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Background and Purpose: Treatment for mild stroke remains an open question. We

aim to develop a decision support tool based on machine learning (ML) algorithms,

called DAMS (Disability After Mild Stroke), to identify mild stroke patients who would

be at high risk of post-stroke disability (PSD) if they only received medical therapy

and, more importantly, to aid neurologists in making individual clinical decisions in

emergency contexts.

Methods: Ischemic stroke patients were prospectively recorded in the National

Advanced Stroke Center of Nanjing First Hospital (China) between July 2016 and

September 2020. The exclusion criteria were patients who received thrombolytic therapy,

age < 18 years, lack of 3-month modified Rankin Scale (mRS), disabled before the index

stroke, with an admission National Institute of Health stroke scale (NIHSS) > 5. The

primary outcome was PSD, corresponding to 3-month mRS ≥ 2. We developed five ML

models and assessed the area under curve (AUC) of receiver operating characteristic,

calibration curve, and decision curve analysis. The optimal ML model was selected to be

DAMS. In addition, SHapley Additive exPlanations (SHAP) approach was introduced to

rank the feature importance. Finally, rapid-DAMS (R-DAMS) was constructed for a more

urgent situation based on DAMS.

Results: A total of 1,905 mild stroke patients were enrolled in this study, and patients

with PSD accounted for 23.4% (447). There was no difference in AUCs between the

five models (ranged from 0.691 to 0.823). Although there was similar discriminative

performance between ML models, the support vector machine model exhibited higher

net benefit and better calibration (Brier score, 0.159, calibration slope, 0.935, calibration

intercept, 0.035). Therefore, this model was selected for DAMS. In addition, SHAP
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approach showed that the most crucial feature was NIHSS on admission. Finally, R-

DAMS was constructed and there was similar discriminative performance between

R-DAMS and DAMS, but the former performed worse on calibration.

Conclusions: DAMS and R-DAMS, as prediction-driven decision support tools, were

designed to aid clinical decision-making for mild stroke patients in emergency contexts.

In addition, even within a narrow range of baseline scores, NIHSS on admission is the

strongest feature that contributed to the prediction.

Keywords: mild stroke, machine learning, post-stroke disability, decision support tool, predictive model

INTRODUCTION

Around half of patients with ischemic stroke have mild
neurological symptoms (1), usually with the expectation that
such patients will come back to their pre-stroke activities
regardless of the treatment. However, over one-third of
mild stroke patients present with some degree of post-
stroke disability (PSD) (2–4), which may be the result of
inadequate acute treatments, early stroke recurrence, serious
complications, or other reasons (1, 5). For the acute treatment
of mild stroke patients, the guidelines from the American
Heart Association/American Stroke Association (AHA/ASA) (6)
distinguish disabling from non-disabling stroke and recommend
intravenous (IV) alteplase only for the former. Nonetheless, the
more certain, but not definitive, concept of “disabling stroke” is
subjective and requires interpretation by individual neurologists.
On the other hand, there is a trade-off between the benefits of
IV alteplase and the risk of symptomatic intracranial hemorrhage
(sICH). Therefore, decisions on how to treat mild stroke patients
should be made on an individual basis.

3-month modified Rankin Scale (mRS), a valuable instrument
for testing therapeutic interventions (7, 8), was used to assess the
levels of PSD (5, 8). For mild stroke patients who only received
medical therapy but had PSD, such therapy is not enough.
Therefore, mild stroke patients who would be at high risk of PSD
if they only received medical therapy should be early identified
in emergency contexts, and some aggressive treatments, such as
IV alteplase or close monitoring preventing worsening, should
be taken in time. Unexpectedly, neurologists’ overall accuracy for
identifying those patients was staggeringly low (16.9%) (9). Each
day that such a problem continues to exist means that uncounted
mild stroke patients are being left with preventable disability.

However, none of the previously published risk models which
were developed to predict the function outcome after stroke are
fit to solve this problem. For example, the Totaled Health Risks in
Vascular Events (THRIVE) score and the Houston Intra-Arterial
Therapy (HIAT) score assign 0 points for National Institute of
Health stroke scale (NIHSS) ≤ 5, losing the predictive power of
NIHSS in mild stroke patients (10, 11). NIHSS on admission has
been proven to be a strong predictor of PSD (5). Thus, despite
convenient clinical applicability, these models cannot accurately
identify mild stroke patients at high risk of PSD. Such models
remain inadequate.

With the increased clinical data gathered for each patient,
modern medical decision-making demands accurate, novel, and

prediction-driven decision support. Machine learning (ML)
algorithm, as a burgeoning statistical approach, is well-suited for
that mission. Numerous studies with a considerable number of
patients have shown great potential for ML approaches to predict
recurrence (12), swallowing recovery (13), or aphasia (14) in
patients with stroke. However, a model based on ML algorithms,
focusing on the more debatable area of treating MS, has not yet
been established.

Here, our goal was to develop and validate a prediction-
driven decision support tool based on ML algorithms, called
DAMS (Disability AfterMild Stroke), to early identifymild stroke
patients who would be at high risk of PSD if they only received
medical therapy, and more importantly, to assist neurologists to
make individual clinical decisions for mild stroke patients.

MATERIALS AND METHODS

Study Population
The study population involved the sequential ischemic stroke
patients within 12 h of symptoms onset recorded in the National
Advanced Stroke Center of Nanjing First Hospital (China)
between July 2016 and September 2020. The exclusion criteria
were patients who received thrombolytic therapy, age< 18 years,
lack of 3-month mRS, who were disabled before the stroke
(premorbid mRS score ≥ 2), with an admission NIHSS > 5. The
primary outcome was PSD, corresponding to 3-month mRS ≥ 2.

Based on the Helsinki declaration, this study was allowed
by the ethics committee of Nanjing First Hospital (document
number: KY20130424-01), and informed consent of all patients
was obtained.

Patient Clinical and Demographic Variables
Data used for prediction were routinely gathered and stored in
the electronic health record. Demographic variables included
age, education level, and education. Laboratory data included
fasting blood glucose (FBG), systolic blood pressure (SBP), and
platelet count. The quality of laboratory data was validated
throughout the study period by regular internal quality control
procedures and participation in an External Quality Assessment
scheme. Comorbidities were diagnosed by experienced clinicians
and identified according to International Statistical Classification
of Diseases and Related Health Problems, 10th Revision [ICD-
10] codes, including hypertension, diabetes mellitus, and atrial
fibrillation. Clinical symptoms included language disorder,
facial paralysis, hemiplegia, and dizziness. Medication use
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history was recorded on admission. Based on the clinical
characteristics, imaging, and laboratory examination, ischemic
stroke etiology was classified by a trained physician by Trial
of Org 10172 in Acute Stroke Treatment (TOAST) criteria
(15). NIHSS on admission and 3-month mRS were evaluated
by certified assessors during telephone questionnaires or face-
to-face interviews with the patients, their relatives, or general
practitioners. Data must have been recorded and available in the
electronic health record before prediction to be included.

Statistical Analysis
The continuous variable data was presented as the median value
and interquartile range, using Mann-Whitney U test for clinical
and demographic comparison between two groups. Univariate
tests were conducted using Pearson’s chi-square test or Fisher’s
exact test for categorical data which were indicated as the number
of events (fraction of the total). All tests were two-sided and p-
values <0.05 were considered statistically significant. The above
statistics and descriptions were implemented with SPSS version
25.0 (IBM Corporation, Armonk, NY, USA).

ML Algorithms
Before introducing the ML prediction model with the
demographic and clinical variables mentioned above, missing
values were first filled following the k-nearest neighbor algorithm
(16). In addition, patients who missed more than one data would
be excluded. The continuous data were standardized by z-score
normalization (17), and the categorical data were converted by
one-hot encoding (18). To select the ML algorithm that exhibits
the best predictive ability, five ML classifiers, logistic regression
(LR), support vector machine (SVM), random forest classifier
(RFC), extreme gradient boosting (XGB), and deep neural
network (DNN), were implemented for model construction to
predict PSD in mild stroke patients.

Feature Selection
Superfluous and extraneous factors may lead to model overfitting
and affect the predictive power of the model, respectively. Thus,
a feature selection process was carried out in the study. All
variables with significant difference (p < 0.05) in the univariate
analysis were subjected to the least absolute selection and
shrinkage operator (LASSO) algorithm, which is available for
software python (version 3.7; https://www.python.org/). LASSO
algorithm implements variable selection and regularization to
improve the prediction accuracy and interpretability of themodel
(19). Finally, variables with non-zero coefficients determined
by LASSO method were incorporated for building ML models.
The feature selection algorithm was carried out with Python
Scikit-learn environment (version 0.23.2).

Model Development
Supervised ML algorithms mentioned above with binary
classification (PSD and non-PSD) were applied to establish
predictive models. The study population was randomly divided
into the training set (80%) for developing models and the testing
set (20%) for assessing the models’ performance. In the training
step, 10-fold cross-validation was implemented, dividing and

FIGURE 1 | Flow chart illustrating patient selection. mRS, modified Rankin

Scale; NIHSS, National Institute of Health stroke scale; IV, intravenous.

generating ten different derivation and inner validation subsets,
which improved the generalizability and avoided overfitting. Grid
search algorithm was adapted to tune model hyper-parameters to
achieve the highest area under curve (AUC) of receiver operating
characteristic (ROC).

Model Evaluation
Upon obtaining the models, the predictive performance was
assessed on a testing set according to scores of AUC of ROC,
drawn by sensitivity and 1-specificity across a series of cut-off
points. Discrimination of the ML model on the testing set was
evaluated by AUC. Delong test was carried out to compare the
ROC curves in different models. Calibration of the ML model on
the testing set was evaluated by calculating Brier score, calibration
slope, and calibration intercept. The difference between the
estimated and observed risk for PSD was calculated by Brier
score, and the model with calibration slope = 1 and calibration
intercept = 0 indicated perfect calibration. In addition, the
null model Brier score was calculated to compare the relative
gain of the algorithms to this benchmark (20). Decision curve
analysis was introduced to evaluate the clinical utility (weighted
average of true positives and false positives) by calculating the net
benefits in the range of threshold probabilities. To evaluate the
dominance of theMLmodels in terms of predictive performance,
we also implemented THRIVE and HIAT score on the testing set
(10, 11). Finally, the optimal model was selected for DAMS.

Feature Importance
ML models were accused of being “black boxes,” which means
that the development and validation processes of ML models
are uninterpretable. In order to rank features in ML models, we
introduced the SHapley Additive exPlanations (SHAP) approach.
The SHAP approach has a high potential for rationalization of
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TABLE 1 | Demographic and clinical data of the patients.

Total (n = 1905) Non-PSD (n = 1458) PSD (n = 447) p-value

Demographic

Age years median (IQR) 65 (58–73) 63 (56–71) 70 (63–79) <0.001*

Male sex n (%) 1337 (70.2%) 1046 (71.7%) 291 (65.1%) 0.007*

BMI kg/m median (IQR) 24.57 (22.49–26.67) 24.62 (22.49–26.67) 24.39 (22.22–26.67) 0.089

Education n (%) 0.018*

0–6 739 (38.8%) 540 (37.0%) 199 (45.5%)

6–9 617 (32.4%) 487 (33.4%) 130 (29.1%)

9–12 392 (20.6%) 314 (21.5%) 78 (17.4%)

>12 157 (8.2%) 117 (8.0%) 40 (8.9%)

Risk factors of n (%)

Hypertension 1322 (69.4%) 977 (67.0%) 345 (77.2%) <0.001*

Diabetes mellitus 557 (29.2%) 394 (27.0%) 163 (36.5%) <0.001*

Dyslipidemia 55 (2.9%) 44 (3.0%) 11 (2.5%) 0.538

Coronary artery disease 158 (8.3%) 106 (7.3%) 52 (11.6%) 0.003*

Atrial fibrillation 90 (4.7%) 62 (4.3%) 28 (6.3%) 0.079

Previous TIA 8 (0.4%) 7 (0.5%) 1 (0.5%) 0.689

Previous ischemic stroke 196 (10.3%) 136 (9.3%) 60 (13.4%) 0.013*

Previous hemorrhagic stroke 46 (2.4%) 27 (1.9%) 19 (4.3%) 0.004*

Current smoker 877 (46.0%) 710 (48.7%) 167 (37.4%) <0.001*

Current drink 652 (34.2%) 529 (36.3%) 123 (27.9%) 0.001*

Clinical symptoms n (%)

Amaurosis 4 (0.2%) 3 (0.2%) 1 (0.2%) 1.000

Language disorder 61 (3.2%) 44 (3.0%) 17 (3.8%) 0.409

Facial paralysis 840 (44.1%) 612 (42.0%) 228 (51.0%) 0.001*

Hemiplegia 1271 (66.7%) 924 (63.4%) 347 (77.6%) <0.001*

Dizziness 225 (11.8%) 176 (12.1%) 49 (11.0%) 0.525

Consciousness disturbance 27 (1.4%) 16 (1.1%) 11 (2.5%) 0.038*

Sensory disturbance 293 (15.4%) 230 (15.8%) 63 (14.1%) 0.389

Medication use history n (%)

Previous antiplatelet 206 (10.8%) 144 (9.9%) 62 (13.9%) 0.017*

Previous anticoagulation 29 (1.5%) 23 (1.6%) 6 (1.3%) 0.722

Previous statin 115 (6.0%) 84 (5.8%) 31 (6.9%) 0.362

TOAST classification <0.001*
†

LAA (%) 895 (47.0%) 620 (42.5%) 275 (61.5%)

CE (%) 124 (6.5%) 89 (6.1%) 35 (7.8%)

SAO (%) 824 (43.3%) 697 (47.8%) 127 (28.4%)

SOC (%) 16 (0.8%) 13 (0.9%) 3 (0.7%)

SUC (%) 46 (2.4%) 39 (2.7%) 7 (1.6%)

Baseline data

Premorbid mRS=1 (%) 90 (4.7%) 52 (3.6%) 38 (8.5%) <0.001*
†

NIHSS at admission median (IQR) 2 (1–3) 2 (1–3) 3 (2–4) <0.001*
†

SBP mmHg median (IQR) 143 (130–158) 143 (130–158) 146 (130–160) 0.010*
†

DBP mmHg median (IQR) 85 (80–90) 85 (80–90) 84 (80–90) 0.352

Platelet count 10/L median (IQR) 204 (164–204) 205 (165–241) 201 (158–234) 0.068

Creatinine mmol/L median (IQR) 77 (58–82) 75 (59–81) 82 (58–88) 0.022*
†

FBG mmol/L median (IQR) 5.97 (4.58–6.61) 5.86 (4.55–6.40) 6.31 (4.64–7.36) 0.002*
†

TC mmol/L median (IQR) 4.51 (3.77–5.16) 4.50 (3.77–5.15) 4.54 (3.73–5.19) 0.547

TG mmol/L median (IQR) 1.69 (1.02–1.95) 1.73 (1.04–1.98) 1.58 (0.99–1.80) 0.006*
†

HDL mmol/L median (IQR) 1.08 (0.86–1.19) 1.07 (0.87–1.19) 1.07 (0.86–1.21) 0.917

LDL mmol/L median (IQR) 2.72 (2.12–3.26) 2.70 (2.13–3.24) 2.76 (2.11–3.34) 0.189

IQR interquartile range; BMI body mass index; TIA transient ischemic attacks; TOAST Trial of Org 10172 in Acute Stroke Treatment; LAA large artery atherosclerosis; CE cardioembolism;

SAO small artery occlusion; SOC stroke of other determined cause; SUC stroke of undetermined cause; mRS modified Ranking Scale; NIHSS National Institutes of Health Stroke Scale;

SBP systolic blood pressure; DBP diastolic blood pressure; FBG fasting blood glucose; TC total cholesterol; TG triglycerides; HDL high-density lipoprotein; LDL low-density lipoprotein.

Data are given as n (%) or median (interquartile range).

*Variables included into the least absolute selection shrinkage operator regression (P<0.05).
†
Variables selected by the least absolute selection shrinkage operator regression.
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FIGURE 2 | The receiver operating characteristic curve (ROC) of the machine learning models on training set (A) and ROC of the machine learning models and

traditional models on testing set (B) AUC, the area under curve; LR, logistic regression; SVM, support vector machine; RFC, random forest classifier; XGB, extreme

gradient boost; DNN, deep neural network; THRIVE, Totaled Health Risks in Vascular Events; HIAT, Houston Intra-arterial Recanalization Therapy.

TABLE 2 | Discrimination and calibration of each machine learning algorithms on the testing set.

Model AUC (95% CL) Sensitivity % Specificity % Accuracy % Intercept Slope Brier

LR 0.766 (0.709–0.823) 78.6 64.3 68.0 −0.129 0.805 0.221

RFC 0.755 (0.699–0.812) 80.6 59.4 64.8 −0.488 1.5533 0.228

SVM 0.762 (0.705–0.819) 74.5 71.0 71.9 0.035 0.935 0.159

XGB 0.749 (0.691–0.807) 70.4 68.2 68.8 0.068 0.879 0.165

DNN 0.759 (0.702–0.816) 74.5 67.1 69.0 −0.030 0.576 0.227

AUC, area under curve of receiver operating characteristic; CL, confidence interval; LR, logistic regression; RFC, random forest classifier; SVM, support vector machine; XGB, extreme

gradient boosting; DNN, deep neural network.

Null model Brier score = 0.180.

the predictions from sophisticated ML models (21). In addition,
the SHAP method indicates whether the effect of a feature on the
result is positive or negative.

Rapid Prediction Model
DAMS may include some variables that take a relatively long
time to obtain in emergency contexts, such as triglycerides and
creatinine levels. For a more urgent situation, rapid-DAMS (R-
DAMS), which excluded these variables, would be constructed
based on DAMS. Then we will compare R-DAMS with DAMS
in multiple dimensions such as ROC, calibration curve, and
decision curve analysis.

RESULTS

Study Population
As shown in Figure 1, 1,905 patients met the inclusion criteria
and were included in the present study. Patients with PSD

account for 23.5% (447) of mild stroke patients; analogous
proportions of PSD patients were established between training
and testing sets (22.9 vs. 25.7%, p > 0.05). The median age
of included patients was 65 (interquartile range: 58–73) years
and 1,337 (70.2%) patients were men. The baseline statistics
of both PSD and non-PSD groups were exhibited in Table 1.
The characteristics of the patients struck a balance between the
training (n = 1,524, 80%) and testing (n = 381, 20%) sets
(Supplementary Table 1).

Feature Selection
Table 1 shows that 21 features were significantly different (p <

0.05) between patients with and without PSD with univariate
analyses. Then, nine features without non-zero coefficients
were excluded by LASSO regression. The final 12 variables
incorporated intoMLmodels were age, NIHSS at admission, SBP,
creatinine, FBG, triglyceride, hemiplegia, hypertension, previous
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FIGURE 3 | The calibration curve of the machine learning models (A) and decision curve analysis of the machine learning models (B). LR, logistic regression; SVM,

support vector machine; RFC, random forest classifier; XGB, extreme gradient boost; DNN, deep neural network.

ischemic stroke, current drink, premorbid mRS, and TOAST
classification.

Model Performance
Supplementary Table 2 exhibited the model hyper-parameters.
ROCs of eachmodel on the training set were shown in Figure 2A.
Table 2 shows performance metrics on the testing set, including
AUC, sensitivity, Brier score, calibration slope, and calibration
intercept.

As shown in Table 2 and Figure 2B, the discriminative
performance was observed in LR (AUC, 0.766; 95% CL, 0.709–
0.823), RFC (AUC, 0.755; 95% CL, 0.699–0.812), SVM (AUC,
0.762; 95% CL, 0.705–0.819), XGB (AUC, 0.749; 95% CL, 0.691–
0.807), and DNN (AUC, 0.759; 95% CL, 0.702–0.816) on the
testing set, and AUCs on the testing set were 0.633 (95% CL,
0.577–0.689) and 0.629 (95% CL, 0.596–0.721) in HIAT and
THRIVE score, respectively. The results of the DeLong test
indicated that there was no statistical difference in the AUCs
of the five ML models, but the AUCs of the five ML models
was significantly better than that of HIAT and THRIVE scores
(Supplementary Table 3).

The null model Brier score in the present study was 0.180.
On the testing set, the Brier score ranged from 0.159 to 0.228.
The calibration slope ranged from 0.576 to 1.553 and calibration
intercept ranged from −0.488 to 0.068 (Figure 3A and Table 2).
Decision curve analysis indicated that SVM and XGB models
exhibited higher net benefit than other ML models as well
as default strategies of treating all patients or no patients
(Figure 3B).

There was no statistical difference in AUCs of the ML models,
but the SVM model exhibited higher net benefit and calibration
(Brier score, 0.159, calibration slope, 0.935, calibration intercept,
0.035). Therefore, the SVMmodel was selected to be DAMS.

Feature Importance
SHAP was introduced to rank the feature importance based on
DAMS. Figures 4A,B show that the most important features
were NIHSS on admission, age, and FBG. Figure 4A shows the
individual distribution of SHAP values for single variables on
DAMS. The redder the color of the sample dot, the higher the
feature value of the variable for the sample. The higher the SHAP
value of the abscissa, the greater the likelihood of PSD. Feature
importance based on other ML models trained in the present
study were provided in Supplementary Figure 1.

Rapid Prediction Model
DAMS included triglycerides and creatinine levels, which
may take some time to obtain in an emergency context.
Therefore, rapid-DAMS (R-DAMS) that excluded triglycerides
and creatinine levels were constructed for more urgent situations.
Then, we compared it with DAMS on a testing set using ROC,
calibration curve, and decision curve analysis. As shown in
Figure 5 and Supplementary Table 4, there was no significant
difference in AUC between R-DAMS and DAMS but the former
performed slightly worse on calibration.

DISCUSSION

In this study, we demonstrated DAMS had the capacity to
early identify mild stroke patients who would be at high risk
of PSD if they only received medical therapy, achieving an
optimal performance compared with our other ML models
and previous scoring systems (THRIVE and HIAT scores). In
addition, R-DAMS was developed for more urgent situations.
DAMS and R-DAMS were able to generate reliable risk estimates
for individuals, relying merely on data that were acquired in an
emergency setting, and R-DAMS was able to do this within 4.5 h
or less of symptom onset. Hitherto none of the prognosis models
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FIGURE 4 | Feature importance ranking based on Shapley Additive exPlanations (SHAP) values (A,B) in DAMS. (A) Red indicates that the value of the feature is high,

and blue indicates that the value of the feature is low; the x-axis represents the SHAP values. The features are ranked according to the sum of the SHAP values for all

patients. (B) Standard bar charts were drawn and sorted using the average absolute value of the shape values of each feature in DAMS. NIHSS, National Institutes of

Health Stroke Scale; FBG, fasting blood glucose; TOAST, Trial of Org 10172 in Acute Stroke Treatment; LAA, large artery atherosclerosis; SAO, small artery occlusion;

SBP, systolic blood pressure; mRS, modified Ranking Scale.

for mild stroke patients were developed for the prime objective
of providing clinical decision support which targets treatment
in the emergency contexts. DAMS and R-DAMS, as prediction-
driven clinical decision support tools with this target in mind, are
significant because neurologists faced a dilemma about the more
debatable area of treating mild stroke: using IV alteplase but with
the risk of sICH, or not using IV alteplase but potentially leaving
the patient with brain ischemia.

In our study, the use of R-DAMS could offer neurologists
effective support in the IV alteplase decision. Whether mild
stroke patients will benefit from IV alteplase is still controversial.

A meta-analysis reported that mild stroke patients who were
treated with IV alteplase had lower odds of PSD even if the
incidence of sICH increased slightly (22, 23). However, this
research relied on retrospective data. The Potential of rtPA for
Ischemic Strokes with Mild Symptoms (PRISMS) trial, which
prospectively enrolled mild stroke patients without “clearly
disabling” deficits, demonstrated no benefit for IV alteplase
in this subgroup of patients (23). This trial defined a more
certain, but not definitive, population for which the use of IV
alteplase cannot be recommended. In line with the findings of
the PRISMS trial, the AHA/ASA guidelines distinguish mild
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FIGURE 5 | The receiver operating characteristic curve (ROC) (A), the calibration curve (B), and decision curve analysis (C) between R-DAMS model and DAMS

model. AUC, the area under curve.

disabling stroke frommild non-disabling stroke and recommend
IV alteplase within 3 and 4.5 h only for the former (6). The
population in our study was not categorized by whether their
initial symptoms were “clearly disabling,” because there are subtle
differences in judgments about “clearly disabling” deficits in
individual neurologists. In the present study, it should be stated
explicitly that for patients who were identified to be at high
risk of PSD by DAMS or R-DAMS, medical therapy alone is
not enough. Thus, the two models support decision-making in
the following ways: First, for mild stroke patients judged to
be eligible for IV alteplase by current guidelines, R-DAMS was
the best choice. The prediction generated by R-DAMS, paired
with neurologists’ expertise, enables them to choose the most
appropriate candidates for IV alteplase. Second, for patients who
are not eligible but are at high risk of PSD according to DAMS,
best medical therapy alone with close monitoring may be an
appropriate course of action.

On the other hand, we unlocked the potential utility of
DAMS in secondary prevention. In a secondary analysis of
the Acute Stroke or Transient Ischemic Attack Treated with
Aspirin or Ticagrelor and Patient Outcomes (SOCRATES) trial,
recurrent cerebrovascular event occurred at a significantly higher
rate in patients with PSD than patients without PSD (29.0 vs.
3.7%) (5). Furthermore, as a leading cause of PSD (5, 8), a
recurrent cerebrovascular event would do more irreparable harm
to the patients at high risk of PSD compared with those at low
risk. Therefore, effective prevention of recurrent cerebrovascular
event to the patients at high risk of PSD portends a decreased
risk of PSD. In the present study, DAMS could help to identify
mild stroke patients at high risk of PSD, namely those who
would most likely obtain substantial benefits from secondary
prevention. For this patient group, a focus on evidence-based
treatments for secondary prevention, and a support program to
improve achievement of secondary prevention targets (e.g., blood
pressure, diabetic control, cholesterol) in the long-term, might
significantly reduce PSD.

With the expectation that DAMS and R-DAMS can be
integrated into clinical practice, we had to acknowledge that

our results represent only one step toward one component
of a prediction-driven decision support tool for mild stroke
patients. Some other steps need to be considered. Firstly,
external validation, using data sets from different centres, should
be carried out to duplicate the present results. Secondly, an
impact study, quantifying whether application of DAMS and
R-DAMS in clinical practice improves neurologists’ decision
making and subsequent patient outcome, is indispensable (24).
Finally, development of simple-to-use software, providing a clear
interpretation of the prediction and further treatment/prevention
information based on this prediction, is required. The present
results are promising but we need to emphasize that much work
must be done before completely integrating DAMS and R-DAMS
into clinical practice.

In the present study, several predictors of PSD have been
discovered. NIHSS is a widespread assessment tool used to
quantify the baseline severity in stroke patients. As shown in
Figure 4A, even within a narrow range of baseline scores, the
strongest feature that contributed to the prediction was NIHSS
on admission and the higher the values of NIHSS, the more likely
the chance of PSD. Noticeably, although the NIHSS has been
widely favored in clinical research, some neurological deficits
are measured objectively. For example, one NIHSS item, ataxia,
confused hemiplegia and normal function by scoring ataxia as
“normal” (0) in patients with hemiplegia (25). In the present
study, patients with hemiplegia at admission are more likely to
be PSD.

There are some limitations to the present study. Firstly,
the mRS used to assess the levels of PSD in our study lacks
sufficient detail to describe cognition and mood outcomes. A
study published in 2017 in the Stroke journal demonstrates
that a considerable number of patients with a good mRS
outcome were incapable of socially reintegrating because of
cognitive impairment and depression (26). However, the validity
and reliability of the mRS was recognized by several clinical
researchers (23, 27). Since the mRS is easy to use and interpret,
the scale has been a valuable tool for assessing the efficacy
of therapeutic interventions till now. Secondly, the lack of
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external validation in our study hinders the evaluation of external
generalizability. As a result, whether DAMS and R-DAMS, which
have the selection bias that is inherent in any prediction model,
can be used directly in other health institutions is still uncertain.
To solve this problem, we provided as much detail as possible
about the study cohort (Table 1). This information enables
other institutions to judge whether their selected population
matches the population here. In addition, the process of model
development has been described in a precise fashion in Methods
and Supplementary Table 2. Therefore, DAMS and R-DAMS
may be transferable to other institutions. Thirdly, recurrent
cerebrovascular event, a known predictor of PSD in mild stroke
patients, was absent in the process by which DAMS and R-DAMS
are developed (5, 8). Our models were initially designed for
supporting clinical decision-making in emergency contexts, in
which the data of recurrent cerebrovascular event is unavailable.

CONCLUSIONS

DAMS and R-DAMS represent one step within a larger process
to early identify mild stroke patients who would be at high
risk of PSD if they only received medical therapy, by assisting
neurologists to make individual clinical decisions for mild
stroke patients. Compared with our other ML models and
previous scoring systems (THRIVE and HIAT scores), DAMS
had a better performance and R-DAMS was able to operate
within 4.5 h or less of symptom onset. Future work should
build on these findings to transfer DAMS and R-DAMS to
different centers.
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