions as a
control. For each laser power (400, 800 and 1200 mW) the combined deformation curves
of non-hematopoietic CTC-candidates from mamma carcinomas compared to PBMC are
shown in Figure 3A–C. The relative deformation behavior of the different cells at the three
stretching powers appeared to be quite similar. Nevertheless, comparison of the cell type
specific elliptic deformation draws another picture. The relative deformation takes only
the process of elongation into account. The Poisson effect that describes the shortening or
expansion of a material in directions perpendicular to the direction of stretching illustrates
that elongation alone falls short as a descriptor of cell resistance. Elliptic deformation,
however, describes the change in cell shape in the OS more precisely. The ellipticity of CTC
candidates and PBMC differed significantly at each laser power. For PBMC the elliptic
deformation was increased by a factor of 2 (p (P = 400 mW) = 0.001, p (P = 800 mW) < 0.001
and p (P = 1200 mW) < 0.001), Figure 3E–F. In addition, we analyzed the mechanosensitive
active response of a cell triggered by external forces induced by the laser trap. The active
Kelvin–Voigt model can be applied for active, linearly increasing counter forces caused by
a radially contracting cell in suspension and was used to estimate the contraction force
of a cell opposing optical stretching [34]. Active contractions were equally observed in
all cell types at all force regimes. Median activity values of cells were 0.079 Pa/s for CTC
candidates from patients with breast cancer and 0.074 Pa/s for PBMC. The ratio of active
to non-active cells in all samples was 0.6 ± 0.05 (SD) and did not differ from this range
between all measured cell types. A cell was considered active when the activity parameter
given by the active Kelvin–Voigt model exceeded a threshold of 0.001 Pa/s. Values below
that threshold were considered non-active, as lower values vanish in the random noise
of the fit. After the end of being stretched by the laser-induced step stress, cells were
tending to restore their original shape during relaxation (Figure 4). An adequate measure
of shape restoration was the difference between the elongation at 1.5 s after the end of
optical stretching compared to the elongation at the end of the step stress. Interestingly, we
revealed that PBMC showed significantly decreased shape restoration, i.e., a more viscous,
dissipative behavior, compared to CTC candidates at 400 mW and 1200 mW (p < 0.001,
Figure 5).

The number of non-hematopoietic cells was 13-fold increased in blood samples of
breast cancer patients compared to healthy donors, indicating that they contain a significant
portion of possible CTCs. Yet, to ensure that the analyzed population of non-hematopoietic
CTC candidates represents actual CTCs, we performed immunofluorescence staining using
antibodies against pan-cytokeratin that react with all types of epithelia (Appendix A,
Figure A3).
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Figure 3. Relative and elliptic deformation curves of blood cells compared to non-hematopoietic CTC
candidates from mamma carcinoma patients. In total, we analyzed 2541 CD45 positive PBMC from
3 healthy donors and 2 patients with breast cancer (green lines) and 3641 non-hematopoietic cells
derived from 12 patients with breast cancer (red line). Measurements were carried out using three
different laser powers P1 = 400 mW, P2 = 800 mW and P3 = 1200 mW, resulting in three different
step stresses. (A–C) show the pooled relative deformation curves of possible CTC candidates from
mamma carcinoma compared to PBMC at each laser power. The deformation behavior of the two cell
populations appeared to be similar, and only at P = 400 mW and P = 800 mW the deformation curves
differed significantly at the end of the stretching phase (p = 0.001), as shown in (D). (E–G) show the
elliptic deformation of the two cell populations at each laser power. The ellipticity of CTC candidates
and PBMC differed significantly at each laser power indicating that in PBMC the elliptic deformation
was increased by the factor 2 (p (P = 400 mW) < 0.001, p (P = 800 mW) < 0.001 and p (P = 1200 mW) <
0.001). (H) Elliptic deformation of CTC candidates derived from patients with mamma carcinoma
was significantly lower at all laser powers compared to CD45 positive PBMC. Asterisks indicate
significance of the Kolmogorov-Smirnov-test (*—p < 0.05; **—p < 0.01; ***—p < 0.001).
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Figure 4. Representative phase contrast images obtained during mechanical probing using the optical
stretcher. (A) Possible CTC candidate and (B) cell cluster—both detected in the CD45 depleted cell
suspension from a breast cancer patient. (C,D) show PBMC after density gradient centrifugation,
(E–G) show the shape of a breast cancer derived CTC candidate with particularly low mechanical
resistance before, during and after optical stretching demonstrating that mechanical changes are
very small.
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Figure 5. Shape restoration of cells in the optical stretcher. After being exposed to the laser-induced
step stress, cells were tending to restore their original shape. An adequate shape restoration parameter
was the difference between the elongation at the end of the step stress and the elongation at 1.5 s
after the step stress. At 400 mW and 1200 mW, PBMC showed significantly lower shape restoration
compared to CTC candidates from mamma carcinoma (400 mW: p < 0.01, 1200 mW: p < 0.001).
Asterisks indicate significance of the Kolmogorov-Smirnov-test (**—p < 0.01; ***—p < 0.001).

3.3. CTC Candidates Can Be Distinguished from Blood Cells by Machine Learning

In analogy to our test with malignant cell lines, we applied our machine learning
algorithm to predict cell type origin—hematopoietic or mamma carcinoma—based on OS
measurements. Using a data set consisting of 3641 non-hematopoietic CD45 negative cells
from breast cancer patients and 2541 PBMC, we classified these cells into CTCs and PBMC
by their mechanical fingerprint using the RF algorithm [38]. The input chosen for the
data matrix is described in the Materials and Methods section and as already mentioned
included morphological and optical parameters such as cell size and brightness and a
detailed set of numerical data describing the cells’ mechanical resistance using viscoelastic
modeling. Separate analysis was performed for each laser power and for the complete
set of data, pooling all laser powers. Based on the extended Kelvin–Voigt model, the RF
algorithm revealed that the OS was able to detect CTCs with an average accuracy of 0.66,
a sensitivity of 0.74 and a specificity of 0.55 (Table 2). For all three laser powers (400,
800 and 1200 mW), cells were identified by the RF with a moderate accuracy, albeit the
most distinguishing parameters varied conditionally on the laser power. For all three laser
powers, the most important determining feature was the cell radius, followed by the elliptic
deformation at the end of the stretching phase. For the cells’ deformation behavior, elliptic
deformation is the superior dividing feature with respect to the relative deformation, which
was already shown in Figure 3. When data from all three laser powers were pooled before
applying the RF algorithm, accuracy was 0.66, sensitivity was 0.77 and specificity was 0.53.
Interestingly, when shape restoration/relaxation was included in the machine learning
analysis, it appeared to be the second most decisive parameter at 800 and 1200 mW, next to
cell radius. At the highest laser power, accuracy, sensitivity and specificity of the prediction
were 0.69, 0.74 and 0.63, respectively, which can be considered the best result (Table 2). The
impact of morphological and mechanical effects is summarized in Table 3, which shows
prediction performances of the step-wise data input, starting with the morphological
parameters cell area and cell radius only. To these, we progressively added the following
mechanical features: relative deformation, elliptical deformation and shape restoration,
and subsequently computed the prediction results for the pooled laser powers. No other
parameters were considered at this point. We revealed better accuracy, sensitivity and
specificity of the prediction when elliptical deformation and shape restoration parameters
were included.
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Table 2. Prediction performance of the random forest machine learning algorithm. The algorithm
was applied to our optical stretcher data set of 3641 non-hematopoietic cells from breast cancer
patients and 2541 PBMC. Cells were tested in step stress experiments at various laser powers, and
physiological parameters and cellular deformation were recorded. Kelvin–Voigt modeling was
applied to the data to derive a number of active and passive rheological parameters. The prediction
power slightly increased from 400 mW over 800 mW to 1200 mW. When data from all three laser
powers were pooled before applying the RF algorithm, accuracy was 0.65, sensitivity and specificity
were 0.73 and 0.56, respectively. Interestingly, when shape restoration/relaxation was included,
accuracy, sensitivity and specificity increased to 0.69, 0.74 and 0.63, respectively, at the highest
laser power.

Laser Power
(mW) Excluding Shape Restoration Including Shape Restoration

Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity

400 0.63 0.72 0.52 0.64 0.73 0.52

800 0.66 0.76 0.55 0.65 0.76 0.51
1200 0.66 0.72 0.60 0.69 0.74 0.63

averaged 0.65 0.73 0.56 0.66 0.74 0.55
pooled 0.65 0.72 0.56 0.66 0.77 0.53

Table 3. Progressive input of parameters of pooled data. To distinguish morphological from mechan-
ical effects, we first tested the prediction power of the morphological parameters cell area and cell
radius only, and then progressively added the mechanical features relative deformation, elliptical
deformation, and shape restoration. The prediction results were computed for the pooled data and
revealed superior accuracy, sensitivity and specificity when specific mechanical parameters were
included. The values at the last step do not match the corresponding values in Table 2, since here
we added only the first three most important mechanical parameters and the prediction in Table 2
contained numerous additional parameters

Stepwise Data Input Accuracy Sensitivity Specificity

Cell area, cell radius 0.55 0.61 0.48

+Relative deformation 0.57 0.61 0.53

+Elliptic deformation 0.59 0.65 0.52

+Shape restoration 0.62 0.70 0.55

4. Discussion

Using the OS, we were able to reveal distinct mechanical fingerprints for hematopoietic
cells and non-hematopoietic cells from breast cancer patients. We established that optical
deformability could be used to distinguish PBMC from the cancerous cell lines MDA-
MB 231 and HL-60. In these model systems, cell types could be distinguished with a
sensitivity of 0.86 and a specificity of 0.96 based on relative deformation in conjunction
with a subsequent evaluation relying on Kelvin–Voigt models at two different time scales
and the RF machine learning algorithm. Interestingly, PBMC turned out to be twice as soft
as the highly metastatic MDA-MB 231 cells, which in turn were distinctively softer than
their healthy epithelial precursors. It has been shown before, that the optical stretcher is able
to resolve those mechanical changes [33]. That cancer cells, once the disease was initiated,
altered their cytoskeleton and mechanical response has been reported for clinical samples
and different carcinomas [44–46]. Breast cancer cells specifically were softer than healthy
epithelial cells, while mechanical response was more heterogeneous in general [23,24].
These changes arose from the remodeling of the cytoskeleton after cancer associated
signaling pathways were activated and provided the basis for our selection approach.
Further, HL-60, a leukemia cell line, appeared to be mechanically closer to PBMC. Still,
the OS was able to discriminate the different cell types accurately. Hence, we can trust
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differences that we found between CD45 negative cells derived from breast cancer patients
and healthy CD45 positive PBMC. While MDA-MB 231 and HL-60 cells significantly
differed from PBMC in terms of their relative deformation, CD45 negative CTC candidates
needed higher optical stretching forces for better resolution. CTC candidates, however,
showed significantly different behavior from PBMC in terms of the elliptic deformation at
all laser powers.

Our analysis of clinical samples from breast cancer patients provided proof of premise
that identification of CTCs based on the mechanical fingerprint is principally possible.
There was no way to ensure that all non-hematopoietic CTC candidates measured in the OS
were of cancerous origin. However, the ratio of non-hematopoietic to hematopoietic cells
separated by our protocol was 14-fold higher for breast-cancer patients compared to healthy
donors. Immunofluorescence staining against cytokeratins 7, 8, 18 and 19 confirmed a
subpopulation of epithelial cells in the blood of breast cancer patients. Hence, the significant
descriptors that we revealed can be applied for reproducible identification of CTCs. The
relative deformation significantly differed between non-hematopoietic CTC candidates and
white blood cells only at the highest laser power. This indicates that the cellular softness of
non-hematopoietic cells is relatively close to PBMC. Non-hematopoietic cells from breast
cancer patients appeared to mimic healthy blood cells, as they are very similar to blood
in their mechanical resistance. It makes sense that cancer cells, which make up a large
part of the non-hematopoietic population in patients with breast cancer, would adapt to
properties of PBMC during their travel along the blood stream, as cancer cells are already
in a state of mechanical alteration. This closeness in the mechanical fingerprints between
CTC candidates and PBMC might explain why existing CTC isolation approaches based on
mechanical differences such as filters or high throughput microfluidic deformation of cells
utilizing large mechanical deformations are still in need of improvement. A more subtle
approach that can resolve smaller mechanical differences is required.

The elliptic deformation allowed the detection of CTC candidates among PBMCs. The
elliptic deformation is a more refined description of the mechanical resistance of a cell since
it considers the Poisson effect [32]. Not only pure elongation, but also plasticity is taken into
account, which appears to be a more sensitive measure. Interestingly, the ability to restore
shape after deformation was significantly higher in CTC candidates derived from patients
with mamma carcinomas compared to PBMC at 400 mW and 1200 mW. The combination of
OS derived data and subsequent machine learning allowed for a label free discrimination
of cell types with a sensitivity of 0.74 and a specificity of 0.63, meaning CTC candidates
were easier to identify than PBMC. For all laser powers, the most predictive factor was the
cell radius, which goes along with the classic morphological features of white blood cells
compared to tumor cells. Yet, morphological parameters alone were not sufficient for a
prediction that is notably better than random guessing (accuracy of a random classifier =
0.5 for two classes and accuracy of the prediction with morphological parameters only =
0.55). Proper prediction was only achieved with the use of rheological properties. It also
became clear that the prediction considerably increased with increasing laser power. At
1200 mW, shape restoration was the top distinguishing feature after the cell radius. This
arises from the better resolution that comes with higher forces, ergo larger deformations.

The mechanical differences between CTC candidates and PBMC appeared to be small
since cancer cells tend to adapt to the blood stream; yet it was possible to resolve them
using the OS. In addition, our effort in mechanical CTC characterization relies on only
one, very low-level, necessary but not sufficient, initial criterion: CTC candidates were
not expressing CD45 on their surfaces. We cannot tell whether all analyzed cells were
of cancerous origin, yet we can be sure that we did not exclude any candidates by prior
labeling and sorting, except for dual positive, CD45 expressing CTCs [20,31,35]. We are
comparing a hematopoietic cell population that does not contain CTCs (CD45+) to a
subpopulation that does probably contain the major proportion of CTCs (CD45−). Our
chosen approach will most likely benefit from further biochemical characterization of the
separated cell populations in future projects. Still, our results highlight two key differences:
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CTC candidates were larger and mechanically more resistant in the blood stream. Recent
microfluidic results [37,38] have demonstrated that larger and more resistant cells are
pressed towards the vascular walls or into smaller blood vessels by the blood stream. To
which extent these properties of non-hematopoietic CTC candidates, that might foster
contact with vessel walls, promote vascular extravasation or even metastatic spread needs
to be further investigated. Here, we presented a proof of premise study using clinical
samples from breast cancer patients. Surely, further clinical investigations are needed to
strengthen our CTC detection approach. While the prediction scores require improvement,
it remains noteworthy that significant cellular discrimination is possible using this very
basic experimental setup. Likely, more high throughput mechanical techniques may be
helpful [41,47].

5. Conclusions

Here we described which cell mechanical properties might be used as a potential tool
to discriminate tumor cells from blood cells in the clinical setting. Although CTCs were
difficult to track, their mechanical fingerprint allowed us to identify non-hematopoietic
cells in the blood of patients with mamma carcinoma. The OS enabled us to perform
contact free, sensitive mechanical testing of individual cells and, hence, to discover distinct
differences between active and passive mechanical properties among cell types. Whereas
previous studies postulated that the relative deformation of a cell might be predictive for
cancerous characteristics, we found that mechanical analysis improved the characterization
of single cells of possibly cancerous origin [33,44–46]. Particularly elliptic deformation and
shape restoration at high force regimes allowed discrimination of CTCs. Although the
OS device is not suitable for high throughput it might be useful to evaluate mechanical
separation parameters and ultimately plays a role in the development of label-free isolation
approaches including filtration by size or separation by cellular compressibility.

Therefore, we conclude that together with cell morphology, mechanical deformation
patterns might be an appropriate tool for marker-free CTC detection in the peripheral
blood of patients with breast cancer. The promising combination of OS and random forest
analyses might be enhanced with diagnostic cellular markers to potentially improve future
treatment decisions.
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Figure A1. Elliptic deformation curves of blood cells, MDA-MB 231 and HL-60. (A) CD45 positive 
PBMC from healthy donors (cyan line, n = 3) showed the same elliptic deformation as CD45 posi-
tive PBMC from breast cancer patients (magenta line, n = 2) at 1200 mW. (B) MDA-MB 231 (red 
line), HL-60 (blue line) and CD45 positive PBMC (green line) were significantly different in terms 
of their elliptic deformation (p < 0.001) at 875 mW. 

 
Figure A2. The four different Kelvin–Voigt based models on the example of a highly active cell. (A) shows the basic Kel-
vin–Voigt model. It is well visible that the model fails to adapt both to the sudden elongation at the beginning of the 
stretching phase at 1 s and the contractile behavior starting at 5 s. (B) The extended Kelvin–Voigt model has an additional 
spring to adjust for the steep jump at the beginning of the stretching phase. E2 has to be considerably high to adjust for the 
elastic cutoff soon after. (C) Introducing activity as a measure of active cell contraction allows the model to fit the contrac-
tion of the cell. (D) Adding the extended spring E2 to the active model improves capture of the initial jump, but the high 
elasticity needs to be countered by a slightly increased activity value. For the evaluation of activity throughout the paper, 
only the activity data of the active (C) and not the active extended (D) model were taken into account. 

Figure A1. Elliptic deformation curves of blood cells, MDA-MB 231 and HL-60. (A) CD45 positive PBMC from healthy
donors (cyan line, n = 3) showed the same elliptic deformation as CD45 positive PBMC from breast cancer patients (magenta
line, n = 2) at 1200 mW. (B) MDA-MB 231 (red line), HL-60 (blue line) and CD45 positive PBMC (green line) were significantly
different in terms of their elliptic deformation (p < 0.001) at 875 mW.
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Figure A2. The four different Kelvin–Voigt based models on the example of a highly active cell. (A) shows the basic
Kelvin–Voigt model. It is well visible that the model fails to adapt both to the sudden elongation at the beginning of the
stretching phase at 1 s and the contractile behavior starting at 5 s. (B) The extended Kelvin–Voigt model has an additional
spring to adjust for the steep jump at the beginning of the stretching phase. E2 has to be considerably high to adjust for
the elastic cutoff soon after. (C) Introducing activity as a measure of active cell contraction allows the model to fit the
contraction of the cell. (D) Adding the extended spring E2 to the active model improves capture of the initial jump, but the
high elasticity needs to be countered by a slightly increased activity value. For the evaluation of activity throughout the
paper, only the activity data of the active (C) and not the active extended (D) model were taken into account.
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anti-CK (130-118-964, Miltenyi Biotec, Germany) for 10 min at 25 °C. Then cells were washed in PBS containing 0.1% 
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Figure A3. Overlay pictures of immunofluorescence staining using pan-cytokeratin (CK) antibody labeled with FITC
dye (pseudo color green) and nucleic DAPI (pseudo color blue). MDA-MB 231 cells were used as a positive control for
CK (green). Patient derived CTC candidates were indirectly enriched using CD45 depletion method as described above.
Immunofluorescence staining against CK was carried out in the CD45−depleted cell suspensions resulting in CK+/CD45−
cells. In addition, cells in the CD45 enriched suspension were stained against CK resulting in CK−/CD45+ cells (PBMC).
Briefly, the staining method included fixation of the cells in ice-cold methanol for 5 min, washing in PBS, blocking in 5%
BSA solution for 30 min, and binding of primary antibodies (final concentration 20 µL/mL) with FITC-conjugated mouse
anti-CK (130-118-964, Miltenyi Biotec, Germany) for 10 min at 25 ◦C. Then cells were washed in PBS containing 0.1% Tween
20. Subsequently, cells were applied to the OS measurements. The intensity of the fluorescence signal of each cell was
assessed in the OS while immunofluorescence images were taken. Figure A3 (A) demonstrates pictures of MDA-MB321 cells
in column one. The second column shows images of CD45 depleted cells from patient samples and hence CTC candidates
that had a significantly increased CK immunofluorescence signals (Intensity = 8.9 ± 2.9 au, p = 0.002 compared to PBMC
with intensity below I = 1 au, data not shown). Column three depicts images of hematopoietic cells obtained from the CD45
enriched fraction after staining against CK. As shown in Panel (B), immunofluorescence signals of CK staining differed
significantly between CD45 depleted (CK+/CD45−) cells vs. CD45 enriched (CK−/CD45+) cells. Median fluorescence
intensity of the positive control consisting of MDA-MB 231 cells was I = 10.5 au (data not shown), ***—p < 0.001.

Table A1. Count of CD45+ and CD45− cells per sample in absolute numbers. This table also
includes samples that were not used in OS experiments since the cell count was too low for an OS
measurement. 10,000 cells is the lower resolution limit of the cell counter we used and therefore
appears whenever the total count is 10,000 cells or lower.

Breast Cancer Patients Healthy Donors

CD45+ CD45− Ratio of CD45− to
CD45+ CD45+ CD45− Ratio of CD45− to

CD45+

3,000,000 10,000 0.33% 10,000,000 10,000 0.10%

1,300,000 10,000 0.77% 3,750,000 12,500 0.33%

7500,000 10,000 0.13% 6,500,000 25,000 0.38%

10,000,000 100,000 1.00% 10,200,000 10,000 0.10%

12,000,000 20,000 0.17% 25,000,000 100,000 0.40%

8,000,000 10,000 0.13%

10,000,000 70,000 0.70%

8,000,000 200,000 2.50%

12,000,000 200,000 1.67%
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Table A1. Cont.

Breast Cancer Patients Healthy Donors

CD45+ CD45− Ratio of CD45− to
CD45+ CD45+ CD45− Ratio of CD45− to

CD45+

11,500,000 300,000 2.61%

7,440,000 10,000 0.13%

6,580,000 10,000 0.15%

10,400,000 1,000,000 9.62%

12,000,000 300,000 2.50%

8,600,000 10,000 0.12%

15,800,000 1,500,000 9.49%

13,500,000 400,000 2.96%

9,500,000 80,000 0.84%

9,500,000 3,000,000 31.58%

20,500,000 10,000 0.05%

11,250,000 135,000 1.20%

10,750,000 350,000 3.26%

Mean: 3.26% Mean: 0.25%

Median: 0.92% Median: 0.33%

Range: 0.05–31.58 Range: 0.1–0.4

Appendix B

Our data, lists of all parameters, tables of all permutation importances and code used
for the machine learning analysis can be found at https://github.com/DiTscho/OS.

Input data matrix: The two-dimensional input data matrix consisted of 76 parameters
whereof the majority was of a cell mechanical nature. The number of rows corresponded to
the number of cells and parameters were represented by columns.

Feature importance: For each laser power and for the pooled data the cells were split
into a training and a test set. The training set consisted of 60% of the data, and the test set
of the remaining 40%. We conducted feature importance, not to be confused with feature
selection, using the following permutation importance technique:

The model was trained using the input data matrix with all parameters, i.e., columns,
a prediction was made and the accuracy (any other metric can be used) was computed
on the test set. Next, the values of one column in the input matrix were permuted to
assess the prediction power without this particular parameter, and the previously trained
model was used to make a prediction. The differences in accuracy with and without
permutation were computed. This procedure was repeated for all parameters and is called
“permutation importance” [48]. We used the scikit-learn Python library for implementing
the RF algorithm and computing the permutation importance [49].

Feature selection: First, for each laser power highly correlating parameters (Person
correlation coefficient > 0.95) were removed, since they could exhibit low importance
values where a non-redundant parameter might actually be of higher importance. Then,
the algorithm was trained and the permutation importance was computed as described
above. Parameters with negative differences in accuracy after conducting the permutation
importance on the training set were excluded from the data matrix. Subsequently, the RF
algorithm was trained again and the permutation importance was evaluated on the test set.
Here we still noticed negative decreases in accuracy. However, we decided not to remove
the corresponding parameters, since this would result in an overly optimistic model that
would not generalize well on unseen data.

https://github.com/DiTscho/OS
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The feature selection procedure is analogous but inverse to the progressive adding of
important parameters, since permuting a column simulates its removal. Initially, we did
not know which features were important and had to take into account all parameters.

Data: Initial input data matrix consisted of parameters such as the relative deformation
at the end-of-stretch point, the relative deformation at the end-of-relaxation point, shape
restoration, cell radius, cell area, passive KV elasticity, passive KV viscosity, passive KV
fit error, passive extended KV elasticity, etc. Before training and testing, the rows (cells)
were shuffled randomly. For the description of all 76 parameters, please see the “OS/data”
directory under the link above.

Model: Parameters of the Random Forest algorithm were optimized through sim-
ple grid search. As a result, we set the number of trees to 500, entropy as the splitting
criterion, and performed training and prediction without bootstrap. For all steps of the
machine learning analysis, the random state was set to 0. The first five largest permutation
importance values for all experiments are shown in Table A2.

Table A2. The first 5 most important parameters and their importance values of all experiments. CR: cell radius, CA: cell
area, RD: fitting parameters associated with the relative cell deformation, eRD: fitting parameters associated with the elliptic
cell deformation, Rotation: cell rotation during relaxation phase, Restoration: cell restoration parameters.

Excluding Shape Restoration Including Shape Restoration

Parameter 400 mW 800 mW 1200 mW Pooled 400 mW 800 mW 1200 mW Pooled

1. CR (0.017) CA (0.016) CA (0.030) CR (0.015) CR (0.016) CR (0.017) CR (0.032) CA (0.018)

2. CA (0.015) eRD (0.007) CR (0.030) CA (0.012) RD (0.009) CA (0.015) Restoration
(0.012) CR (0.013)

3. eRD (0.010) RD (0.007) Rotation
(0.026)

Rotation
(0.008) RD (0.006) ERD (0.008) CA (0.011) Restoration

(0.011)

4. RD (0.009) Rotation
(0.007) eRD (0.010) eRD (0.004) eRD (0.005) Restoration

(0.006)
Rotation
(0.008)

Rotation
(0.008)

5. RD (0.009) CR (0.006) eRD (0.009) eRD (0.004) RD (0.004) RD (0.006) RD (0.005) eRD (0.006)
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48. Altmann, A.; Toloşi, L.; Sander, O.; Lengauer, T. Permutation importance: A corrected feature importance measure. Bioinformatics

2010, 26, 1340–1347. [CrossRef]
49. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.;

et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830.

http://doi.org/10.1371/journal.pone.0089595
http://doi.org/10.1186/s41236-020-0010-1
http://doi.org/10.1016/S0091-679X(07)83017-2
http://doi.org/10.1007/s10237-019-01204-7
http://www.ncbi.nlm.nih.gov/pubmed/31749071
http://doi.org/10.1023/A:1010933404324
http://doi.org/10.3233/BIR-1991-283-419
http://doi.org/10.1158/0008-5472.CAN-08-4073
http://www.ncbi.nlm.nih.gov/pubmed/19223529
http://doi.org/10.1038/nphys1800
http://doi.org/10.1038/s41467-020-15813-9
http://www.ncbi.nlm.nih.gov/pubmed/32366850
http://doi.org/10.1093/bioinformatics/btq134

	Introduction 
	Materials and Methods 
	Study Population, Blood Samples and Informed Consent 
	Cell Culture 
	Sample Preparation and CTC Enrichment 
	Cell Rheological Measurements 
	Kelvin–Voigt Fitting 
	Machine Learning 
	Statistical Analysis 

	Results 
	Optical Stretching Reveals Significant Differences in the Resistance between White Blood Cells, MDA-MB 231 and HL-60 
	Elliptic Deformation and Shape Restoration Discriminate Blood Cells and CTC Candidates from Mamma Carcinoma 
	CTC Candidates Can Be Distinguished from Blood Cells by Machine Learning 

	Discussion 
	Conclusions 
	
	
	References

