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Signaling Network Map of Endothelial TEK Tyrosine Kinase
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TEK tyrosine kinase is primarily expressed on endothelial cells and is most commonly referred to as TIE2. TIE2 is a receptor
tyrosine kinase modulated by its ligands, angiopoietins, to regulate the development and remodeling of vascular system. It is also
one of the critical pathways associatedwith tumor angiogenesis and familial venousmalformations. Apart from the vascular system,
TIE2 signaling is also associated with postnatal hematopoiesis. Despite the involvement of TIE2-angiopoietin system in several
diseases, the downstream molecular events of TIE2-angiopoietin signaling are not reported in any pathway repository. Therefore,
carrying out a detailed review of published literature, we have documentedmolecular signaling eventsmediated byTIE2 in response
to angiopoietins and developed a network map of TIE2 signaling. The pathway information is freely available to the scientific
community through NetPath, a manually curated resource of signaling pathways. We hope that this pathway resource will provide
an in-depth view of TIE2-angiopoietin signaling andwill lead to identification of potential therapeutic targets for TIE2-angiopoietin
associated disorders.

1. Introduction

Angiopoietin-TIE2 is one of the major signaling systems that
regulates development and remodeling of vascular system
[1, 2]. TIE2 is a member of the TIE receptor tyrosine kinase
family that is preferentially expressed in endothelial cells
[3]. Among the angiopoietins (angiopoietin-1, angiopoietin-
2, and angiopoietin-4 in humans), angiopoietin-1 (ANGPT1)
is known as a constitutive agonist of TIE2. ANGPT1/TIE2
signaling promotes endothelial cell survival, endothelium

integrity, and anti-inflammatory/antiapoptotic responses
supporting reduced vascular permeability [4, 5]. ANGPT2
is generally considered as antagonist as it competes with
ANGPT1 for binding to TIE2, reduces vessel stability, and
enhances vascular remodeling [6]. However, under spe-
cific experimental conditions, ANGPT2 has been shown to
promote endothelial-cell survival, sprouting, and migration
in a temporal and concentration-dependent manner [7–9].
Therefore, angiopoietin-2 (ANGPT2) is currently considered
as a context dependant agonist or antagonist of TIE2 [6, 10].
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Angiopoietin-4 (ANGPT4) is also known to be an agonist of
TIE2while angiopoietin-3 (ANGPT3), themouse ortholog of
angiopoietin-4, is reported to be antagonistic toTIE2 [11].The
other member of the TIE family is the orphan receptor TIE1.
It heterodimerizes with TIE2 and modulates TIE2 signaling
induced by ANGPT1 and ANGPT2 [12]. ANGPT1 binding to
TIE2 induces dissociation of the TIE1-TIE2 complex [12].This
suggests that TIE2 signaling is regulated by the molecular
balance between ANGPT1 and ANGPT2 [6, 13] and TIE1
and TIE2, with another one being the ectodomain cleavage
of TIE receptors [14]. The activation of TIE2 is achieved
by the assembly with tetrameric or higher order multimeric
angiopoietins, clearly differentiating TIE2 from other tyro-
sine kinase receptors [15]. ANGPT1 induces the translocation
of TIE2 to cell-cell junctions and transassociation in the
form of homomeric complexes to activate the downstream
signaling of TIE2 [16].

Binding of ANGPT1 to TIE2 leads to receptor dimer-
ization and subsequent activation followed by autophospho-
rylation at specific tyrosine residues [15, 17]. These phos-
phorylated sites provide binding platform to a number of
effector molecules to initiate downstream signaling cascade
which ultimately controls various cellular responses includ-
ing morphogenesis, proliferation, extracellular matrix inter-
action, permeability, survival, and differentiation [18–23].
TIE2 interacts with p85 subunit of phosphatidylinositol-3-
kinase (PI3K) via Tyr-1101 and activates PI3K-AKT pathway
which inhibits Smac release frommitochondria and increases
the expression of survivin leading to survival and chemo-
taxis of endothelial cells [18, 24, 25]. AKT activation also
inhibits forkhead transcription factor FKHR (FOXO1) which
protects endothelial cells from apoptosis [26]. ANGPT1 also
induces the PI3K/AKT mediated activation of eNOS and
NO release in endothelial cells [27, 28]. In endothelial cells,
both ANGPT1 and ANGPT2 also induce TIE2-dependent
translocation of P-selectin through a PLCG1/Ca2+ signaling
pathway [29].

SH2 domain containing proteins such as growth factor
receptor-bound protein 2 (GRB2), growth factor receptor-
bound protein 7 (GRB7), growth factor receptor-bound pro-
tein 14 (GRB14), protein tyrosine phosphatase nonreceptor
type 11 (SHP-2), and phosphoinositide-3-kinase (PI3K) is
recruited and transphosphorylated by TIE2 [30]. GRB2 and
SHC1 recruit SOS1 and lead to the activation of Ras-Raf-
mitogen activated protein kinase (MAPK) pathway that reg-
ulates platelet activating factor synthesis, anti-inflammatory
responses, and endothelial cell migration, proliferation, per-
meability, and morphogenesis [5, 20–22, 31, 32]. Through
SOS1 or PI3Ks, angiopoietin/TIE2 system also regulates the
activation of RAC1, RHOA, CDC42, and focal adhesion
kinase 1 to mediate cytoskeleton reorganization and migra-
tion of endothelial and synovial cells [33]. Angiopoietin-
1 induced activation of RHOA results in sequestration of
SRC by DIAPH1 thereby preventing SRC association with
VEGFR2 [34]. Recruitment of dynamic complexes com-
prising NCK adaptor protein 1 (NCK1), RAS p21 protein
activator 1 (p120GAP), and P21 protein-activated kinase 1
(PAK1), to TIE2 by the DOKs, especially DOK2, has been
attributed to increased cell motility [35]. TIE2 also interacts

with the inhibitor of nuclear factor kappa B (NF-kB) activity
TNFAIP3 interacting protein 2 (ABIN-2) that inhibits NF-
kB transcriptional activity and mediates anti-inflammatory
and antiapoptotic action [36, 37]. TIE2 activation induces
the phosphorylation of STAT1, STAT3, and STAT5A/5B and
their subsequent translocation into nucleus to induce the
expression of the cell cycle inhibitor cyclin-dependent kinase
inhibitor 1A (p21) [38]. ANGPT2 also interacts with integrins
like integrin 𝛼V𝛽5, 𝛼V𝛽3, and 𝛼5𝛽1 in endothelial cells with
less affinity than TIE2 and can induce TIE2-independent
signaling [39]. TIE2 also forms a complex with 𝛼5𝛽3 and
FAK.ANGPT2 induces phosphorylation of FAK at Serine910,
𝛼5𝛽3 internalization, and dissociation of p130CAS and talin
from 𝛼5𝛽3 [40]. Recently, ANGPT2 has also been shown to
induce the activation of ERK/MSK1/CREB pathway to impart
cell survival and resistance to doxorubicin in HepG2 cells
[41].

Besides the defects in vascular system and angiogene-
sis [42–44], TIE2 signaling has also been associated with
rheumatoid arthritis [45] and asthma [46]. Considering the
importance of TIE2 signaling, here we provide a manually
curated enhanced network map of angiopoietin(s)-induced
TIE2-mediated signaling events as a reference platform for
further biomedical investigations.

2. Methods

We screened published research articles related to TIE2
signaling. NetPath criteria described earlier [47, 48] were
followed for the annotation of protein-protein interac-
tions (PPIs), enzyme-substrate relationships, and posttrans-
lational modifications (PTMs) (catalytic events). Activa-
tion/inhibition status of proteins, alterations in protein local-
ization, and also genes regulated at mRNA level by TIE2
signaling were also documented. PathBuilder, an in-house
pathway annotation tool, was used for the curation of these
reactions [49]. Each curated reaction was internally reviewed
by trained biocurators followed by an external review by a
Pathway Authority, an expert in the field (FMG, coauthor of
this paper).

3. Results and Discussion

Our analysis resulted in the cataloging of 140 unique
molecules that are reported in TIE2 signaling. These
molecules were part of 43 PPIs and 102 catalytic events,
23 activation/inhibition events, and 11 protein transloca-
tion events. We have also documented 124 and 65 genes
that were reported to be upregulated and downregulated,
respectively, by TIE2 signaling in response to angiopoi-
etin(s) in human cells. The curated data for TIE2 sig-
naling pathway is freely available to the scientific com-
munity for visualization and download in different com-
munity standard data exchange formats through NetPath
[http://www.netpath.org/], a resource of signaling path-
ways. These formats include Proteomics Standards Initiative
for Molecular Interaction (PSI-MI version 2.1), Biological
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Figure 1: A detailed map of TIE2 signaling. This is a manually drawn (using PathVisio) pictorial representation of the network of reactions
annotated in NetPath. The topology of the molecules and their reactions from TIE2 to the transcription factors are derived from the
experimental information obtained by the use of inhibitors, activators,mutants, and silencing approaches. Each node represents themolecules
and the edges represent the relationships between them as provided in the figure legend.



4 Journal of Signal Transduction

Pathway Exchange (BioPAX level 3), and Systems Biology
Markup Language (SBML level 2.1).

For effective visualization, we have graphically repre-
sented the reactions and various cellular processes that
those reactions mediate in the context of specific studies
on TIE2 signaling (Figure 1). PathVisio, an open visual-
ization tool was used to manually depict this information
[50]. The pathway map can also be accessed through Net-
Slim (http://www.netpath.org/netslim/TIE2 pathway.html),
a resource that provides a smaller version of the pathway
by filtering data based on predefined confidence threshold
criteria [51]. At NetSlim, a “map with citation” is also pro-
vided in which each reaction is linked to the corresponding
literature through PubMed. Users can download these maps
in customizable formats such as GenMAPP and gpml.

4. Conclusions

This open-access pathway data enables better analysis of
high-throughput experimental data and hypothesis-driven
approaches to study the dynamics of TIE2 signaling for
therapeutic interventions. Information on TIE2 pathway
in NetPath will be periodically updated to reflect novel
findings relevant to TIE2 signaling. We intend to pro-
vide information pertaining to cross-talks of other lig-
and/receptor systems such as VEGF, TNF-alpha, and inte-
grins with TIE2 and vice versa, in the subsequent versions
in NetPath. We encourage scientific community to help us
maintain this resource up-to-date and error-free through
http://www.netpath.org/comments.
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[29] R. Maliba, A. Brkovic, P.-É. Neagoe, L. R. Villeneuve, and
M. G. Sirois, “Angiopoietin-mediated endothelial P-selectin
translocation: cell signaling mechanisms,” Journal of Leukocyte
Biology, vol. 83, no. 2, pp. 352–360, 2008.

[30] N. Jones, Z. Master, J. Jones et al., “Identification of Tek/Tie2
binding partners. Binding to a multifunctional docking site
mediates cell survival and migration,” Journal of Biological
Chemistry, vol. 274, no. 43, pp. 30896–30905, 1999.

[31] U. Fiedler, T. Krissl, S. Koidl et al., “Angiopoietin-1 and
angiopoietin-2 share the same binding domains in the Tie-
2 receptor involving the first Ig-like loop and the epidermal
growth factor-like repeats,” Journal of Biological Chemistry, vol.
278, no. 3, pp. 1721–1727, 2003.

[32] K. G. Peters, C. D. Kontos, P. C. Lin et al., “Functional
significance of Tie2 signaling in the adult vasculature,” Recent
Progress in Hormone Research, vol. 59, pp. 51–71, 2004.

[33] A. Hashiramoto, C. Sakai, K. Yoshida et al., “Angiopoietin
1 directly induces destruction of the rheumatoid joint by
cooperative, but independent, signaling via ERK/MAPK and
phosphatidylinositol 3-kinase/Akt,” Arthritis and Rheumatism,
vol. 56, no. 7, pp. 2170–2179, 2007.

[34] J. Gavard, V. Patel, and J. S. Gutkind, “Angiopoietin-1 prevents
VEGF-induced endothelial permeability by sequestering Src

through mDia,” Developmental Cell, vol. 14, no. 1, pp. 25–36,
2008.

[35] Z. Master, N. Jones, J. Tran, J. Jones, R. S. Kerbel, and D.
J. Dumont, “Dok-R plays a pivotal role in angiopoietin-1-
dependent cell migration through recruitment and activation
of Pak,”The EMBO Journal, vol. 20, no. 21, pp. 5919–5928, 2001.

[36] D. P. Hughes, M. B. Marron, and N. P. J. Brindle, “The
antiinflammatory endothelial tyrosine kinase Tie2 interacts
with a novel nuclear factor-𝜅B inhibitor ABIN-2,” Circulation
Research, vol. 92, no. 6, pp. 630–636, 2003.

[37] A. Tadros, D. P. Hughes, B. J. Dunmore, and N. P. J. Brindle,
“ABIN-2 protects endothelial cells from death and has a role in
the antiapoptotic effect of angiopoietin-1,”Blood, vol. 102, no. 13,
pp. 4407–4409, 2003.

[38] E. I. Korpelainen, M. Kärkkäinen, Y. Gunji, M. Vikkula, and
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