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PAX5 encodes a transcription factor essential for B-cell differentiation, and PAX5 haploinsufficiency is involved in tumorigenesis.
There were few studies on how PAX5 haploinsufficiency regulated genes expression to promote tumorigenesis. In this study, we
constructed the cell model of PAX5 haploinsufficiency using gene editing technology in Raji cells, detected differentially expressed
genes in PAX5 haploinsufficiency Raji cells, and used protein-protein interaction networks and cluster analysis to comprehensively
investigate the cellular pathways involved in PAX5 haploinsufficiency.The clusters of gene transcription, inflammatory and immune
response, and cancer pathways were identified as three important pathways associated with PAX5 haploinsufficiency in Raji
cells. These changes hinted that the mechanism of PAX5 haploinsufficiency promoting tumorigenesis may be related to genomic
instability, immune tolerance, and tumor pathways.

1. Introduction

The paired box domain gene 5 (PAX5) encodes a paired
box domain (PBD) transcription factor essential for B-cell
differentiation that activates crucial genes for B-cell lineage
differentiation and represses genes important for commit-
ment in other hematopoietic lineages [1, 2]. Mutation of
PAX5 participates in B-cell tumorigenesis [3, 4]. Condi-
tional PAX5 deletion in mice allowed mature B-cells from
peripheral lymphoid organs to dedifferentiate in vivo back
to early uncommitted progenitors in the bone marrow. Mice
lacking PAX5 in mature B-cells also developed aggressive
lymphomas [5]. PAX5 haploinsufficiency synergized with
STAT5 activation to initiate acute lymphoblastic leukemia
(ALL) and the probability of tumor formation was 100%
[6]. PAX5 haploinsufficiency cooperated with BCR-ABL1 to
induce acute lymphoblastic leukemia [1].

PAX5 has been reported as being frequently altered in
both childhood [2] and adult [7, 8] B-ALL. PAX5 mutation

was also reported in both Hodgkin lymphoma [9] and
non-Hodgkin lymphoma [10, 11]. PAX5 genomic deletions
were predicted to result in PAX5haploinsufficiency or expres-
sion of PAX5 isoforms with impaired DNA binding [7, 12,
13], which resulted in PAX5 haploinsufficiency. So, PAX5
haploinsufficiency plays an important role in lymphocytic
neoplasm.

We do not know how PAX5 haploinsufficiency regu-
lates genes expression to promote tumorigenesis, though
previous studies showed heterozygous mice (PAX5+/−) had
higher penetrance of B-ALL than wild-type mice (PAX5+/+)
[14, 15]. The transcription factor PAX5 is pivotal for B-
cell commitment in mice. It represses lineage-inappropriate
gene expression while concurrently activating the B-cell
gene expression program. Clare Pridans performed global
gene expression screen of wild-type (PAX5+/+) and PAX5-
deletion (PAX5−/−) pro-B-cells in an attempt to identify the
crucial PAX5 targets in early B-lymphopoiesis. He identi-
fied 109 PAX5 targets comprising 61% activated and 39%
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repressed genes [16]. A key function of PAX5 is to activate
secondary transcription factors that further reinforce the
B-cell program [16]. The allele-specific regulation of PAX5
is random, reversible, and independent of parental origin
and correlates with synchronous replication during B-cell
development. The allele-specific regulation of PAX5 may
be a common mechanism causing the haploinsufficiency
and frequent association of other PAX genes with human
disease [17]. Cell model of PAX5 haploinsufficiency is more
similar to the human disease state, and PAX5 haploinsuffi-
ciency (PAX5+/−) may have different effect on target genes
compared with PAX5−/− at cell level, but there were few
studies onPAX5haploinsufficiency on genes expression at the
cellular level.

In our study, we constructed a new cellmodel of PAX5+/−
using gene editing technology which knocked out one PAX5
allele in Raji cell line (lymphoblastoid cell line derived from
Burkitt lymphoma). We analyzed the gene expression profile
in PAX5+/− Raji cells and their mother wild-type cells. We
constructed the protein-protein interaction (PPI) network of
the differentially expressed genes and screened out the most
significant subnetwork. In addition, the enriched functions
and pathways of DEGs were used to identify significant
pathways involved in PAX5 haploinsufficiency Raji cells.This
study was very valuable for our understanding of how PAX5
haploinsufficiency regulated genes expression to promote
tumorigenesis.

2. Materials and Methods

2.1. Cell Culture. The lymphoblastoid cell line Raji was pur-
chased from China Center for Type Culture Collection
(CCTCC, Wuhan, China) and HEK293T was purchased
from the American Type Culture Collection (ATCC, United
States). Raji cells were cultured in RPMI1640 medium con-
taining 5∼10% fetal calf serum (FCS, Invitrogen, United
States), and HEK293T cells were cultured in DMEM supple-
mented with 10% dialyzed fetal bovine serum.

2.2. Construction andValidation of CustomizedCRISPR/CAS9
Expression Vectors. The vector pSpCas9(BB)-2A-GFP
(PX458) (Plasmid #48138) was purchased from Addgene
(Massachusetts, USA). The oligo-DNA targeting the PAX5
exon5 locus was designed on the MIT online software
ZhangFeng lab: http://crispr.mit.edu/. We selected three high
scored sequences and designed their respective complement
chains with restriction site; each single strand oligo-DNA
chain was synthesized in Invitrogen company as follows:

PAX5 gRNA-F1: cacc GACAAAAGTACAGCAG-
CCAC

PAX5 gRNA-R1: aaac GTGGCTGCTGTACTTT-
TGTC

PAX5 gRNA-F2: cacc AACCAACCAGTCCCAG-
CTTC

PAX5 gRNA-R2: aaac GAAGCTGGGACTGGTT-
GGTT

PAX5 gRNA-F3: cacc ACCAACCAGTCCCAGC-
TTCC
PAX5 gRNA-R3: aaac GGAAGCTGGGACTGGT-
TGGT

Next, we annealed the two complement chains to form
dsDNA using Precut sgRNA Cloning kit and pSD-gRNA
Plasmid construction Kit (Biomics Biotechnologies Co.,
Ltd., Jiangsu, China) according to the instruction. This
was followed by BbsI digestion and ligation with T4 ligase
to construct Cas9/sgRNA plasmids targeting PAX5. The
Cas9/sgRNA plasmids were amplified, purified with End-
oFree Plasmid Maxi Kit (QIAGEN, Germany), and validated
by sequencing. The Cas9/sgRNA plasmids were electro-
transfected into HEK293T cells. The T7 Endonuclease I
assay was applied to measure the NHEJ-mediated mutations
efficiency in the endogenous PAX5 gene. The most efficient
Cas9/sgRNA plasmid (gRNA-F1/R1) was chosen for subse-
quent research.

2.3. Construction and Identification of PAX5+/− Raji Cell
Clone. 5 × 105∼2 × 106 Raji cells in good condition were
collected and suspended with matched solution supple-
mented with 5 𝜇g CRISPR/CAS9 plasmid. Electrotransfec-
tion was performed with optimized program on LONZA
4D Nucleofector System (Lonza, Switzerland). Cells were
cultured for 48 h and then sorted with Beckman MoFlo
XDP (Beckman Coulter, Inc., USA), aiming to select cells
with high GFP expression. The sorted cells were seeded
in 96-well plates in the manner of single cell. Two or
three weeks later, cells were collected for identification.
Genomic DNA was isolated using the DNA Isolation Kit
(BioTeke Corporation, Beijing, China) according to the
manufacturer’s instructions. PCR was used to amplify the
PAX5 gene for mutation analysis. The PCR primers, syn-
thesized by Sangon Biotech (Shanghai, China), were as fol-
lows: forward primer CTTCAGAAGAGGCACTTGAAGC
and reverse primer TTACCAGGTTCAGCCCTTGG. The
PCR product was reclaimed for sequence determination.
The sequencing results were compared with the published
PAX5 gene sequence to determine the presence of pax5+/−
variants.

2.4. Western Blot Analysis for PAX5. Cells were lysed with
RIPA lysis buffer (Beyotime, China) supplemented with
a protease inhibitor cocktail (Roche, Switzerland). The
bicinchoninic acid protein assay (Thermo Scientific, USA)
was used to measure protein concentration. 40 𝜇g of total
lysate was subjected to SDS-PAGE and then transferred
to nitrocellulose membranes (Bio-Rad Laboratories, USA).
The membranes were incubated with the antibodies against
PAX5 and GAPDH purchased from Abcam Biotechnol-
ogy (Abcam, CA, USA), and then they were blotted
with corresponding HRP-linked secondary antibodies. The
proteins were detected using an enhanced ECL system
(Pierce, USA). Quantification was performed with ImageJ
(https://imagej.nih.gov/) and each sample’s ratio relative to
the loading control GAPDH was calculated.
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2.5. Quantitative RT-PCR Analysis. Total RNA was extracted
with TRIzol (Invitrogen, USA) from the wide-type andmuta-
tional cells. A NanoDrop microvolume spectrophotometer
(Thermo Fisher) was used to quantify the RNA and RT-
PCR was performed with 2 𝜇g of total RNA and oligo-dT,
and 1 𝜇L of cDNA was used as quantitative RT-PCR template
in 10 𝜇L PCR mix (GeneCopoeia, Guangzhou, China) with
1 𝜇L of primer and 8 𝜇L ddH2O (20𝜇L reaction volume).
Quantitative RT-PCRwas performed using a CFX96 Touch�
Real-Time PCRDetection System (Bio-Rad) according to the
instructed thermocycler program for each locus. PCR primer
sequences, synthesized by BGI, Shenzhen, China, are shown
as follows: GAPDH: 5-GAGTCCACTGGCGTCTTCA-3
(forward), 5-GGGTGCTAAGCAGTTGGT-3 (reverse);
CD19: 5-GGCCCGAGGAACCTCTAGT-3 (forward), 5-
TAAGAAGGGTTTAAGCGGGGA-3 (reverse); CD79A:
5-CAAGAACCGAATCATCACAGCC-3 (forward), 5-
TCTGCCATCGTTTCCTGAACA-3 (reverse); FCER2: 5-
CCAGGAATTGAACGAGAGGAAC-3 (forward), 5-TTG-
ATCCACTTTTCA GGGCAC-3 (reverse); IGLL1: 5-ACC-
CAGCTCACCGTTTTAAGT-3 (forward), 5-GGTCAC-
CGT CAAGATTCCCG-3 (reverse).

2.6. Microarray Assay. Total RNA was exacted using TRIzol
reagent (Invitrogen, USA) according to the manufacturer’s
protocol. The experimental samples’ RNA integrity number
(RIN) was confirmed to be no less than 7.0 to ensure
the quality and quantity. Library construction and RNA
sequencing were performed at Beijing Genomics Institute
(BGI, Shenzhen). The final libraries were quantitated by
the Agilent 2100 bioanalyzer instrument (Agilent DNA 1000
Reagents) to ensure the size and purity of the sample and then
sequenced using theHiSeq 2000 System (TruSeq SBSKIT-HS
V3, Illumina), with read length 50.

After being aligned to the human reference genome
(NCBI Build 36.1) using SOAPaligner-v2.21 software (BGI)
with high-quality reads, the matched data were aligned with
reference sequence on Human RefSeq mRNA (NCBI). We
normalized the expression levels for each gene to the reads
per kilobase of the target exon per million mapped reads
(RPKM) to facilitate the comparison of transcripts between
samples. The differentially expressed genes (DEGs) between
each pair were identified using the standard of “FDR ≤ 0.001
and the absolute value of log 2 Ratio ≥ 2.”

2.7. The Motif Analysis of PAX5 and Identification of PAX5
Target Genes. The motif analysis of PAX5 and identifica-
tion of PAX5 target genes were accomplished based on
TRRUST Database (http://www.grnpedia.org/trrust/result
.php?gene=PAX5) and TRED Database (https://cb.utdallas
.edu/cgi-bin/TRED/tred.cgi?process=searchTFGeneForm).

2.8. Construction of PPI Network and Subnetwork. Theonline
database STRING (Search Tool for the Retrieval of Inter-
acting Genes) offers uniquely wide coverage and ease of
access to both laboratorial and predicted interaction infor-
mation [18]. In our study, the interactions between DEGs
were derived based on STRING and the associations with

a correlation coefficient > 0.8 were recognized as PPIs.
The PPI network was constructed and visualized using
Cytoscape software, as formerly described [19]. Cytoscape
is an open software project for integrating biomolecu-
lar interaction networks with high-throughput expression
data and other molecular states into a unified conceptual
framework.

2.9. Pathway Enrichment Analysis. The DAVID (Database
for Annotation, Visualization and Integrated Discovery)
contains an integrated biological knowledge base and analytic
tools, with the purpose of extracting biological meaning from
large gene/protein lists [20].The KEGG (Kyoto Encyclopedia
ofGenes andGenomes) is a knowledge base for the analysis of
gene functions, connecting genomic information with higher
order functional information [21]. In our study, pathway
enrichment analysis was administered for the PPI network
by DAVID and the significantly enriched pathways were
confirmed with a value of 𝑝 < 0.05.

3. Results

3.1. Construction and Identification of PAX5+/− Raji Cells.
Targeted genome editing tools such as CRISPR-Cas9 system
have been widely used to modify genes in model systems
including animal and human cells [22]. We designed a
gRNA that directed exon5 of PAX5, which was shared by all
different transcripts, and we inverted it into the cas9 andGFP
expressing vector. After the editing and subsequent screening
process, we randomly picked out the clones and screened
out mutated clones by DNA sequencing. Sequencing results
showed that mutation clones had haploid deletion mutation
in exon5 of PAX5 by comparison of DNA sequences of
mutation clone with that of wild-type clone (Figure 1(a)).
Haploid deletion mutation resulted in haploid termination of
PAX5 mRNA transcription. Western blot showed that PAX5
protein level in mutation clone was significantly lower than
that in wild-type clone (𝑝 < 0.05) (Figure 1(b)).

3.2. PAX5 Haploinsufficiency Induced the Differentially Ex-
pressed Genes (DEGs). After analyzing the microarray data
in PAX5+/− Raji cells and their mother wild-type cells, we
screened out a total of 213 DEGs in PAX5+/− Raji cells
(MUT1) compared to mother wild-type cells, including 82
downregulated genes and 131 upregulated genes. A total
of 199 DEGs were screened out in PAX5+/− Raji cells
(MUT2) compared to mother wild-type cells, including 85
downregulated genes and 114 upregulated genes. There were
135 common target genes, including 47 downregulated genes
and 88 upregulated genes.

3.3. The Motif Analysis of PAX5 and Identification of PAX5
Target Genes. Based on motif analysis of PAX5, we searched
out 28 PAX5 target genes, that is, BAX, BCL2, BLK, CCND1,
CD19, D79A, CDKN1A, FCER2, FHL2, LEF1, MET, MMP1,
MYCNA, PRDM1, PRKCE, RAG2, RB1, TIMP1, TP53, XBP1,
EGR1, ESR1, ELK1, ETS1, KCNH4, VPREB1, IGLL1, and
KCNH8. Two differentially expressed genes (IGLL1 and

http://www.grnpedia.org/trrust/result.php?gene=PAX5
http://www.grnpedia.org/trrust/result.php?gene=PAX5
https://cb.utdallas.edu/cgi-bin/TRED/tred.cgi?process=searchTFGeneForm
https://cb.utdallas.edu/cgi-bin/TRED/tred.cgi?process=searchTFGeneForm
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Figure 1: Mutation type of pax5 and identification. (a)The construction of pax5 and mutation type of pax5. E5 was the target of gene editing
operation, and sequencing analyses identified knocked out regions of E5. (b) Protein level of pax5 tested by western blot. Protein level of pax5
inMUT1 andMUT2 was less than 50% of that inWT. E: exon of pax5; PD: paired box domain; OP: octapeptide domain; HD: homeodomain;
TA: transactivation domain; ID: inhibitory domain; WT: wild-type clone; MUT: mutation clone. ∗means 𝑝 < 0.05.

FCER2) were identified as targets of PAX5. The expression
of IGLL1 and FCER2 was decreased in PAX5+/− Raji cells.
CD19 and CD79A are recognized target genes of PAX5, but
we found that the expression of CD19 and CD79A was not
changed from the microarray data. In order to verify the
results, we detected mRNA level of CD19, CD79A, IGLL1,
and FCER2 using quantitative PCR. Results showed that

the expression of IGLL1 and FCER2 was decreased and the
expression of CD19 and CD79A was not changed (Figure 2).

3.4. Construction of PPI Network. There were 135 common
target genes, which were critical to explore the potential roles
of PAX5 haploinsufficiency. The analysis of PPI networks
found that there were 49 genes which were related to each
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Figure 2: Target genes tested by quantitative RT-PCR. The expression of CD19 and CD79A was not changed. The expression of IGLL1 and
FCER2 was decreased. NS𝑝 > 0.05 versus WT, ∗𝑝 < 0.01 versus WT.
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Figure 3: The differentially expressed genes were used to search the STRING database to predict their protein-protein interactions in pax5
mutation cells. In the network shown, the nodes are the proteins and the lines represent the predicted functional associations. The number
of lines indicates the strength of the predicted functional interactions of the proteins. (a) Network of differentially expressed genes (DEGs).
(b) The downregulated DEG PPI subnetwork. (c) The upregulated DEG PPI subnetwork.

other. The total DEGs PPI network contained 39 nodes and
157 edges (interactions), including 21 downregulated DEGs
and 28 upregulated DEGs (Figure 3(a)). The downregulated
DEG PPI subnetwork contained 21 nodes and 17 edges (Fig-
ure 3(b)). The upregulated DEG PPI subnetwork contained
28 nodes and 61 edges (Figure 3(c)). These three networks
indicated that PAX5 haploinsufficiency greatly disturbed
the PPI network in Raji as DEGs interactions change the
biological consequences. We found all histones constructed
one unattached network, and there were several important
node genes such as EGFR, FOS, HSPA5, TLR4, and MMP9
(Figure 3).

3.5. Functional Annotation Clustering of DEGs in Network
Using the DAVID. Using the DAVID, we did functional
annotation cluster analysis for 49 interconnected genes.
DAVID functional clustering of 49 genes returned 18 clus-
ters, and there were 5 clusters with enrichment scores > 1
(𝑝 < 0.05) (Table 1). These significant clusters reflected the
notion that the dataset was representative of basic biological
processes. PAX5 haploinsufficiency had the greatest influence
on clusters involved in gene transcription, inflammatory
and immune response, and cancer pathways. There were 17
genes involved in gene transcription, including 12 histone
cluster genes. Six genes of DEGs in network participated
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Table 1: Functional annotation clustering in the DAVID disease/cancer database.

Cluster Count Score Genes

Gene transcription 17 2.31

HIST2H3A, HIST1H2BC, HIST1H2BF, HIST1H2AD,
HIST1H3B, HIST1H4E, HIST1H3D, HIST1H4C,
HIST1H2AM, HIST1H4I, HIST1H2AL, HIST2H3C, EGFR,
FOS, CALR, EYA1, MAGI1

Inflammatory and
immune response 6 1.42 TICAM2, CCL4L2, TLR4, FOS, AKT3, PTPN6

Pathways in cancer 7 1.39 EGFR, CCNE1, FOS, MMP9, FGF12, AKT3, CTNNA3

Cell adhesion 7 1.38 EGFR, CNTNAP4, MAGI1, CTNND1, CCL4L2, CTNNA3,
PTPN6

Protein phosphatase 7 1.34 EGFR, PTPN6, EYA1, PTPRG, ROR1, AKT3, CDK3
Tight junction 4 1.03 EPB41L3, MAGI1, AKT3, CTNNA3

in inflammatory and immune response. Seven genes of
DEGs in network participated in pathways in cancer. Other
clusters included cell adhesion, protein phosphatase, and
tight junction.

4. Discussion

PAX5 haploinsufficiency occurred frequently in lymphocytic
neoplasmandplays an important role in lymphocytic tumori-
genesis. Our report described the characteristics of changed
gene expression after PAX5 was haploidentically knocked out
in Raji cells.

We obtained two PAX5+/− Raji cell clones by targeted
genome editing tools.Western blot showed that PAX5 protein
level in PAX5+/− Raji clones was significantly lower than
that in wild-type Raji clone. Based on motif analysis of
PAX5, two differentially expressed genes (IGLL1 and FCER2)
were identified as targets of PAX5. The expression of IGLL1
and FCER2 was decreased in PAX5+/− Raji cells. CD19 and
CD79A, which are recognized target genes of PAX5, were
not changed from the microarray data. Quantitative PCR
confirmedmicroarray data. Expression of PAX5 in pro-B cells
activates the genes such as CD19 and CD79A which were
required for differentiation toward B-cells. Ex vivo, PAX5−/−
pro-B cells are not restricted to the B-lymphoid lineage [23].
Clare Pridans performed a global gene expression screen of
wild-type (PAX5+/+) and PAX5-deletion (PAX5−/−) pro-B
cells in an attempt to identify the crucial PAX5 targets. The
expression of CD19 and CD79A was decreased in PAX5−/−
pro-B cells compared to that in PAX5+/+ pro-B cells [16], but
there was no change in expression of IGLL1 and FCER2. Our
report showed opposite results. The expression of CD19 and
CD79Awas not significantly decreased in PAX5+/− Raji cells
compared to that in PAX5+/+ Raji cells, and the expression
of IGLL1 and FCER2 was significantly decreased in PAX5+/−
Raji cells. So, we believe that the genetic variation characteris-
tics caused by PAX5 haploid deletion were different from that
caused by PAX5 diploid deletion. PAX5 haploinsufficiency
has been reported as being frequently altered in adult B-ALL
[7]. Analysis of genetic variation characteristics caused by

PAX5 haploid deletion was very important for clarifying the
role of PAX5 haploid deletion in tumorigenesis. We analyzed
mRNA expression profile from two PAX5+/− Raji cell lines;
only 135 common target genes were selected. The analysis of
PPI Networks found that there were only 49 genes which
were related to each other. These genes were divided into
two networks: one network was interlocking histone genes
clusters and another network consisted of 39 genes, which
included several important node genes such as EGFR, FOS,
HSPA5, TLR4, and MMP9 (Figure 3).

DAVID functional clustering of 49 genes returned
18 clusters, and there were 5 clusters with enrichment
scores 1. These significant clusters reflected that the dataset
was representative of basic biological processes. These
processes included gene transcription, inflammatory and
immune response, tumor pathway, cell adhesion, and tight
junction.

The processes where transcription factors regulate target
genes are complicated, and histones play important roles
during these processes. Histone gene clusters are hetero-
geneously organized and contain 1 or more copies of the
5 histone subtypes, that is, core (H2A, H2B, H3, H4, and
variants thereof) and linker (H1) histone genes [24]. Histones
determine target genes expression, and histone mRNAs
are closely regulated during the cell cycle, permitting the
synthesis of histone proteins to occur coordinately with the
replication of DNA. Our results showed that 12 histone
genes were all upregulated; these genes were all related
to gene transcription. In tumors, upregulation of histone
mRNA indicates proliferative activity of tumor cells. Many
studies have demonstrated that histone mRNA accumulates
in tumors [25–28] and histones control target genes expres-
sion. These histones may take part in the process where
PAX5 haploinsufficiency causes gene expression changes.
In our identified histones, previous literatures showed that
HIST1H2BF, HIST1H3B, HIST1H4C, and HIST1H3D took
part in tumorigenesis [28–31]. Many previous researches
showed that other genes related to gene transcription were
involved in tumorigenesis and prognosis [32–34]. Chromatin
modifications implicated in transcriptional regulation are
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thought to be the result of a code on the histone pro-
teins [35]. Abnormal expression of histone genes caused
genomic instability, which enabled cells to acquire genetic
alterations that promoted oncogenesis [36]. We guessed that
the role of PAX5 haploinsufficiency in tumorigenesis might
be partially achieved by PAX5 haploinsufficiency inducing
genomic instability, although there was no report about PAX5
haploinsufficiency inducing genomic instability.

PAX5 is a member of the PAX family of developmental
transcription factorswith an important role in B-cell develop-
ment. PAX5 activates the chromatin of key genes involved in
B-cell signaling, adhesion, migration, and immune function
[37]. The genes involved in inflammatory and immune
response included TICAM2, CCL4L2, TLR4, FOS, AKT3,
and PTPN6. These genes took part in tumorigenesis [38–
42]. TLR4, Fos, and AKT3 were primary node genes. PAX5
haploinsufficiency induced decreased expression of TLR4
and Fos and induced increased expression of AKT3. TLRs
play important roles in regulating innate immune responses.
TLR4 controls the host defense by sensing an exotic
pathogen. TLR4 is often overexpressed in malignant and
tumor-infiltrating immune cells, and the application of TLR4
ligands in cancer therapies is desirable for enhancement
of antitumor immunity [38, 39]. PAX5 haploinsufficiency
induced decreased expression of TLR4, and the downregu-
lated TLR4 participated in immune tolerance [43, 44]. Fos
was involved in inducing a large number of cytokine genes
and other genes that were central to the productive immune
response. The absence of Fos induced immune tolerance
[45, 46]. AKT3 is involved in a variety of biological processes.
Highly expressed AKT3 participated not only in tumorigene-
sis [47] but also in autoimmune encephalomyelitis and graft-
versus-host response [40, 48]. No study was reported about
PAX5 haploinsufficiency involved in immune tolerance, but
we had evidence to assume that PAX5 haploinsufficiencymay
result in tumor immune tolerance.

Cancer pathways participated in cancer pathophysiolog-
ical processes. PAX5 haploinsufficiency caused the abnormal
expression of genes involved in cancer pathways. Increased
genes included EGFR, FGF12, AKT3, and CTNNA3 (Fig-
ure 3(c), Table 1). EGFR is a transmembrane tyrosine kinase
receptor involved in the regulation of cellular multiplication,
survival, and differentiation. EGFR is identified as cellular
protooncogene and is overexpressed in a variety of human
cancers [49]. EGFR inhibitors were used to treat not only
non-small-cell lung cancer with EGFR mutation, but also
cancer with overexpression of EGFR [50]. FGF12, as one
proapoptotic gene, suppresses radiation-induced apoptosis
through p38𝛼 [51, 52]. FGF12was identified as a new potential
marker for prostate tumors [53, 54]. AKT, a major down-
stream mediator of PI3K pathway, was shown to regulate
cancer progression. Three highly homologous AKT isoforms
(i.e., AKT1, AKT2, and AKT3) may play different roles.
Increased AKT3 expression not only promoted prostate
cancer proliferation [55], but also conferred resistance to
AKT inhibitor in breast cancer [56] and PLK inhibitors in
human colorectal cancer [57]. Inhibiting AKT3 and PI3KCA
enhanced chemotherapy sensitivity in glioblastoma multi-
forme cells [47].

5. Conclusion

In conclusion, our study here shows that changes in the
gene transcription, inflammatory and immune response, and
cancer pathways were identified as three important path-
ways associated with PAX5 haploinsufficiency.These changes
hinted that the mechanism of PAX5 haploinsufficiency pro-
moting tumorigenesis may be related to genomic instability,
immune tolerance, and tumor pathways.
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