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ABSTRACT

Design of blood compatible surfaces is obligatory to minimize platelet surface interac-
tions and improve the thromboresistance of foreign surfaces when they are utilized as
biomaterials particularly for blood contacting devices. Pure metallocene polyethylene
(mPE) and nitric acid (HNO3) treated mPE antithrombogenicity and hydrophilicity
were investigated. The contact angle of the mPE treated with HNO3 decreased. Surface
of mPE and HNOj; treated mPE investigated with FTIR revealed no major changes in its
functional groups. 3D Hirox digital microscopy, SEM and AFM images show increased
porosity and surface roughness. Blood coagulation assays prothrombin time (PT) and
activated partial thromboplastin time (APTT) were delayed significantly (P < 0.05)
for HNOj; treated mPE. Hemolysis assay and platelet adhesion of the treated surface
resulted in the lysis of red blood cells and platelet adherence, respectively indicating
improved hemocompatibility of HNO; treated mPE. To determine that HNOj; does
not deteriorate elastic modulus of mPE, the elastic modulus of mPE and HNOj; treated
mPE was compared and the result shows no significant difference. Hence, the overall
observation suggests that the novel HNOj3 treated mPE may hold great promises to be
exploited for blood contacting devices like grafts, catheters, and etc.

Subjects Biochemistry, Bioengineering, Hematology
Keywords Hemocompatibility, Surface modification, Nitric acid, Blood contacting device

INTRODUCTION

The surface modification of biomaterials is a process of modifying its surface properties
by changing its inherent physical, chemical or biological properties to possess desirable
characteristics (John et al., 2015). Generally, the surface modification of biomaterials can
be done via different techniques for the biocompatibility enhancement, which is the cor-
nerstone property required whilst selecting a blood contacting device (Jaganathan et al.,
2014a; Vellayappan et al., 2015a; Li et al., 2010). There is a wide range of blood contacting
devices available nowadays like grafts, catheters, hemodialysis, bypass/extracorporeal
membrane oxygenation, and ventricular assist devices (VADs). Even though there is a

How to cite this article Vellayappan et al. (2016), Unravelling the potential of nitric acid as a surface modifier for improving the hemo-
compatibility of metallocene polyethylene for blood contacting devices. Peer] 4:e1388; DOI 10.7717/peerj.1388


https://peerj.com
mailto:jaganathaniitkgp@gmail.com
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj.1388
http://creativecommons.or/licenses/by/4.0/
http://creativecommons.or/licenses/by/4.0/
http://dx.doi.org/10.7717/peerj.1388

Peer

widespread need for blood contacting devices, the formation of blood coagulation as well
as commencement of thrombotic events whilst the biomaterial comes in contact with the
blood, remains as a daunting challenge for researchers to decipher (Vellayappan et al.,
2015a; Vellayappan et al., 2015b). A recent statistic shows that 65-88% of aortic repair
procedures performed in the US are being replaced with endovascular grafts and the
thrombus formation in aortic side branches often leads to ischemia ( Thompson, 2013).
Another clinical study dictates that thrombus formation on the catheter surface in 50%
of patients undergoing diagnostic angiography (Formanek ¢~ Frech, 1970). Moreover,
thrombosis is found to be the precipitating event in 30-40% of central venous catheter
malfunctions (Vascular Access, 2006). Thus, prevention of thrombotic deposition and
occlusion, triggered by the activation of the coagulation cascade and platelets, is a
mandatory property which the implanted blood contacting devices should possess before
it is recommended for clinical trials.

The advent of latest technology has paved the way for the discovery of novel polymers
like metallocene which is a new class of polyolefins with superior performance charac-
teristics like improved toughness, sealability, clarity, and elasticity. Metallocene is made
up of two cyclopentadienyl anions (Cp,) which are attached to a metal center (M) with
an oxidation state II, hence resulting in a general formula M(Cs Hs), (Kealy ¢ Pauson,
1951). The metallocene polyethylene (mPE) is one of the versatile polymers. The mPE has
wide spectrum of applications in disposable bags, storage bottles, blood bags, and syringe
tubes. Albeit mPE has an excellent permeability to oxygen and functions as an effective
barricade towards ammonia and water, yet mPE poor blood compatibility hampers it
from being used for blood contacting devices (Mohandas et al., 2013). Thus, different
works were done for enhancing the blood compatibility of mPE recently to promote it
for various biomedical applications.

In our group, we are exploring several modification techniques to improve the blood
compatibility of mPE. Recently, Mohandas et al. (2013) utilized microwave radiation
for surface modification of the mPE to improve its blood compatibility. Furthermore,
the effect of hydrochloric (HCI) acid treatment on the metallocene polyethylene mPE
depicted an enhanced blood compatibility of mPE compared to the untreated mPE
sample (Jaganathan et al., 2014b).

Since the HCl etching effect on mPE yielded good results, it further motivated us to
find other available substitutes which are cost effective and easily available for improving
the blood compatibility of mPE. Thus, being a very strong acid and oxidizing agent,
we have selected HNO3 for improving the blood compatibility of mPE. In work done
utilizing HNOj3; by Moreno-Castilla et al. (1995) dictates that the HNO3 treatment affects
the surface area of activated carbons and their porosity the most compared to the other
treatments like hydrogen peroxide, and ammonium peroxydisulfate treatments. More-
over, Dong et al. (2013) demonstrated the HNO3 oxidation treatment on CNT modifies
the CNTs physical and chemical properties resulting in improved CNTs biocompatibility.
For the first time the effect of HNOj; treatment on mPE is documented in this work.
Furthermore, the present study is done to ascertain the modifications induced in mPE
and its impact on the blood compatibility of the HNOj3 treated mPE samples.
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MATERIALS AND METHODS

Ethics statement

The blood coagulation assays were carried out in India and the characterization tests were
done in Malaysia. Prior to blood procurement, the written consent form was given to the
healthy volunteers. They read the benefits and risks of participation before expressing
his/her willingness by signing the form. All protocols of blood procurement and consent
procedure were approved by the Pacheri Sri Nallathangal Amman (PSNA) College of
Engineering and Technology Ethical Committee of Dindigul with an approved IRB
number: H30114. Later, the blood was extracted via venipuncture from aspirin-free
healthy adult human donor and it is prevented from coagulation with trisodium citrate

at a volumetric ratio of 9:1. Newly prepared platelet rich plasma (PRP) was acquired from
the Dindigul Blood Bank, Dindigul, India.

Sample preparation and acid treatment
Initially, two mPE films of dimensions 10 cm x 10 cm were cut into two samples with
asize of 1 cm x 1 cm. Then the samples were washed with 70% ethanol and distilled
water prior subjecting it to HNOj; treatment. Then, 8—10 ml of concentrated HNO3
with molarity of 15.9 M was poured into petri dish which contains the square shaped
sheets of mPE. The acid and sample containing dishes were later placed on the rocking
shaker which moves at a constant speed. Moreover, in this work mPE sample were
subjected to HNOj; exposure for the different time durations. From that, the optimized
timings were selected by observing surface changes with an optical microscope at 40 x.
The samples subjected for a lesser duration didn’t confer notable surface modifications
when compared with control, however, during 30 min of exposure significant change
in the surface of mPE was observed. While subjecting samples for a prolonged period,
changes noted, were not significant compared to 60 min treated sample. Thus, for
characterization studies, 30 min and 60 min treated samples alone were considered. Once
the acid treatment was done, the samples were washed in distilled water and dried at room
temperature overnight before performing any characterization tests. Whilst preparing the
samples for blood compatibility tests, samples were kept in a beaker with physiological
saline and then in a rotary shaker overnight at 37 °C to remove the acid present on the
surface of the polymer.

The scheme of the experiments performed was shown in Fig. 1.

Characterization of the samples
Contact angle measurement

The hydrophilicity tendency of the polymer was determined using Dynamic Contact
Angle Analyzer (FTA200—First Ten Angstroms). Here, a water droplet was placed on the
surface of the sample. Water droplet of 1 pL was used and the photographs were taken

in the ultra-fast mode within 30 s. The degree of the angle formed is determined using
computer interfaced software. The contact angles were recorded and analyzed for the
samples which are untreated mPE, 30 min and 60 min HNOj; exposed samples (n = 3).
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Figure 1 Schematic representation of series of characterization and blood compatibility experiments
done.

Attenuated total reflectance fourier transfer infrared spectroscopy
(ATR-FTIR)

ATR-FTIR equipment NEXUS- 870 model spectrophotometer was utilized have addi-
tional features such as extended beam splitter, two light sources, and middle band MCT
detectors with various sampling options. This was used for the purpose of analyzing the
chemical compositions or functional groups present within the polymer. There are three
samples present in the study, which are untreated mPE, 30 min and 60 min HNOj treated
mPE samples. All these samples were studied using this ATR-FTIR.

3D-Hirox digital microscope

The latest 3D-Hirox digital microscope model (KH-8700) was used to determine the
formation of pits and pores of the samples. The 3D-Hirox digital microscopy images are
very useful in determining the morphological structure of samples to determine whether
the sample has pores or it has an even surface. There are two types of images which are
obtained from 3D-Hirox digital microscopy either with or without profilometry line. The
surface morphology of 1 cm x 1 cm of mPE and HNOj3 treated mPE sample was assessed
at an area of approximately 5,757 u? at a magnification of 500 x. The same as white light
confocal profilometry, in-focus and 3D images were obtained using this 3D microscope.
Slices of the image were captured at different heights acquired for the surface topography
analysis (Pereira et al., 2013). Maximum of three profiling lines is chosen as the profiling
value of the each sample. Each point in X, Y and Z axes of the profiling line is measured
and their values can be exported in excel sheet to represent the height of the pits in the
sample. Data processing was performed using the in-build 3D profilometry software.
Images were recorded at standard 1,200-1,600 pixel resolution.

Vellayappan et al. (2016), PeerdJ, DOI 10.7717/peerj.1388 4/24


https://peerj.com
http://dx.doi.org/10.7717/peerj.1388

Peer

Scanning electron microscope

The surface microstructure of the samples can be critically analyzed in detail by using
SEM. The SEM which is utilized to study the polymeric samples was JEOL JSM5800 SEM
with OXFORD ISI 300 EDS X-ray Microanalysis System. Untreated mPE, 30 min and

60 min HNOj3 treated mPE underwent gold sputtering and then been studied using SEM
at a magnification of 1,500 x.

Atomic force microscopy

The surface roughness of the samples can be determined with the help of AFM. The AFM
model used to analyze the samples is SPA300HV with a scan rate of 1.502 Hz in tapping
mode. Here, the surface morphology of mPE, 30 min and 60 min HNOj treated mPE
sample was measured by AFM in contact mode on a 10 x 10 um? area, and the mean
average surface roughness (Ra) and 3D pictographic view is obtained. Each AFM image
was analyzed in terms of Ra (Pelagade et al., 2012). The surface roughness is calculated
using the software SPIWin.

Tensile testing

The tensile strength was tested using ZWICK Universal Tester (Z010, Germany) at a gage
length of 15 mm and a speed of 10 mm-! for the untreated mPE, 30 min and 60 min
HNOj treated mPE specimens at a load cell capacity of 100 N with a sample thickness of
1 mm. The reported tensile moduli is represented as average results of five tests.

Blood coagulation assays
Prothrombin time (PT)

Prothrombin time is a valuable indicator to find the prohibition of extrinsic pathway.
Platelet poor plasma (PPP) (100 nL at 37 °C) was applied on untreated and treated
polymer surface with NaCl-thromboplastin (Factor III, 100 mL, Sigma) which contains
Ca2+ ions. The time consumed for the formation fibrin clot was assessed with the help of
a stopwatch and a steel hook (n = 3) (Amarnath, Srinivas ¢ Ramamurthi, 2006).

Activated partial thromboplastin time (APTT)

APTT is utilized for studying the propensity of the blood to coagulate via intrinsic
pathway and to determine the effect of biomaterial on delaying the process. Platelet poor
plasma (100 pL at 37 °C) is incubated in prior with substrates at 37 °C and followed by
its activation by adding rabbit brain cephalin (100 pL 37 °C). Later, the samples were
incubated at 37 °C for 5 min and followed by incubation with calcium chloride

(0.025 M). Inclusion of CaCl, triggers the clotting process. The time taken from the
inclusion of CaCl, up to clot formation is recorded as the activated partial thromboplastin
time (APTT) (n=3) (Amarnath, Srinivas ¢ Ramamurthi, 2006).

Hemolysis assay

The HNOj; treated (30 min and 60 min) and untreated samples were equilibrated with
physiologic saline (0.9% w/v; 37 °C, 30 min) followed by its incubation with 3 mL
aliquots of citrated blood diluted with saline (4:5 ratios by volume). This mixture of blood
and distilled water was prepared at a ratio of 4:5 by volume to result in comprehensive
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Table 1 Contact angle measurement of the mPE before and after HNOj; treatment.

S.No Sample Average contact
angle in degrees *
1 Untreated mPE 86.06 £ 1.15
2 mPE treated with HNO; (30 min) 72.03 £+ 2.05
3 mPE treated with HNO; (60 min) 69.73 + 1.41
Notes.

Values shown are mean £ SD.
*Mean differences are significant compared with control (P < 0.05).

hemolysis which was used as the positive control. Physiological saline solution was
utilized as negative control which produces no coloration. The samples were subjected
to incubation in their respective mixtures (60 min, 37 °C). These mixtures were later
centrifuged and their absorbance of clear supernatant was determined at 542 nm. The
absorbance of positive control was normalized to 100% and the absorbance of both the
samples was ascertained as a percentage of hemolysis whilst comparing it with positive
control (n = 3) (Amarnath, Srinivas & Ramamurthi, 2006).

Platelet adhesion assay

The mPE samples were subjected to HNO3 exposure for 30 min and 60 min, later incubated
along with physiological saline (0.9% w/v; 37 °C, 30 min). This is kept on the rotary shaker
for an hour to wash of the acid residues on the surface of the polymer. This is followed
by immersing of untreated mPE, 30 min and 60 min HNOj treated mPE samples in 1 mL
fresh PRP and the incubation was maintained at 37 °C for an hour. PRP was poured off
and the membranes were rinsed in physiologic saline and dried. Ultimately, the samples
were viewed using the microscope (n = 3). The polymer surface was photographed and
platelet count was determined on a region with a 40x magnification (Amarnath, Srinivas
& Ramamurthi, 2006).

Statistical analyses

All experiments were conducted thrice independently. One-way ANOVA was done to
determine statistical significance. The results obtained from all experiments are expressed
as mean £ SD. In case of qualitative experiments, a representative of three images is shown.

RESULTS

The mean contact angle of the control was found to be 86.06°. This was found to be far
greater in comparison to the acid treated samples. The mean contact angles of 30 min and
60 min HNOj treated samples are 72.03° and 69.73°, respectively, were significantly lower
with respect to untreated surface as shown in (Table 1).

FTIR was performed for the determination of chemical composition of untreated and
treated samples as shown in Fig. 2. No changes were observed in the functional groups
of the untreated mPE, 30 min and 60 min HNOj; treated mPE however there is a slight
decrease in the intensity of transmittance is observed. There were alike peaks observed at
wavelengths 2,850 cm ™! and 2,930 cm ™! belonging to the alkane group (C—H stretch). The
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Figure 2 A representative FTIR spectra of untreated and HNOj; treated mPE.

peaks were also found at 3,313 cm™! (O-H stretching) corresponding to hydroxyl group,
1,647 cm™! (C = C bending), 1,470 cm~! (C-H bending) and at 725 cm ™! (C-H rocking),
belonging to the alkane family but differ in their structures. A peak was also observed at
1,020 cm™! which belongs to the C-O stretching.

The morphological analysis of the samples was done using the 3D Hirox Microscopy
and SEM whereas the nanotopographic analysis of the sample was performed with the
help of AFM. The images obtained are shown in Figs. 3A-3F. Figure 3A represents the
3D image of the control and Fig. 3B shows its profiling image. Likewise, Figs. 3C and 3D
depict the 3D image and its profiling image of the thirty minutes HNOj; treated sample,
respectively. Similarly, Figs. 3E and 3F elucidates the 3D image and its profiling image of
one hour HNOj; treated mPE sample. The graph plotted with the values obtained from the
3D-Hirox digital microscope is represented in Fig. 4. Here, each point in the profile line
is measured and computed. These points represent the height of the pits in mPE surface.
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Figure 3 Different three-dimensional representations using 3D Hirox digital microscopy. (A) Un-
treated mPE (B) Untreated mPE with profiling (C) 30 min HNO; treated mPE (D) 30 min HNO; treated
mPE with profiling (E) 60 min HNOj; treated mPE (F) 60 min HNOj; treated mPE with profiling.
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Figure 4 The representative height of the pores of different samples measured using 3D-profiling of
3D Hirox digital microscopy.

Thus, in Fig. 4, the height of the pits or pores is plotted against the area of the profile line.
From this graph, it is palpable that there are fewer pores of pits in case of the control mPE.
It is found that the number of pores, increased in the 30 min and found to be highest in
1 h acid treated mPE sample. The 1 h HNOj treated sample has the maximum number of
pores with greater depth of fissures and holes which was ascertained using the 3D profiling.
Figure 4 shows the depth of the pores formed due to the etching effect of the HNOj3 and it is
evident that the control has the least pore depth, followed by 30 min HNOj treated sample
and finally the one hour HNOj3 treated sample. Hence, the duration of acid treatment
has an impact on the surface porosity by affecting the pore diameter or area. From Fig. 4,
it is visible that 42.5 wm was the highest height of the pore in the case of 60 min HNO3
treated sample whereas the highest pore for the 30 min HNO3 treated mPE was 30 pm and
17.5 pm for untreated mPE. This shows the numerical values, data on relative changes for
clearly differentiating the etching effect of HNO3; on mPE.

SEM imaging is another surface characterization method of the samples at the micro
level (Zhao et al., 2011). Topography of the mPE was investigated as shown in Figs. 5A-5C.
It was observed that the surface of mPE sample has very less or negligible pits under a
1,500 x magnification. However, on observing the SEM image of 30 min treated sample, it
was found that the surface of the treated samples has been etched by the acid exposure. A
few number of pit formation was also observed. However, the size and the number of the
pits seems to increase in case of the 60 min acid treated sample.
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Figure 5 Representative SEM micrographs of untreated and HNO; treated mPE. (A) Untreated mPE
(B) 30 min HNOj treated mPE (C) 60 min HNO; treated mPE.

Table2 Tensile testing result of untreated, 30 min and 60 min HNOj; treated mPE.

S.no Sample E-modulus MPa Fmax. N E-FMax.% W up to Fmax.Nmm
1 Untreated mPE 31.32 119.09 2510.82 30680.25
2 mPE treated with HNO; (30 min) 33.01 120.63 2510.40 31114.00
3 mPE treated with HNO; (60 min) 34.75 121.85 2510.39 32513.68

The AFM images are represented in Figs. 6A—6C. Figures 6A—6C are the AFM image
of the untreated, 30 min and 60 min HNOj3 treated mPE sample, respectively. From the
results obtained, it was found that the mean value of Ra of untreated mPE film, 30 min and
60 min HNOj3 treated mPE surface are 2.069 nm, 4.233 nm and 5.127 nm, respectively.
The nanotopographic analysis of the samples was performed using AFM. Fig. 6A illustrates
the 3D surface topography of the sample mPE. Here, it is observed that the surface of the
sample is even with fewer hills and valley structures in the untreated mPE sample. On the
other hand, Fig. 6B which is the 30 min HNOs3 treated sample, has more nano-roughness
compared to the control but less roughness than the 60 min HNOj3 treated sample. This
shows that the 60 min HNO3 treated sample has the most hill and valley structures on the
surface of the sample.

The average tensile testing result of mPE before and after nitric acid treatment is
represented in Figs. 7A—7C. From the tensile stress—strain curve it is palpable that the
elastic modulus of 30 min HNOj treated mPE is 33.01 MPa (Fig. 7B) and 60 min HNO3
treated mPE is 34.75 MPa (Fig. 7C) which are slightly greater than the elastic modulus of
untreated mPE 31.32 MPa (Fig. 7A). The elastic modulus, maximum force, elongation at
maximum force and work up to maximum force is given in Table 2.

Prothrombin time and activated partial thromboplastin time tests were done on the
three samples, namely, untreated and 30 min and 60 min HNOj treated. Their results
of PT and APTT were summarized in Figs. 8A and 8B, respectively. Both PT and APTT
demonstrated an increase in their value for acid treated samples compared to the control.
Mean PT of untreated sample was observed to be 19.23 s, whereas 30 and 60 min HNO3

Vellayappan et al. (2016), PeerdJ, DOI 10.7717/peerj.1388 10/24


https://peerj.com
http://dx.doi.org/10.7717/peerj.1388

PeerJ

Figure 6 Representative AFM images of untreated and HNOj; treated mPE. (A) Untreated mPE (B)
30 min HNOj treated mPE (C) 60 min HNOj; treated mPE.

exposed samples shown 19.86 s and 21.4 s, respectively. Likewise, mean APTT was found
to be 105.66 s, 113 s and 136.33 s for untreated, 30 min and 60 min acid treated mPE,
respectively. Statistical analysis of the untreated sample with the treated ones using one-way
ANOVA insinuates significant differences (P < 0.05) between them for both PT and APTT
times after 60 min exposure.

Besides that, hemolysis is an important screening test, which provides quantification
of small levels of plasma hemoglobin that may not be assessed under in vivo conditions
(Schopka et al., 2010). The hemolysis test was conducted on treating samples and untreated
sample for investigating the effect of polymer surface on red blood cells (RBC). Mean
absorbance seemed to decrease in the case of treated samples (0.02 and 0.007 for 30 min
and 60 min HNOs-treated samples) compared with the untreated (0.05) mPE, indicating
lesser damage incurred and interaction between the treated samples and RBC (Fig. 8C).
This is because the absorbance is directly proportional to the hemolytic index (HI) of the
RBC. Statistical analysis of the untreated as well as acid treated samples (absorbance at
542 nm) using one-way ANOVA ascertained significant differences (P < 0.05) between
them after 30 min and 60 min treatment. From the results obtained, it is obvious that the
60 min HNOj3 treated mPE is the least hemolytic compared to other samples. Moreover,
it was also found that an absorbance value of 60 min HNOj treated mPE to be in similar
trend compared to the one hour HCl treated mPE (Jaganathan et al., 2014b).
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Figure 7 Representative tensile testing result of untreated and HNOj; treated mPE. (A) Untreated mPE
(B) 30 min HNOj treated mPE (C) 60 min HNOj; treated mPE.

Besides HI, the adhesion of platelets on a blood contacting device’s surface could
result in coagulation and thrombus formation. Hence, the platelet adhesion test has to
be performed to analyze the blood compatibility of blood contacting device (Wenzhong et
al., 2008). The number of platelets adhered to a surface of treated polymers was found to
be reduced to a great extent compared to the number of platelets which was found in the
untreated sample as shown in Fig. 9A. A maximum of 22 platelets was observed on the
surface of the untreated samples (Fig. 9B), meanwhile the number of platelets decreased to
a maximum of 18 platelets (Fig. 9C) and 15 platelets (Fig. 9D) on 30 min and 60 min HNOj3
treated samples, respectively. Statistical analysis of the untreated sample with the treated
one (number of platelets adhered) with one-way ANOVA shown significant differences
(P < 0.05) between them after 30 min and 60 min treatment.

DISCUSSION

Blood clotting occurs when blood comes in contact with a foreign surface such as implants
following platelet activation. This can be catastrophic in clinical settings, especially in case of
various biomedical applications like grafts, catheters, hemodialysis, bypass/extracorporeal
membrane oxygenation, and ventricular assist devices (Qi, Maitz ¢ Huang, 2013). In order

Vellayappan et al. (2016), PeerdJ, DOI 10.7717/peerj.1388 12/24


https://peerj.com
http://dx.doi.org/10.7717/peerj.1388

Peer

25- . <
- E
m —
o 20 <
£ @ 150- %
= 45 2 150
£ L
o E a—
S 10 & 1001
o
<
o 54 2
= E
£ 501
0 T T T =
> o] (o) ©
o 8
& & & £
o NS S 0 . r T
b() & & o
& & & - & > &
o G QQ % 00(‘ Q‘é Q‘é
\)&é > {&(‘ 6'\\(‘
E o )

Duration of treatment (min) Duration of treatment (min)

A B

£
= —
S 0.6
wn
=
]
3 0.4
% Mean = 0.05333
£ . «
g 0.2+
8 |vean =0.027_] [ Mean=0.00766 |
<
0.0 .  — ] T
> o o
O O
& & O O
o& o& QS\ *?S\
5 [ & &
<« & & &
& S S
4

Duration of treatment (min)

C

Figure 8 Comparison of prothrombin time (PT), activated partial thromboplastin time (APPT) and
absorbance of untreated and HNO; treated mPE. (A) The PT of control, 30 min and 60 min HNO;
treated mPE (n = 3) (B) The APPT of control , 30 min and 60 min HNOj treated mPE (n = 3) (C) The
absorbance of control, 30 min and 60 min HNOj; treated mPE (n = 3). Values shown are mean & SD and
* indicating differences in the mean are significant (p < 0.05).

to circumvent this issue, the hemocompatibility of the blood contacting devices has to
be improved and HNOj3 surface treated mPE holds great potential. For ascertaining the
topographical modification caused by HNO3 on the mPE sample, characterization tests was
performed using 3D Hirox, SEM, AFM, contact angle and FTIR. On the other hand, the
blood compatibility of the sample was studied by conducting different blood coagulation
assays like hemolysis assay, PT, APTT, and platelet adhesion.

The decrease in contact angle indicates the improved wettability and hydrophilicity of
the mPE polymer. It is a well known fact that the surface energy is a vital parameter
determining polymer’s adhesion, material wettability and even biocompatibility
(Kwok, Wang ¢ Chu, 2005). Thus, the assessment of contact angles is contemplated as
one of the most convenient method for the determination of surface free energy of solid
samples. This technique depends on the interactions between the solid sample of interest
as well as liquids with well determined surface tensions. Our result is in good agreement
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Figure 9 Platelet adhesion assay of untreated and HNO; treated mPE. (A) Comparison of the num-
ber of platelets adhered untreated, 30 min and 60 min HNO; treated mPE. Values are expressed as mean
=+ SD and x* indicates difference in the means are significant with P < 0.05 (B) Number of platelets ad-
hered on untreated mPE (C) Number of platelets adhered on 30 min HNO; treated mPE (D) Number of
platelets adhered on 60 min HNOj; treated mPE.

with our previous published results of HCI exposed mPE (Jaganathan et al., 2014b). Thus,
the improved surface roughness is reflected in the decrease in contact angle with HNO;
treatment time. Furthermore, in a recent work, Gomathi et al. (2012) had performed
surface modification of polypropylene by nitrogen containing plasma improved the
polymer’s wettability by decreasing the water contact angle and resulted in enhanced
biocompatibility and blood compatibility further corroborates our results. According to
the Wenzel model, the improvement in the surface roughness of mPE contributes to the
reduction in the water contact angle of mPE (Chau et al., 2009). Thus, it indirectly shows
that the surface roughness of the mPE sample are improved by the HNOj3 treatment, thereby
decreasing the contact angle. Ultimately, the hydrophilicity and mPE hemocompatibility
is improved where it can serve as a putative blood contacting device (Zhao et al., 2011).
Similarly, the improved surface roughness is also palpable from the results of AFM, SEM,
Hirox 3D microscopy result. Hence, the decrease in the contact angle and increase in
surface roughness are in consensus from obtained result. This is analogous to the studies
that have ascertained that the increase in wettability is instigated by the increase in surface
roughness and associated decrease in the contact angle (Mirabedini et al., 2004; Mirzadeh
¢ Dadsetan, 2003; Rochotzki et al., 1994).

There is no alteration in the functional groups of the treated and untreated samples
which is done by Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy
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(ATR-FTIR) studies. However, the variation in the intensity of the peaks depicts that there
is some morphological changes occurred. The surface changes induced in the metalocene
polyethylene (mPE) surface is instigated by the etching effect of nitric acid (HNOs3). The
HNOj; exposure produces pits and holes in the surface of mPE. Owing to the formation of
pits and pores in mPE, the surface roughness increases. The improved surface roughness of
mPE is reflected in increased intensity of absorbance in FTIR but the peaks remain almost
the same, indicating no chemical changes were seen in the surface of mPE. Bergstrom (2008)
demonstrated that absorption heavily depends upon the surface properties of the material.
Since most real life surfaces are not perfectly flat and possess certain degrees of texture
and roughness to them, this will influence their optical behaviour. Pits and valleys in a
material may, for example, “trap” some of the light and thereby increase the intensity of
absorption. However, when the absorption increases, the transmittance decreases (Sorrell,
2006). This explains the reason for the increased absorption leading to decreased intensity
of transmittance in this study, as the surface roughness improves after HNOj3 treatment.
Hence, this elucidates that there is no change in the functional groups in mPE surface,
even after HNOj treatment of mPE which is similar to our HCI exposed mPE (Jaganathan
et al., 2014b). Thus, HNOj3 treated mPE sample would have enhanced blood compatibility
without affecting the chemical structure of mPE since the surface roughness of the mPE is
increased by the HNOj; treatment rather than modifying the chemical structure of mPE.
The percentage of weight loss study was also performed, but the change in the weight of
the sample after HNOj3 treatment was not significant which ascertains there is no strong
oxidation have occurred to increase the weight of the HNO; treated mPE samples (result
not shown). This is in accordance with the FTIR result which didn’t show appreciable
changes in surface functional groups. Thus, it can be elucidated as the improved surface
roughness resulted in better hydrophilicity and hemocompatibility of HNOj treated mPE
rather than the change induced in the sample surface functional group by HNO3 treatment.

The 3D Hirox Microscopy images can be interpreted as HNOj3 etches the surface of mPE,
and one hour acid treatment must have etched the mPE surface more than the 30 min
treated sample, thereby resulting in mPE with more pits and pores with higher depth
compared to the control. These observations can be compared to a later work of (Vital et
al., 2015) where the amplitude of depressions formed in the surface of polymer increased
after tetrahydrofuran (THF) and acetic acid surface treatment whereas thickness of the
polymer film remained unchanged. Hence, the etching effect of the acid has a favorable
impact on the final surface wettability of the polymer, thereby making it more hydrophilic
similar to the other surface treatments like plasma treatment to make it blood compatible
for various blood contacting device applications (Yue et al., 2015).

Similarly, a larger surface disorientation and improved surface roughness were noticed
in 60 min treated sample using SEM images. The SEM images of a recent study show
the morphology of isotactic polypropylene (IPP) surfaces of Argon plasma treatment,
showing amorphous region is etched on the surface of IPP and the etching depth was
found to be increasing with an increase in the time of plasma treated thereby improving
its biocompatibility (Ma et al., 2012). Likewise, SEM images of the treated and untreated
samples to clearly show that there are pits formed in the surface of the mPE polymer when
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it is treated with HNOj; and the pit size is also increased with the increase in the time of

acid treatment. Since pits were formed, the morphological characteristic such as roughness
was also observed to be increased in case of the HNOj treated samples. It is obvious from
Fig. 5 that the number of pits formed in the sample is in the descending order of 60 min

HNO3, 30 min HNO3 and then finally the control.

It was found that the Ra value of the 60 min HNOj treated sample value is almost twice
greater than the control and slightly higher than the 30 min HNOj3 treated mPE. This is
because of more number of hills and valley nano-topographic structure in the mPE sample
resulted due to the etching effect of the HNO3; on the mPE sample. This result is found to
be similar to a latest study done by Cesca et al. (2014) where the AFM result obtained after
poly-3-caprolactone (PCL) etched using mixed gas SF6/Argon at —5 °C has an improved
surface roughness resulting in improved biocompatibility. The roughness values obtained
using AFM also evidenced the surface structuring after subjecting the sample to surface
modification techniques to produce a rougher surface (Tverdokhlebov et al., 2015; Wanke et
al., 2011). Similarly, there were other studies carried out show increase in surface roughness
of sample results in improved biocompatibility (Slepicka et al., 2013). Hence, AFM nano
imaging further bolsters the concept of nanotopographic surface modification caused by
the acid etching effect on mPE analyzed using Hirox microscopy and SEM. This formed
nanotopographic surface result in improved wettability and hydrophilicity ascertained by
contact angle analysis, thereby improving the blood compatibility of mPE which is the
cornerstone for blood contacting devices.

Since nitric acid improves porosity and blood compatibility of mPE, the elastic modulus
of mPE was studied to make sure that the nitric acid treatment does not deteriorate
the elastic modulus of mPE. There was no significant change was observed and minor
improvement in the elastic modulus of HNOj treated mPE which may have resulted due
to increase in the roughness of the surface in mPE. This result is in accordance with a
recent study where the impact strength of nitric acid treated polyoxymethylene improved
compared to those untreated samples (Zhang et al., 2014). The main advantage of the
HNOj3 over HCI is the improvement of hemocompatibility without deteriorating the
tensile strength of the mPE samples after treatment. The effect of HCI on the tensile
strength of mPE is not yet reported, but it was found that the HCI treatment deteriorate
the tensile strength of the sisal fiber (Oladele, 2010). Similarly, in another work done
by Wang et al. (2008) the tensile strength of basalt fiber declines after the HCI exposure.
However, the results of HNO3 exposure improved the tensile strength of different polymers
like polyacrylonitrile, carbon fibers, thermoplastic polyimide composite and etc., (Bahl,
Mathur & Dhami, 1984; Li, 2009; Nie ¢ Li 2010). In our study HNOj3 treatment did not
reduce the tensile strength of mPE. Hence, the major advantage of HNOj3 treatment over
HCl treatment is the deterioration of tensile strength of mPE can be prevented, in addition
to the enhancement the blood compatibility properties of mPE sample.

Coagulation system activation is triggered by implanting blood contacting device-protein
interaction. The activation of factor XII is the first step in this activation process. Reciprocal
as well as auto activation will in turn cause the amplification of activated factor XII, where
this will initiate the intrinsic coagulation pathway through activation of factor XI, and
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finally lead to the production of fibrin. Similarly, the activation of platelets by artificial
surfaces occurs due to the contact of platelets with artificial surfaces, in terms of ligand
expression (GP IIb/IIIa). Ultimately, these activated platelets either adhere to the surface
of blood contacting devices through proteins like fibrinogen or aggregate (Schopka et al.,
2010). In order to function as a viable blood contacting devices, the implanted blood
contacting device should not elicit any unwanted reactions leading to blood clot. In order
to investigate that, the blood coagulation assays were carried out in the mPE treated with
HNOs;. There was a notable increase observed in the PT and APTT of the HNOj treated
mPE sample compared to the control. Changes in surface morphology of mPE by acid
treatment helped in improving the blood compatibility of the polymers (Pandiyaraj et
al., 2009). Thus, as discussed earlier, the increased PT and APTT is may be attributed
by improved surface roughness by the formation of nanotopographic surface by HNO;
on mPE.

The improved surface roughness induces physicochemical changes which results in a
favorable impact on the hemocompatible property of mPE thereby making it more resistant
to RBCs damage. The lysis of RBCs generally occur due to the increase in osmotic pressure
triggered by the poor material surface which normally results in the rupture and release
of the cellular contents including hemoglobin (Zhang et al., 2015). Hemolysis percentage
is the representative of RBCs damage. Hence, the improved surface roughness of HNO3
treated mPE decreases the RBCs damage when they come in contact with them. According
to ASTMF756-00(2000) standard, both 30 and 60 min HNOj treated samples are deduced
to be non-hemolytic materials since the percentage of damage falls below 2 (Fazley, 2014).
This result is in agreement to one of the research elucidating that the surface roughness
plays an important role in controlling the thrombogenicity and it was demonstrated that
catheters with increased roughness were found to be less thrombogenic than smooth
surfaced catheters (Bailly et al., 1999). This means that the surface modification of mPE
with HNO3 does not induce any damage in erythrocytes’ membranes that could lead to
their lysis. Albeit some literatures indicate that it is not possible to define a universal level
of acceptable or unacceptable hemolysis values, a blood-compatible material must inhibit
hemolysis (Wenzhong et al., 2008). In this study, this parameter is of extreme importance
as the proposed mPE material will be in contact with blood for a prolonged period in the
blood circulation system.

The increased surface roughness of HNOj3 treated mPE produces a better resistance
to platelets by minimizing the platelet adhesion. The extent of platelet adhesion as
well as its activation is a deciding factor of thrombogenecity of a material, as blood
compatible substrates neither attracts nor activates the platelets present in the blood
stream. In general the hydrophilic surface is observed to be more efficient in preventing
the platelet adhesion. This is because it has the ability to exert steric repulsion to avoid
unspecific protein deposition (Gomathi et al., 2010). Moreover, the hydrophilic surface is
also found to encourage the adsorption of anti-platelet adhesion proteins like albumin,
high molecular-weight kininogen, etc., which further bolsters its shielding capacity
against platelet deposition and activation. These observations were evidently replicated
in the HNOj treated mPE surfaces (Gomathi et al., 2010; Lee ¢» Lee, 1998). The obtained
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results are in consensus with other studies conducted on hydrophilic surface dictating
that improved surface roughness led to decreased platelet adhesion (Zingg et al., 1981;
Zingg et al., 1982). Similarly, Zhao et al. (2011) demonstrated that when the NiTi alloy
surface roughness was increased, platelet activation, adhesion, as well as hemolysis were
appreciably reduced. The reduced platelet adhesion in the HNOj3 treated sample dictates the
improved hemocompatibility of surface modified mPE (Gomathi et al., 2012; Habibzadeh
etal., 2014).

Thus, the possible mechanism from the obtained result of this study is the surface
roughness of mPE improves by the HNOj treatment. When surface roughness of mPE
increases, it results in decrease in contact angle and increases the hydrophilicity of mPE.
Hence, the improved surface roughness minimizes the RBCs damage by reduction of
osmotic pressure triggered by the poor material surface and leads to decreased platelet
adhesion by exerting steric repulsion to avoid unspecific protein deposition. This is the
possible mechanism by which the blood compatibility of HNOs3 treated mPE improves
when it is compared against the control as represented in Fig. 10. Hence, this modified mPE
with more surface roughness, altered wettability, and better blood compatibility may be
the vital characteristics that can be utilized for construction of long-term blood contacting
devices like catheters, transvenous pacing leads, stents, grafts and etc.

CONCLUSIONS

The surface modification induced by HNO3; on mPE and its effect on mPE blood
compatibility was assessed. Contact angle analysis depicts a decrease in the contact
angle elucidating increase in the wettability of the HNOj treated samples. There were
no prominent qualitative changes in the functional groups were observed by FTIR studies.
The 3D Hirox microscopy imaging also confirms the improved surface roughness by
formation of more pits and bumps in the acid treated sample than the control. SEM images
of treated samples further substantiate that acid treated sample surface possess more pits
and pores compared to the control. AFM topographical analysis shows an improved surface
roughness in the 30 min and 60 min acid treated sample compared to the control due to
the etching effect of the acid. Blood coagulation assays like PT and APTT ascertains a
notable delay in the clotting mechanism on the surface of acid treated samples. The result
of hemolysis assay shows a minimum damage to red blood cells (RBC). Platelet adhesion
assay elucidates that the number of platelets adhered to the surface of acid treated polymer
was appreciably less in comparison to the untreated surface. The HNOj; treatment of the
mPE induces a surface modification in mPE and improves its porosity without much effect
on its tensile strength. Hence, HNOj treated mPE sample can be exploited for various
blood contacting biomaterial applications due to its improved blood compatibility.
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