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Abstract

The arterial input function (AIF) plays a crucial role in the quantification of cerebral perfusion parameters. The traditional
method for AIF detection is based on manual operation, which is time-consuming and subjective. Two automatic methods
have been reported that are based on two frequently used clustering algorithms: fuzzy c-means (FCM) and K-means.
However, it is still not clear which is better for AIF detection. Hence, we compared the performance of these two clustering
methods using both simulated and clinical data. The results demonstrate that K-means analysis can yield more accurate and
robust AIF results, although it takes longer to execute than the FCM method. We consider that this longer execution time is
trivial relative to the total time required for image manipulation in a PACS setting, and is acceptable if an ideal AIF is
obtained. Therefore, the K-means method is preferable to FCM in AIF detection.
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Introduction

Perfusion magnetic resonance imaging (MRI) can be used to

assess cerebral hemodynamic parameters for non-invasive diag-

nosis and staging of disease and for treatment monitoring. This

method involves monitoring of rapid changes in signal intensity

over time for a tracer passing though the capillary bed.

Quantitative analysis using dynamic susceptibility contrast (DSC)

MRI perfusion requires determination of the arterial input

function (AIF), which is the concentration of the contrast agent

over time in a brain-feeding artery [1,2]. It is used in the

deconvolution of tissue time–concentration curves to obtain

hemodynamic maps of cerebral blood flow (CBF), cerebral blood

volume (CBV), and mean transit time (MTT) [3–10]. Thus, AIF

profile has a profound effect on final calculation of cerebral blood

parameters. Previous methods used to obtain AIF in clinical

practice require manual selection, which is subjective and time-

consuming [11–14], and operators must be specially trained.

Then, two automatic methods were developed by Mouridsen et al.

[7] and Murase et al. [15] based on two widely used multivariate

statistical techniques: fuzzy c-means (FCM) and K-means cluster-

ing. Although several comparative analyses of FCM and K-means

clustering algorithms have been reported [16–18], to the best of

our knowledge, no similar study has been carried out on cerebral

perfusion field and it is still unclear which method can provide

better AIF for subsequent hemodynamic quantification. Hence, in

the present study we compared the accuracy, duration, and

reproducibility of FCM and K-means cluster analysis for AIF

detection using both simulated and clinical data. Our ultimate aim

was to obtain improvements in perfusion quantification.

Methods

1. Simulation Data
All the experiments are carried out on an off-line personal

computer (Inter Core i3 M350 CPU processor, 2.27 GHz

operating frequency, 2.0 GB RAM memory capacity, Microsoft

Windows 7 operating system). A MATLAB program was

developed in our department for comparison between FCM and

K-means clustering using both simulated data and clinical data.

The simulation was set up as reported by Peruzzo et al. [5]. The

simulation data contained:

– Six ‘‘true’’ arterial voxels not affected by partial volume effects

(PVEs);

– 16 ‘‘false’’ arterial voxels;

– 440 voxels simulating normal gray matter (GM) tissue;

– 440 voxels simulating pathological GM tissue;

– 600 voxels simulating normal white matter (WM) tissue; and

– 400 voxels contaminated by PVEs.

The true AIF comprises the main peak (CP tð Þ) and subsequent

recirculation (CR tð Þ):

AIF~CP tð ÞzCR tð Þ ð1Þ
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where t0 is the arrival time of contrast agent, a is a measure of

inflow velocity steepness, b is the washout velocity, the symbol

‘‘6’’ represents the convolution operation, td is the delay between

the principal peak and recirculation, tR is the time constant for the

function accounting for recirculation dispersion, and k is a

constant that ensures that the recirculation peak is the third part of

the main peak. We used values of a= 3.0, b= 1.5 s, td = 8 s,

tR = 30 s [5,15,19,20], and t0 = 26 s, which closely approximates

the contrast agent arrival time for our clinical perfusion data.

The residue function R(t) was modeled using a gamma variate

function to simulate the presence of bolus dispersion.

R(t)~t � exp {
tffiffiffiffiffiffiffiffiffiffiffiffi

MTT
p

� �
ð4Þ

where MTT equals the ratio of CBV to CBF.

Then the relationship between contrast concentration C(t) and

signal intensity S(t) was established using the following equations:

C(t)~
r

kH
CBF (AIF6R(t)) ð5Þ

S(t)~S0 � exp ({kvox � TE � C(t)), ð6Þ

where r= 1.04 g/ml is the density of brain tissue, kH = 0.73 is a

correction factor that takes into account the difference in

hematocrit between large vessels used for AIF determination and

small vessels such as capillaries and arterioles, S0 is the image

baseline intensity, which equals 100 here [19], and kvox is selected

to result in a 40% signal peak decrease from baseline for normal

GM, which corresponds to values typically found in clinical cases.

The scan time for simulation experiments was 90 s with an echo

time (TE) of 0.03 s to match the scan parameters for our clinical

perfusion data.

Different tissue types and pathological states were simulated

using the following parameters: normal GM tissue, CBV = 4 ml/

100g, MTT = 460.33 s; normal WM tissue, CBV = 2 ml/100 g,

MTT = 5.4560.33 s; and pathological GM tissue, CBV = 3.3 ml/

100 g, MTT = 1060.7 s. Sixteen pseudo-AIFs were generated by

changing t0 from 27 to 30 s and td from 9 to 12 s in increments of

1.0 s. Voxels affected by PVE were generated by linear

combinations of a true arterial signal and signal for one of the

different tissues, with weights selected at random.

2. Clinical Data
2.1 Ethics statement. Ethical clearance was obtained for this

study from the Ethics Committee of Shengjing Hospital of China

Medical University (No. 2013PS113K) and written informed

consents were obtained from all participants prior to the study

onset.

2. 2 Acquisition protocol. Forty-two volunteers (27 males

and 15 females) aged 23–69 years (average = 49.5) agreed to

participate in this study and underwent DSC MR imaging. Before

the scans, all of the participants were told to abstain from caffeine

drinking and eating to minimize their physiologic fluctuations. All

of the subjects were confirmed healthy by a senor neurologist.

The imaging data were acquired using a 3.0 T whole-body MR

scanner with multichannel capabilities (MAGNETOM Verio;

Figure 1. FCM cluster analysis results for AIF detection. Top: time–concentration curves for different clusters. Bottom: mean curve for M values
of 0.0182, 1.9697e-004, 1.7418e-004, 0.0016, 3.9782e-004, respectively. The mean curve for M= 0.0182 was thus selected to represent the estimated
AIF.
doi:10.1371/journal.pone.0085884.g001
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Siemens Medical Solution, Erlangen, Germany). Before the

contrast material was injected, the diffusion-weighted images

(DWI), conventional T1- and T2-weighted images (T1WI and

T2WI), and T1-weighted contrast material-enhanced images were

acquired with the morphological scanning sequences. For the DSC

perfusion imaging, a single-shot echo planar imaging (EPI)

sequence was performed with the following parameters: repetition

time (TR) = 1500 ms, echo time (TE) = 30 ms, matrix = 1286128,

field of view (FOV) = 23623 cm, slice thickness = 4 mm, spacing

between slices = 5.2 mm, slice number = 19, acquisition type = 2D,

number of phase encoding steps = 127, transmitting coil = body,

and flip angle = 90u. Sixty-two whole-head images were obtained

(scanning time = 93 s) per subject and one slice covered the

horizontal part of the right middle cerebral artery (MCA). At the

seventh time point, a gadolinium-based contrast agent (Gadovist;

Bayer Schering Pharma AG, Berlin, Germany) was administered

at 0.1–0.2 mmol/ml per kilogram of body weight using a power

injector at a rate of 4 ml/s, followed by an equal volume of saline

flush at the same injection speed.

The magnetization state was not steady at the beginning of

perfusion scanning, so the first two images were discarded and the

time 0 was assigned to the third acquired volume. Therefore, 60

volume images were used in the subsequent quantitative analysis.

3. AIF Determination
3.1 Clustering analysis on simulation data. First, the

signal intensity was converted to contrast agent concentration

using the inversion formula of Eq. (6) [7,8]. Then FCM and K-

Means clustering algorithms were applied to the converted data

respectively according to the mathematical principles outlined by

Murase et al. [15] and Mouridsen K et al. [7]. These clustering

techniques are very mature, so it is not described in detail here. As

Figure 2. K-means cluster analysis results for AIF detection. Top: time–concentration curves for different clusters. Bottom: mean curve for M
values of 0.0212, 5.8216e-004, 1.7180e-004, 2.3354e-004, 0.0205, respectively. The mean curve for M= 0.0212 was thus selected to represent the
estimated AIF.
doi:10.1371/journal.pone.0085884.g002

Figure 3. Comparison of the true AIF, K-means-based AIF, and
FCM-based AIF.
doi:10.1371/journal.pone.0085884.g003

Table 1. Comparison of AIFs based on the two clustering
methods and the true AIF.

AIF PVE PV TTP FWHMAUC RMSE M

FCM-based 0.7857 3.9895 30.95 7.0710 75.1458 0.3295 0.0182

K-Means-
based

0.6842 4.1607 29.88 6.5771 75.4032 0.2028 0.0212

True 0 4.4592 29.51 6.2016 76.8669 0 0.0244

doi:10.1371/journal.pone.0085884.t001

AIF Determination Using FCM and Kmeans Clustering
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done by Mouridsen et al. [7] and Peruzzo D et al. [5], the number

of clusters was set to 5. For the mean curve of each cluster, the

peak value (PV), the time to peak (TTP), and the full-width half-

maximum (FWHM) were computed, then a measure M= PV/

(TTP*FWHM) was calculated. The cluster with the highest M

value was deemed as the most appropriate one for determining

AIF from the mean time–concentration curve [15].

3.2 Clustering analysis on clinical data. First, physiolog-

ical fluctuations (breathing, heartbeats, etc.) and involuntary

motions by the subject were difficult to avoid during the

acquisition of 60 bolus tracking volumes, which resulted in

misalignments of the volume images at different time points. The

images were realigned to the first pre-contrast volume using SPM

(http://www.fil.ion.ucl.ac.uk/spm/) (version, SPM99) and IN-

RIAlign 1.01 [21–23]. No smoothing was performed on any of the

images.

Second, the slice contained the right horizontal MCA was

extracted from the first volume image. The same principle was

applied to the given slice for calculating contrast agent concen-

tration. The arterial regions had small areas, so only a small

fraction of the entire set of time-concentration curves correspond-

ed to artery pixels [13]. Most pixels represented tissue voxels and

exhibited small changes in their signal intensity. It was necessary to

eliminate these weak pixels to optimize AIF detection [5,7]. Thus,

the area under the time-concentration curve was computed for

each pixel and the PAUC-L percentage of the curves with the

smallest areas were excluded [5,7].

Third, during the scanning of perfusion images, some fluctu-

ating curves were obtained because of shifts in voxels, PVEs,

physiological pulsations, and other effects. These irregular curves

would produce poor estimates of the true AIF [7]. Thus, the

following standard roughness measurement method was used and

the Prough percentage of the remaining curves with the largest

integral values were excluded [7].

^ (C)~

ðT
o

(C
00
(t))dt ð7Þ

Figure 4. Image of a slice containing the right MCA (white
rectangle) extracted from the first dynamic of perfusion scans
for clustering analysis.
doi:10.1371/journal.pone.0085884.g004

Figure 5. AIF detection results for FCM cluster analysis. Top: time–concentration curves for different clusters. Bottom: mean curves for M
values of 5.7745e-004, 0.0145, 0.0135, 0.0070, and 0.0047, respectively. The mean curve for M=0.0145 was thus selected to represent the estimated
AIF.
doi:10.1371/journal.pone.0085884.g005

AIF Determination Using FCM and Kmeans Clustering
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As reported by Mouridsen K et al. [7], the value of PAUC-L and

Prough was assigned to 0.90 and 0.25.

Finally, the FCM and K-means were applied to the residual

curves. As done previously, the number of clusters was still set to 5,

and the AIF cluster was determined using the measure M= PV/

(TTP*FWHM) again.

4 Statistical Analysis
4.1 Simulation data. Several parameters were computed to

evaluate the performance of the two methods for AIF detection.

First, PVE was calculated as the percentage non-arterial signal

Figure 6. K-Means cluster analysis results for AIF detection. Top: time–concentration curves for different clusters. Bottom: mean curve for M
values of 6.7346e-004, 0.0036, 0.0138, 0.0066, and 0.0148, respectively. The mean curve for M=0.0148 was thus selected to represent the estimated
AIF.
doi:10.1371/journal.pone.0085884.g006

Figure 7. Comparison of AIFs derived from the FCM and K-
means clustering methods. Relative to FCM, the K-means-based AIF
shows similar TTP, higher PV, larger AUC, and narrower FWHM.
doi:10.1371/journal.pone.0085884.g007

Figure 8. Comparison of AIF detection reproducibility for (A) K-
means and (B) FCM clustering methods. Both algorithms were
independently executed 50 times in succession. The robustness is 0.131
for the K-means method and 10.901 for FCM. Hence, K-means clustering
shows better reproducibility than FCM for AIF detection.
doi:10.1371/journal.pone.0085884.g008

AIF Determination Using FCM and Kmeans Clustering
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in voxels selected as the AIF cluster by the algorithms. Low PVE

indicates that arterial voxels can be well discriminated by the

corresponding algorithm. In addition, FWHM, TTP, and PV were

compared for the FCM and K-means clustering methods to

evaluate the AIF detection accuracy [3]. An estimated AIF with

lower PVE exhibits greater PV and smaller FWHM, and an earlier

TTP indicates a shorter bolus delay [3].

Second, integrated AIF curves correlate well with the relative

CBV (rCBV) [2,5], so the area under the AIF curve (AUC) is

another important parameter in assessing estimated AIFs.

Finally, the difference between estimated and true AIFs was

computed as the root mean square error (RMSE).

RMSE~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i~1 (AIFestimate(ti){AIFtrue(ti))½ �2

n

s
, ð8Þ

where n is the scan time (90 s).

4.2 Clinical data analysis. Similar to the simulation data,

the influence of the two algorithms on AIF detection accuracy was

evaluated by comparing the shape parameters (TTP, PV, FWHM)

and AUC.

Second, the measurement reproducibility of each algorithm was

validated by comparing AIF results calculated independently 50

times in succession. Robustness, defined as the variance for AIF

curves, was quantitatively assessed according to

Robustness~
XN
i~1

XM
j~1

AIFi(j){
1

N

XN
i~1

AIFi(j)

" #2

, ð9Þ

where M is the number of time points (60), and N is the number of

calculation repeats (50) [13].

Third, the computational times for AIF detection were

compared between FCM and K-means clustering methods.

The comparisons were performed using a paired-samples t-test.

A P-value ,0.05 was considered significantly different. The

statistical analysis was conducted using SPSS (SigmaStat, 2.03,

Inc., Chicago, IL).

Results

1. Simulated Data
Results for the two algorithms for AIF detection are shown in

Figure 1–3 and Table 1.

The results reveal that the K-means method is less affected by

PVE, as confirmed by the lower PVE value. This method also

exhibits larger AUC, higher PV, and narrower FWHM compared

to the FCM method. In addition, TTP is earlier for K-means

clustering than for FCM, which means that the K-means method is

less influenced by tracer transport delays. The lower RMSE and

visual inspection of Figure 3 indicate that the K-means-based AIF

curve is closer to the true AIF curve than FCM-based AIF is. The

M value for the true AIF is also closer to the K-means than the

FCM value, confirming that the AIF derived from K-means

clustering is more accurate than the FCM-derived AIF.

2. Clinical Data
According to the predetermined steps, AIFs were obtained for

each participant using the K-means and FCM methods. We use a

37-year old man as an example to describe differences between the

AIF detection methods. Figure 4 shows an optimal slice for

clustering analysis. Figures 5 and 6 show K-means and FCM

clustering results, respectively. Figure 7 compares AIFs derived
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from the two algorithms. Figure 8 shows the reproducibility of the

different clustering methods for AIF detection.

Statistical results are presented in Table 2. AIFs measured using

the K-means algorithm have higher PV, in agreement with the

simulation result. The difference is significant (P,0.05). TTP

values calculated using the FCM and K-means methods are in

good agreement and the difference is not significant (P.0.05). The

mean FWHM is slightly narrower for K-means-based AIF than for

FCM-based AIF, but the difference is not significant (P.0.05).

Both mean AUC and M value are significantly higher for the K-

means than for the FCM method (P,0.05). The variance

(robustness) for AIF curves is significantly lower for the K-means

method compared to FCM (P,0.05), indicating that the

calculation–recalculation reproducibility is better for K-means

cluster than for the FCM method for AIF detection. The mean

execution time is significantly longer for the K-means cluster

method than for FCM cluster analysis (P,0.05).

Discussion

AIF must be determined in advance to quantify the perfusion

parameters such as CBV, CBF, and MTT. Conventional methods

require that a ROI is drawn on the MCA or internal carotid artery

(ICA) manually, before calculating the AIF by averaging the time-

concentration curves of all the pixels in the ROI. However, this

manual method had some limitations during AIF determination.

First, the calculation results are subjective, so there is a lack of

consistency among different operators and among different time

points with the same operator. Second, this method is time-

consuming and unfeasible in some cases, such as acute stroke,

where the confirmation of the location and the amount for

salvageable tissue can be used to identify cases that may benefit

from thrombolytic therapy, but the treatment must be initiated

rapidly [24–26], so the immediate acquisition of perfusion maps is

essential. Thus, an objective and rapid method for AIF detection

would be of great importance.

Several automatic methods have been developed to solve the

problems associated with manual operation. Early automatic

methods were based on the characteristic shapes of contrast agents

in the artery [9,15] and were easy to understand and implement.

However, they only used shape parameters of time-course curves,

so there was a risk that a suboptimal AIF might be selected. Thus,

extra information was obtained from DSC images and used to

identify AIF based on various multivariate statistical methods, such

as principal components analysis and cluster analysis. Cluster

analysis was used to partition bundles of time–concentration

curves into several groups. Curves from the same group had

common shape characteristics, which could be distinguished from

those of other groups. Cluster analysis included several different

algorithms. Two frequently used algorithms, FCM and K-means

clustering, have been used for automatic AIF determination

independently [7,15]. However, to the best of our knowledge,

there has been no comparative analysis of K-means and FCM

clustering techniques for AIF detection and it is not clear which

performs better.

Therefore, we compared the performance of FCM and K-means

cluster analysis for AIF detection using both simulation and

clinical data. The results demonstrate that AIFs obtained using K-

means clustering have a higher peak than AIFs obtained using

FCM analysis, and the difference was significant for clinical data.

Thus, K-means-based AIF determination might be less affected by

mixing of the arterial signal with signals from surrounding tissue

[3,27], so the resulting AIF approaches optimality. AUC was

higher for the K-means method than for FCM and was closer to

the true AIF for simulation data; the K-means–FCM difference

was significant for clinical data. This indicates that AIF

determination based on the K-means method is affected by

minimal partial volume averaging [3]. The higher peak and larger

integrated bolus curve for the K-means-based AIF indicate that

this method yields the measurements more close to true AIFs [3],

so it should facilitate more accurate quantitative determination of

CBF, CBV, and MTT. To compare the reproducibility, each

algorithm was executed 50 times for the same batch of data. The

results reveal better reproducibility for K-means clustering than for

FCM analysis. It is known that erratic AIFs lead to non-

reproducible quantification of cerebral parameters, which under-

mines the diagnosis and tracking of disease. Thus, compared to

FCM clustering, the K-means method is preferable for AIF

determination.

Finally, the question of the computational time requirements of

each method needs to be addressed. The results demonstrated that

the mean execution time was relatively longer with the K-means

method and the difference was significant. This appeared to be a

drawback of K-means clustering, but this was not the case. In

current PACS environments, the total execution time required for

radiodiagnosis includes the duration of image downloading from

the PACS server, image post-processing on a local workstation,

and image unloading to the PACS server. The entire operation

process takes a few minutes to complete, possibly even more than

ten minutes. Relative to the total duration of image manipulation

in PACS settings, the extra time required to execute the K-means

method compared with the FCM method appears negligible.

Thus, the extra execution time did not limit the use of the K-means

method for AIF determination in clinical practice.

It must be emphasized that there were three limitations in this

research. First, one limitation was the number of subjects who

participated in perfusion imaging because only 42 subjects were

included in the statistical analysis. This limited number of cases

might result in statistical uncertainty [28]. Therefore, it is

necessary to increase the number of subjects in similar studies in

the future. Second, all of the participants involved in this study

were healthy and subjects with abnormalities were not included.

Thus, the clinical efficacy was not validated for patients with

neurological diseases, which means that it is necessary to further

assess the feasibility and efficiency of this method by adding DSC

images of abnormal cases with acute stroke, artery stenosis, and

other abnormalities. Finally, we only evaluated the two most

widely used clustering algorithms, so it is still unclear whether

there are significant differences among other clustering algorithms

used for AIF detection. Thus, it is necessary to compare more

different types of clustering algorithms to identify the most suitable

clustering method for AIF determination.

In conclusion, the K-means method yields more accurate and

reproducible AIF results compared to FCM cluster analysis. The

execution time is longer for the K-means method than for FCM,

but acceptable because it leads to more robust and accurate

follow-up hemodynamic maps.
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