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Abstract

While the neural circuitry and physiology of the auditory system is well studied among vertebrates, far less is known about
how the auditory system interacts with other neural substrates to mediate behavioral responses to social acoustic signals.
One species that has been the subject of intensive neuroethological investigation with regard to the production and
perception of social acoustic signals is the plainfin midshipman fish, Porichthys notatus, in part because acoustic
communication is essential to their reproductive behavior. Nesting male midshipman vocally court females by producing a
long duration advertisement call. Females localize males by their advertisement call, spawn and deposit all their eggs in
their mate’s nest. As multiple courting males establish nests in close proximity to one another, the perception of another
male’s call may modulate individual calling behavior in competition for females. We tested the hypothesis that nesting
males exposed to advertisement calls of other males would show elevated neural activity in auditory and vocal-acoustic
brain centers as well as differential activation of catecholaminergic neurons compared to males exposed only to ambient
noise. Experimental brains were then double labeled by immunofluorescence (-ir) for tyrosine hydroxylase (TH), an enzyme
necessary for catecholamine synthesis, and cFos, an immediate-early gene product used as a marker for neural activation.
Males exposed to other advertisement calls showed a significantly greater percentage of TH-ir cells colocalized with cFos-ir
in the noradrenergic locus coeruleus and the dopaminergic periventricular posterior tuberculum, as well as increased
numbers of cFos-ir neurons in several levels of the auditory and vocal-acoustic pathway. Increased activation of
catecholaminergic neurons may serve to coordinate appropriate behavioral responses to male competitors. Additionally,
these results implicate a role for specific catecholaminergic neuronal groups in auditory-driven social behavior in fishes,
consistent with a conserved function in social acoustic behavior across vertebrates.
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Introduction

Vocalizations are key components of social behavior in many

vertebrates. Perception of these social acoustic signals may elicit

communicative responses and/or reproductive behavior in con-

specifics and is essential for mating in many teleost fishes [1,2],

anuran frogs [3], and songbirds [4]. Various forms of vertebrate

sociality including but not limited to consummatory and appetitive

sexual behavior and aggression are mediated by a highly

conserved and reciprocally connected suite of nuclei within the

basal forebrain and midbrain termed the social behavior network

(SBN) [5–7]. Catecholaminergic circuitry, including the ascending

dopaminergic system, has been suggested to work in concert with

the SBN to assess the salience of socially relevant stimuli, and to

reinforce appropriate behavioral responses to such social stimuli

[7,8]. Interestingly but not surprisingly, key components of the

neural circuitry that underlie vocal-acoustic behavior reside in the

SBN and are highly conserved throughout vertebrate taxa [6,9].

Although the neural circuitry responsible for encoding acoustic

stimuli is well delineated in several vertebrate taxa, very little is

known about how the auditory system interacts with the SBN to

mediate responses to social acoustic signals. The neural substrates

that allow vertebrates to produce vocalizations share similar

developmental origins and vocal-acoustic communication is

thought to have first evolved in teleost fishes, the most speciose

vertebrate group [10]. As such, elucidating the interaction between
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the SBN and auditory circuitry in teleosts will provide a better

understanding of the function and evolution of these systems in

other vertebrates.

One teleost system that has become a powerful neuroethological

model for investigating vocal-acoustic behavior among vertebrates

is the plainfin midshipman fish (Porichthys notatus), in part because

the production and perception of social acoustic signals is essential

to the reproductive success of this species [1,11–13]. The plainfin

midshipman is a marine teleost fish in the family Batrachoididae

that migrates seasonally (spring/summer) from deep offshore sites

to spawn in rocky intertidal zones off of the northwest coast of the

United States [11]. Type I or ‘‘nesting’’ males produce a long

duration (.1 min) vocalization or ‘‘hum’’ that serves as an

advertisement call to attract females. Females find courting males

by localizing the hum, spawn once by depositing eggs on the roof

of the type I male’s nest, and then return to deep offshore sites

[14]. After fertilization, type I males guard their nest and continue

to vocally court females for additional spawnings throughout the

breeding season. As multiple type I males establish nests in close

proximity to one another, an acoustic environment with concur-

rent overlapping hums is created whereby resident nesting males

may be able to access and respond acoustically to the hums of

neighbors [1]. The perception of potential competitors may affect

an individual’s motivational state and subsequently elicit appro-

priate social responses.

In teleost fishes, the encoding of auditory stimuli first occurs in

the saccule [15–17], the main endorgan of hearing in midshipman

and most other teleosts, which projects via the eighth nerve to the

descending octaval (DO) nucleus in the auditory hindbrain [18–

20]. The rostral intermediate division of DO (DOri) is not only a

major source of ascending afferent projections to the midbrain

torus semicircularis (TS), but also projects to the prepacemaker

nucleus of the vocal pattern generator [9,18,19] and thus provides

a vocal-acoustic interface at the level of the auditory hindbrain in

the medulla. Nucleus centralis within TS (TSnc) is largely medial

and periventricular, and has been physiologically identified as an

auditory center which can encode concurrent hums [21,22] and

shares reciprocal connections with the central posterior nucleus

(CP, auditory thalamus) [9,19] as well as with the anterior tuberal

hypothalamus (AT). Finally, CP has reciprocal connections with

AT and the ventral tuberal hypothalamus (vT), both of which are

part of the descending vocal-motor circuitry and SBN [6,9].

In the closely related Gulf toadfish, Opsanus beta (same family as

the midshipman fish), exposure to conspecific advertisement calls

is known to increase vocal production and raise circulating blood

levels of 11-ketotestosterone and cortisol [23]. While acoustic

playback challenges are known to elicit simultaneous changes in

circulating hormone levels, vocal behavior and territoriality [24],

the physiological response to such a challenge may not be limited

to changes in steroid levels alone. Catecholamines (CA), which

include dopamine (DA) and noradrenaline (NA), are highly

conserved neurochemicals that modulate motivated behavior

and sensory perception across vertebrates [25,26]. The locus

coeruleus (LC) is NAergic, found in the isthmal brainstem of all

vertebrates [27] and is an important regulator of behavioral

arousal and sensory systems, including audition [28–30]. In

teleosts, DAergic neurons in the periventricular posterior tuber-

culum (TPp) appear to be homologous to the amniote A11 CA

group which sends descending projections from the diencephalon

to the spinal cord [31,32]. Neurons within TPp also display

ascending projections to the ventral telencephalon which originally

lead to the proposal of similarities to the A10 ventral tegmental

neurons of the tetrapod mesolimbic system [8,33]. Interestingly,

both A10 and A11 DAergic neurons are known to be important in

motivated social and sexual behavior in other species [34–37].

However, the function of these CA groups and whether or not

they are important modulators of social behavior in teleost fishes is

unknown. In midshipman, like other teleosts, connectivity of

DAergic TPp neurons and TPp in general [38] appear to make

them ideal candidates for sensorimotor (including auditory-vocal)

integration and higher order decision making [32,39].

The goal of this study was to characterize how the brain of a

vocal fish responds during exposure to the advertisement calls of

potential competitors. To this end we presented wild-caught type I

midshipman males (P. notatus) with playbacks of advertisement calls

of field-recorded midshipman, and examined patterns of neural

activity by assaying changes in cFos, an immediate early gene

product, within the CNS. Specifically, we tested the hypothesis

that type I male midshipman exposed to other advertisement calls

would show elevated neural activity (i.e., increased cFos response)

in auditory and vocal-acoustic brain centers as well as differential

activation of CA neurons compared to control males exposed only

to ambient noise. We quantified cFos immunoreactive (-ir)

neurons in major auditory nuclei including DOri, TSnc, and

CP, as well as in two vocal-acoustic centers (AT, vT) which are

both part of the teleost SBN. We also examined whether the social

acoustic signals increased the cFos response in CA neuronal

populations in the LC and TPp by double labeling with tyrosine

hydroxylase (TH), the rate-limiting enzyme in CA synthesis. Our

results are the first to demonstrate a link between the exposure to

social acoustic signals and the activation of specific catecholamin-

ergic nuclei along with brain regions associated with auditory

processing and social behavior in a teleost fish. In addition, our

data support the hypothesis that CAs are important neurochem-

icals involved in the modulation of auditory-driven social behavior

across vertebrates.

Materials and Methods

Ethics Statement
All experimental animal procedures performed in this study

were approved by the Institute for Animal Care and Use

Committee of the University of California, Davis (Protocol

Number: 15977), and animals were collected from the field under

California Department of Fish and Game Permit 802021-01.

Animals
Male plainfin midshipman fish (Porichthys notatus) were collected

from nests during the morning low tides at several natural

breeding locations in Tomales Bay near Marshall, CA, USA, in

the same geographical locations used in previous studies over the

last 20 years (e.g., [40–42]). Type I males were distinguished from

type II’s [11] and females by size, and sex was confirmed post

sacrifice. Type I males were transferred to coolers with aerated sea

water and then transported to the UC Bodega Marine Laboratory

(BML) in Bodega Bay, CA where they were housed in flow-

through sea water aquaria until play-back trials within 24–72 hrs

of collection. Holding time between collection and playback

should not have affected the fishes’ sensory capabilities as previous

studies showed no decrease in female midshipman auditory

sensitivity to encoding frequencies of the male mate call until

more than 25 days post-collection [16]. At BML, the fish were

maintained in large communal tanks at natural ambient temper-

atures (12–14uC) until playback experiments were conducted.

Playback Experiment
All tests were conducted at BML in an outdoor, cylindrical

concrete tank (4 m diameter, 0.75 m depth) at night between

Brain Activation to Social Acoustic Signals
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9 pm and 1:00 am during July 2011. A monopole sound source

(Lubell AQ339, Clark Synthesis, Littleton, CO, USA) was

suspended from a wooden beam in the center of the tank and

positioned 10 cm above the tank floor. Animals were placed in a

30 cm diameter plastic mesh cylinder cage in the tank at a fixed

distance from the underwater sound source so that the average

peak sound level would be 130 dB (re 1 mPa) at the center of the

cage when the sound stimulus was turned on. The calibrated

stimulus sound levels of 130 dB (re 1 mPa) are consistent with the

sound pressure levels of the advertisement calls produced by type I

males recorded near their nests [43]. Sound levels were calibrated

and measured nightly using a mini-hydrophone (model 8103,

Brüel and Kjaer, Norcross, GA, USA), a charge amplifier (Brüel &

Kjaer model 2692) and oscilloscope. Sound playback males (n = 6)

were subjected to a 30 minute playback of 5 looped field-recorded

advertisement calls of other male midshipman. Control males

(n = 6) were placed in the same arena for 30 minutes at the same

time of night with only ambient noise (,100 db re 1 mPa).

Animals were sacrificed 120 minutes post trial by deep anesthe-

tization in 0.025% benzocaine in seawater followed by transcardial

perfusion with ice cold teleost ringers followed by 4% parafor-

maldehyde in 0.1 M phosphate buffer (PB; pH 7.2). We chose 120

minutes to sacrifice because Okuyama et al. [44] demonstrated

that levels of cFos protein were significantly elevated in the

medaka fish (Oryzius latipes) brain starting at 60 minutes after being

treated with pentylenetetrazol (PTZ) a GABA antagonist, and

remain elevated for up to 150 minutes. Prior to sacrifice, standard

length was measured from the tip of the snout to the caudal

peduncle. We calculated gonadosomatic index as the percentage

of gonad to body mass. Brains were harvested, post-fixed for 1

hour, and stored at 4uC in 0.1 M PB in 0.03% sodium azide until

sectioned. Approximately 24 hours prior to sectioning, brains were

cryoprotected in 30% sucrose-PB solution. Brains were sectioned

on a cryostat in the transverse plane at 25 mm in 2 series and

collected onto subbed slides and stored at 220uC until labeling.

For this experiment, 1 of 2 series was used for immunohistochem-

istry.

Immunohistochemistry
Slides were allowed to warm to room temperature and were

washed 3 times for 15 minutes in phosphate buffered saline (PBS;

pH 7.2) followed by 1 hour soak in 0.3% Triton X-100 in PBS

(PBST) +10% blocking solution [(8% normal donkey serum (DS,

Jackson Immunolab, West Grove, PA)+2% bovine serum albumin

(Sigma-Aldrich, St. Louis, MO) (PBST-DS/BSA)]. After blocking,

tissue was incubated for 16 hours at room temperature in PBST-

DS/BSA containing mouse anti-tyrosine hydroxylase (TH, 1:1000

Millipore, Temecula, CA) and rabbit anti-cFos (1:2000 Santa

Cruz Biotechnology, Santa Cruz, CA). Post incubation, slides were

washed 5 X 10 min in PBS +0.5% normal donkey serum (PBS-

DS). This was followed by 2 hour incubation in PBST-DS/

BSA+donkey anti-mouse conjugated to Alexa Fluor 488 (dilution

1:400, Life Technologies, Norwalk, CT), and donkey anti-rabbit

conjugated to Alexa Fluor 568 (1:200, Life Technologies). Slides

were then washed 4 X 10 min in PBS, and coverslipped with

ProLong Gold with DAPI (Life Technologies), and allowed to dry

in the dark at room temperature for approximately 48 hours at

which time they were sealed with nail polish and stored at 4uC.

Specificity for both the TH [45,46] and cFos [44,47] antibodies

have been demonstrated elsewhere in teleost fishes. Additionally,

controls without primary or secondary antibodies or preabsorption

of cFos primary antibody with its blocking peptide (SC-253P,

Santa Cruz Biotechnology) as per manufacturer’s instruction,

eliminated specific fluorescent signal.

Image Acquisition and Anatomy
Auditory/Vocal-Acoustic centers. Images were acquired

on an Olympus BX61 epifluorescence compound microscope

(Tokyo, Japan) using MetaMorph imaging and processing software

(Molecular Devices, Sunnyvale, CA). Each nucleus analyzed in the

auditory/vocal-acoustic system was identified at low magnification

and photomicrographed with a 20x objective at the same light

level and exposure time. Each photomicrograph was taken

consecutively using Texas Red and DAPI filter sets (Chroma,

Bellow Falls, VT) within a z-stack at 5 levels (2 levels above and 2

levels below a central plane), each 1 mM thickness. These 5

photomicrographs were combined into a single projected image in

MetaMorph. For each image, cFos-ir signal was thresholded above

background [48], and the number of cFos-ir cells was quantified

using MetaMorph’s integrated morphometry analysis (IMA)

feature. A size filter in IMA was employed to count only

immunofluorescence $125 pixels. This value was determined a

priori as the average pixel count for the smallest size of cFos-ir cells

we considered to be signal. cFos-ir cells that were clumped were

counted manually: a region was created around the cFos-ir cell(s)

in question, and transferred to the DAPI channel where the

presence of multiple nuclei was confirmed. Sampling strategy was

determined per region to account for intrinsic variation in size

between nuclei [49]. In the case of tissue loss or damage, the

opposite side of the brain was used (for unilateral sampling), or the

section was omitted (see below). In each animal, the average

number of cFos-ir neurons per section was calculated per nucleus.

Experimenter was blind to treatment conditions of all slides

analyzed.

The most basal level of the ascending auditory pathway we

analyzed was the rostral intermediate division of the descending

octaval nucleus (DOri). Beginning rostrally in DOri, (Figure 1A)

we sampled serial sections caudally until its disappearance at the

level of the octavolateralis efferent nucleus (OE) (Fig. 1B) [18,19].

A border was drawn around DOri in the DAPI channel and

transferred to the Texas red channel to quantify the number of

cFos-ir neurons. Landmarks from published descriptions of this

nucleus were used to identify its extent [19]. As DOri is directly

innervated by nVIII [19], we quantified cFos-ir neurons bilaterally

to account for any activation bias that may have occurred due to

the position of the fish relative to the speaker. On average, 10.8

sections were analyzed (63.7 SD). An independent samples t test

was performed to determine that there was no difference in

number of sections used between groups (p.0.83).

In the auditory midbrain, we quantified numbers of cFos-ir

neurons within an area drawn around the periventricular TSnc

(Figure 1C–D) in 2 adjacent photomicrographs captured with 20x

objective at each level sampled. Medially, this area excluded the

periaqueductal gray (PAG) and paratoral tegmentum (PTT) which

are both known to elicit vocal behaviors in physiological

preparations [9]. Laterally, landmarks were used to assure that

there was no overlap in photomicrographs. We began analysis of

TSnc at the level of the molecular cell layer of the valvula (Vm).

Moving in the caudal to rostral direction, we sampled every fourth

section unilaterally until the appearance of the auditory thalamus

(CP). The right side of the brain was used unless there was damage

to the tissue, in which case we used the left side. Five sections

throughout TS were used to calculate average cFos-ir neurons per

section, except for 1 animal in the social signal group where 4

sections were used. Toral efferents project to both the compact

(CPc) and diffuse (CPd) divisions of the central posterior nucleus

(CP) of the thalamus (Figure 1E) [19]. CPc forms a wing-shaped

band of cells lateral to the midline, and CPd is a loose collection of

cells which extend ventrolaterally from CPc [9]. A boundary was

Brain Activation to Social Acoustic Signals
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Figure 1. Auditory and vocal-acoustic anatomy. Transverse sections with DAPI nuclear counterstain (blue) showing white borders around
nuclei in which numbers of cFos-ir neurons were quantified within auditory and vocal-acoustic pathways. The caudal (A) and rostral (B) extents of the
rostral intermediate descending octaval nucleus (DOri). The caudal (C) and rostral (D) extents of the periventricular nucleus centralis of the torus
semicirularis (TSnc). (E) Compact (CPc) and diffuse (CPd) divisions of the central posterior nucleus. Ventromedial to CP is the anterior tuberal nucleus
(AT) in the ventral hypothalamus. (F) Ventral tuberal nucleus (vT) of the anterior hypothalamus. (G) (inset) Dorsal view of midshipman brain with
relative positions of A–F. Abbreviations: Cerebellum (C); Cerebral Aqueduct (CA); Horizontal commissure (HoC); Internal arcuate fiber tract (iaf);

Brain Activation to Social Acoustic Signals
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drawn around CPc, and cFos-ir neurons were quantified within.

As CPd is by nature diffuse we quantified cFos-ir neurons in the

entire 20x image, starting at the ventrolateral extent of CPc. We

sampled CP unilaterally on the right side of the brain in 3

consecutive sections. One photomicrograph was taken for each

division, and we analyzed cFos-ir neurons within CPc and CPd for

each section analyzed. Additionally, we summed cFos-ir neurons

within CPc and CPd for a comparison of total activity within the

auditory thalamus. There were no differences in number of

sections analyzed between groups in either TS or CP (independent

samples t test, p.0.35 in both cases).

AT is located in the ventral hypothalamus, rostral to the dorsal

periventricular hypothalamus (Hd) and dorsal to the lateral

hypothalamus (LH; Figure 1E) [50]. We drew a boundary around

AT in the DAPI channel which was then transferred to the Texas

red channel where numbers of cFos-ir neurons were quantified. In

AT, we sampled 3 consecutive sections unilaterally on the right

side of the brain. There was no difference in number of sections

analyzed between groups (independent samples t test, p= 0.18). vT

was sampled unilaterally in serial sections on the right side of the

brain starting at the level of the horizontal commissure (Figure 1F)

[9,50]. An area was drawn around vT in the DAPI channel and

transferred to the Texas red channel where the number of cFos-ir

neurons was quantified within. On average, 2.7 (61 SD) sections

were used per animal, and an independent samples t test showed

that there was no difference in number of sections analyzed

between groups (p.0.15).

Catecholamines. Activation of catecholaminergic neurons

was measured by the occurrence of a cFos-ir nucleus within a TH-

ir cell, which we refer to as colocalization [34]. To analyze the

percentage of TH-ir cells colocalized with cFos-ir, photomicro-

graphs were taken under the same conditions as those used for

analysis in the auditory/vocal-acoustic centers. However, photo-

micrographs were taken with an additional filter set (FITC/CY2,

Chroma, Bellow Falls, VT) within a z-stack of 9 levels (4 above

and 4 below a central plane) each 1 mM thick to capture all TH-ir

somata. Photomicrographs were combined into a single projected

image in MetaMorph. The DAPI and green channels were

overlaid, and TH-ir cells were counted manually. cFos-ir neurons

were quantified using MetaMorph IMA in an identical manner to

the auditory/vocal-acoustic centers. Using MetaMorph’s create

region function, outlines were created around cFos-ir cells and

transferred to the TH/DAPI overlaid image. We manually

counted each instance where an outline indicating cFos-ir was

located within the nucleus of a TH-ir cell, confirmed by DAPI

nuclear stain. The sum of TH-ir cells that contained cFos-ir was

divided by the total number of TH-ir cells for a percentage of TH/

cFos-ir colocalization. Although TH is the rate-limiting enzyme in

the production of all CAs, biochemical and genetic markers have

substantiated TH-ir neurons in the LC and TPp as noradrenergic

and dopaminergic, respectively, in fishes, consistent with their

proposed homologies in other vertebrates [25,27,31–33,39,51].

The noradrenergic locus coeruleus (LC; Fig. 2A) was located by

the presence of TH-ir cells dorsolateral to the medial longitudinal

fasciculus (MLF) in the isthmal region between the hindbrain and

midbrain [52]. Sampling began with the bilateral appearance of

TH-ir cells and continued serially in the caudal to rostral direction

for an average of 7.42 (61.3 SD) sections per animal until their

disappearance. A single photomicrograph was taken with a 20x

objective of TH-ir neurons in each hemisphere. An independent

samples t-test showed no difference in the numbers of sections

analyzed between groups (p.0.2).

Analysis of cFos-ir colocalization within TH-ir neurons of TPp

began caudally with the appearance of dense clusters of large,

pear-shaped TH-ir cells medial to the medial forebrain bundle

(MFB) that extended ventrolaterally along the lateral border of the

paraventricular organ (PVO; Fig. 2C,D) [33,53]. Up to three 20x

photomicrographs were needed to capture all TH-ir cells per

section and photomicrographs were aligned prior to analysis to

avoid overlap. TPp was analyzed serially for an average of 7.4

(61.9 SD) sections in the caudal to rostral direction until the

disappearance of large, pear-shaped TH-ir cells adjacent to the

midline. The caudal three sections of TPp accounted for the

majority of TH-ir cells in the nucleus (paired-samples t-test,

p,0.001, data not shown). One animal in the social signal group

was excluded from analysis due to tissue damage that rendered the

caudal portion of TPp unusable. The number of sections analyzed

throughout the TPp did not differ between groups (independent

samples t-test, p.0.3).

Statistics. Data for number of cFos-ir neurons per section

and percent TH-ir neurons with cFos-ir nuclei were analyzed via

independent samples t tests with males who were played back

advertisement calls (social signal) and males who were not

(ambient noise control) as between group factors. Levene’s test

showed homogeneity of variance between groups for each

independent variable analyzed (p.0.07 in all cases). We

performed pair-wise correlations to investigate the relationships

between the cFos response within auditory/vocal-acoustic nuclei

and cFos colocalization within TH-ir cells of the LC, and TPp.

Experimental groups were not added as a factor in Pearson

correlations as all animals were exposed to an acoustic environ-

ment ranging from ambient environmental noise to advertisement

call playback. All statistics were performed on IBM SPSS Statistics

Version 19. We used the Benjamini-Hochberg correction [54] on

our alpha level of p = 0.05 for each t-test and pair-wise comparison

performed, which we pooled to correct for multiple comparisons

within the same data set. All statistics reported are significant

relative to their corrected alpha level.

Results

Morphological analyses were performed on all fish used in the

study. For the social signal exposed males, standard length

(SL) = 16.460.8 cm (mean 6 SD), body mass

(BM) = 74.5610.2 g, and gonadosomatic index

(GSI) = 0.8260.31. For the ambient noise exposed males,

SL = 17.061.3 cm, BM = 72.7615.7 g, and GSI of 0.8360.34.

There were no differences in the body metrics (SL, BM, and GSI)

between social signal and ambient noise exposed males (p.0.4 for

all cases).

Brain Activation of Ascending Auditory Nuclei
Numbers of cFos-ir neurons were analyzed between groups in

the hindbrain DOri (Fig. 3A–B), the midbrain TSnc (Fig. 3C–D),

and 2 subdivisions of CP (CPc and CPd) (CPc shown in Fig. 3E–F)

within the auditory thalamus. Males exposed to social acoustic

Fourth ventricle (IV); Lateral hypothalamus (LH); Midbrain (M); Magnocelluar octaval nucleus (MG); Olfactory bulb (OB); Medial nucleus
preglomerulosus (PGm); Periaqueductal gray (PAG); Magnocellular preoptic nucleus (PMg); Posterior parvocellular preoptic nucleus (PPp); Paratoral
tegmentum (PTT); Optic tectum (TeO); Ventral secondary octaval nucleus (SOv); Telencephalon (T); Molecular layer of the valvula (Vm). Scale
Bars = 500 mm.
doi:10.1371/journal.pone.0070474.g001
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signals had a significantly greater number of cFos-ir neurons in

DOri (t(10) = 3.19, p= 0.01, Fig. 3G) and TSnc (t(10) = 2.88,

p,0.05, Fig. 3H) than males exposed to ambient environmental

noise. We found that social signal males also had significantly

greater numbers of cFos-ir neurons in CPc (t(10) = 4.14, p,0.01),

as well as CPd (t(10) = 4.68, p= 0.001). Values for both divisions of

CP were combined in each section throughout the nucleus as a

total measure of neural activity in the auditory thalamus. Social

signal males were found to have more cFos-ir neurons in the

auditory thalamus than ambient noise controls (CP (t(10) = 4.56,

p= 0.001, fig. 3I). Taken together, these data show that males

exposed to other male’s advertisement calls show a significantly

greater activation at three levels of the ascending auditory system

over exposure to ambient environmental noise.

Brain Activation of Hypothalamic Vocal-Acoustic Nuclei
Exposure to social acoustic signals had a significant effect on the

numbers of cFos-ir neurons in one of the two SBN/vocal-acoustic

nuclei that we analyzed. The hypothalamic AT (Fig. 4A–B) which

connects to both the ascending auditory and descending vocal

motor pathways showed a greater number of cFos-ir neurons in

social signal over control males (t(8) = 3.24, p= 0.01, Fig. 4C).

While the average number of cFos-ir neurons was higher in the vT

of social signal males (Fig. 4D–E), this difference did not reach

statistical significance (t(7) = 2.13, p= 0.07, Fig. 4F).

Activation of CA Neurons
Catecholaminergic neurons within the NAergic LC (Fig. 5D–E)

and the DAergic TPp (Fig. 5A–B) were differentially activated (as

assayed by TH/cFos-ir colocalization) in male midshipman

exposed to social acoustic signals over those exposed to ambient

environmental noise. Males exposed to other male advertisement

calls had a significantly greater percent colocalization of cFos-ir in

TH-ir LC (t(10) = 5.53 p,0.001, Fig. 5F) and TPp neurons

(t(9) = 3.21, p= 0.01, Fig. 5C) compared to controls. Importantly,

there was no difference in the total number TH-ir neurons

analyzed between groups in either the LC (Social Stimulus: 36.7

Ave TH-ir neurons 66.9 SD, Ambient Noise: 43.0610.1; p.0.2)

or the TPp (Social Stimulus: 189682, Ambient Noise: 211651;

p.0.5).

Co-activation of Auditory/Vocal-Acoustic Nuclei and CA
Neurons

Finally, we performed pair-wise correlations to determine if

there was a functional relationship between the number of cFos-ir

neurons within the auditory/vocal acoustic circuitry with the

Figure 2. Catecholaminergic anatomy. Tyrosine hydroxylase (TH) immunoreactivity (ir) was used as a marker for catecholaminergic neural
populations. (A) The bilateral noradrenergic locus coeruleus (LC). (B) (inset) Dorsal view of midshipman brain with relative positions of A, C, D. (C)
Representative caudal (C) and rostral (D) sections of the dopaminergic periventricular posterior tuberculum (TPp). Abbreviations: Fourth ventricle
(IV); Paraventricular organ (PVO); Third ventricle (III). Scale bar = 50 mm (LC) and 100 mm (TPp).
doi:10.1371/journal.pone.0070474.g002
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Figure 3. cFos response to social acoustic signals (advertisement calls) in the ascending auditory pathway. Representative images of
cFos-ir neurons (red/pink) within males who were exposed to social acoustic signals (left column, A, C, E) versus males who were exposed to ambient
environmental noise (right column, B, D, F). (A,B) Rostral intermediate division of the descending octaval nucleus (DOri) within the medulla. (C,D) The
periventricular nucleus centralis within the midbrain torus semicircularis (TSnc). (E,F) Compact division of the central posterior nucleus (CP) in the
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auditory thalamus. Scale bar = 100 mm. Arrows represent the dorsal (D) and lateral (L) orientation for each image. Data in G–I are represented as mean
number of cFos-ir neurons per section 6 SE, *p,0.05 **p#0.01, ***p,0.001.
doi:10.1371/journal.pone.0070474.g003

Figure 4. cFos response to social acoustic signals (advertisement calls) in hypothalamic vocal-acoustic circuitry. Representative
images of cFos-ir neurons (red/pink) within the anterior tuberal nucleus (AT) (A,B) and ventral tuberal nucleus (vT) (D,E) of males who were exposed
to social acoustic signals versus males exposed to ambient environmental noise. Data in C and F are represented as mean number of cFos-ir neurons
per section 6 SE, **p= 0.01. Scale bar = 100 mm. Arrows represent the dorsal (D) and lateral (L) orientation for each image.
doi:10.1371/journal.pone.0070474.g004
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percentage of TH-ir neurons colocalized with cFos-ir in the LC

and TPp. In the ascending auditory pathway, LC had a significant

positive correlation with DOri (r = 0.63, p,0.05 Fig, 6A), TSnc

(r = 0.73, p,0.01 Fig. 6C) and CP (r = 0.79, p,0.01 Fig. 6E). TPp

had significant positive correlation with CP (r = 0.70, p,0.05

Fig. 6F). There was no correlation between percent colocalization

in TPp with DOri (r = 0.51 p= 0.11 Fig. 6B), or with TSnc

(r = 0.29, p= 0.38 Fig. 6D). In the vocal-acoustic pathway, LC had

Figure 5. cFos-ir colocalization with catecholaminergic (TH-ir) neurons. Arrowheads indicate cFos-ir colocalized to catecholaminergic
neurons within the dopaminergic periventricular posterior tuberculum (TPp) (A, B) and the noradrenergic locus coeruleus (LC) (D,E) of males
exposed to social acoustic signals and males exposed to ambient noise. Data in C and F are represented as mean percent colocalization 6 SE,
**p#0.01, ***p,0.001. Scale bar = 100 mm. Arrows represent the dorsal (D) and lateral (L) orientation for each image.
doi:10.1371/journal.pone.0070474.g005
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a significant positive correlation with both AT (r = 0.83, p,0.01

Fig. 6G) and vT (r = 0.71, p,0.05 Fig. 6I), while TPp correlated

positively only with AT (r = 0.77, p,0.05; vT: r = 0.54, p= 0.17

Fig. 6H/J respectively).

Discussion

The localization of immediate early gene transcripts and

products has been established as a reliable method for mapping

the neural response to a variety of stimuli [55,56] including

auditory stimuli in mammals [57], birds [58–60] and anuran frogs

[61–64]. Here we demonstrate that immediate-early gene

products such as cFos can be used to map the neural response

to social acoustic signals in teleost fish, the vertebrate group where

vocal- acoustic communication is thought to have first evolved

[10]. Our results corroborate numerous neurophysiological and

neuroanatomical tract-tracing studies that have delineated the

auditory [19,21,22],vocal-acoustic [9,18,38,65] and social behav-

ior network [6] circuitry of this species. We show that males

exposed to social acoustic signals (advertisement calls of other

males) had a greater number of cFos-ir neurons across several

levels of the ascending auditory pathway, at least one level of the

descending vocal-motor circuit, and in two key catecholaminergic

neuronal populations compared to fish exposed to ambient noise.

Importantly, these results are the first to show activation within

catecholaminergic nuclei after exposure to a social acoustic

stimulus in any fish, and, consistent with studies in tetrapods,

support the hypothesis that catecholamines are important neuro-

modulators of vocal-acoustic communication across vertebrates.

cFos-ir Response in Ascending Auditory Circuitry
As predicted, the social acoustic signal induced significant

increases in numbers of cFos-ir cells in auditory processing centers

in the hindbrain (DOri), midbrain (TSnc) and thalamus (CP)

compared to ambient noise alone. The descending octaval nucleus

(DO) is directly innervated by nVIII, projects to midbrain TS and

represents a first-order auditory nucleus within the CNS of the

midshipman fish [18,19], as well as other teleosts [19,66–69].

Importantly, in midshipman, adaptive reproductive-related chang-

es in frequency encoding occur in the inner ear, implying that

social incentive processes begin even at the level of the auditory

periphery [13,16,17]. The rostral intermediate subdivision (DOri)

that we analyzed in this study also has a direct connection to the

prepacemaker nucleus of the vocal pattern generator and thus is

designated as part of a hindbrain vocal-acoustic complex that can

serve to provide feedback during calling [9,18,19,70].

In anamniote vertebrates (e.g., cartilaginous and bony fishes and

anuran frogs), tertiary auditory processing occurs in the torus

semicircularis (TS) which is the midbrain homologue to the

mammalian inferior colliculus [19,61,71,72]. In the plainfin

midshipman fish, the periventricular nucleus centralis (nc) has

been physiologically identified as the primary auditory center

within TS [19], and participates in the ability to discriminate

between the physical properties of overlapping advertisement calls

[21,22]. Similar to our findings in midshipman, transcripts for cfos

as well as another immediate early gene egr-1 were found to be

differentially increased in response to socially relevant auditory

stimuli in various subdivisions of TS in male Túngara frogs

(Physalaemus pustulosus) [61,63]. Unlike the anuran TS which has

multiple cytoarchitecturally distinct subdivisions with differing

efferent and afferent connections within the auditory circuit

[61,71,72], nc is the primary auditory center within TS of the

midshipman [19]. The teleost TS does have functionally discrete

subregions such as the nucleus ventrolateralis (TSnv) which is the

midbrain target of the ascending lateral line system [73]. TSnv is

both anatomically and functionally distinct from TSnc, and was

excluded from our analysis.

TSnc supplies the primary auditory input into the compact and

diffuse divisions of the central posterior nucleus (CPc and CPd)

within the thalamus [9,19]. Whether or not CPc and CPd serve

discrete roles in auditory processing and integration is unknown.

To date, only Lu and Fay [74] have recorded from teleost neurons

in the CP and their results suggest a function of CP different from

TS, with perhaps the auditory thalamus involved more in the

integration of frequency-selective channels for processing more

complex, wideband spectral features of natural or socially-relevant

sound sources. Increases in egr-1 transcripts within the auditory

thalamus of the Túngara frog have been shown to relate to a

behavioral (locomotor) response to auditory stimuli which suggests

the thalamus as a site for sensorimotor integration [75]. We found

a greater difference in cFos response in the CP of social signal

recipients vs. ambient noise compared to differences in lower

auditory centers, suggesting possible higher-order auditory func-

tions, e.g. [74]. The role of CP as a sensorimotor integration

center in response to conspecific auditory signals in teleost fishes

warrants further study [75].

cFos-ir Response in Vocal-Acoustic Circuitry/Nodes of
SBN

Both the anterior (AT) and ventral (vT) tuberal hypothalamus

comprise part of the midshipman descending vocal-motor system

where vT is the most robust forebrain vocal stimulation site [76–

78]. vT receives input from CP, however it is not considered part

of the acoustic circuitry. AT shares reciprocal connections with CP

and receives strong projections from TS and is therefore also

considered part of the ascending auditory system [9,19,67]. The

differentially stronger input from the auditory system may explain,

in part, the greater cFos response in AT versus vT to the social

acoustic signal over ambient noise.

In order to assess the social relevance of a stimulus, integration

of environmental cues and internal state must occur within the

CNS [9,79,80] and the social behavior network (SBN) represents a

suite of nuclei which may coordinate the production of an

appropriate behavioral response to such cues [5–7]. The teleost

AT and vT are thought to be partially homologous to the

mammalian and avian ventromedial hypothalamus (VMH) and

anterior hypothalamus (AH), respectively [6,8,81] which are

designated nodes in the SBN. Recently, Maruska and colleagues

[80] showed that levels of IEG transcripts (both cfos and egr-1) were

elevated in AT and vT of African cichlid (Astatotilapia burtoni) males

during social ascension from a subordinate to a dominant

phenotype. In that study social ascension was triggered by the

removal of an established dominant male from the environment,

and the increase in IEG transcripts in AT and vT (as well as every

other node of the SBN) was attributed to the perception of a social

opportunity [80]. As midshipman are nocturnal, we tested type I

Figure 6. Co-activation of auditory/vocal-acoustic nuclei and CA neurons. Pairwise correlations between numbers of cFos-ir neurons in
auditory/vocal acoustic nuclei and percent colocalization of cFos-ir within tyrosine hydroxylase (TH-ir) neurons of locus coeruleus (LC) (A–E) and the
periventricular posterior tuberculum (TPp) (F–J). Closed circles are males exposed to social signals; open circles are males exposed to ambient noise;
green trend lines indicate significant correlations (p#0.05).
doi:10.1371/journal.pone.0070474.g006
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males at night when they typically court females [11] and we

manipulated only their acoustic environment (playback of

advertisement calls vs. ambient noise) during our experiments.

Hearing another male’s advertisement call may be a signal that

causes activation of AT within the neural circuit(s) responsive to a

social opportunity in the context of courtship and reproduction.

While type I males build and defend nests, their mate call is not

typically displayed during direct agonistic encounters [14].

Alternatively, hearing another male’s mate call within a compet-

itive social context could be perceived as a challenge and cause a

neural response pattern associated with territoriality or competi-

tion. In mammals, cFos responses within the VMH have

implicated this nucleus in neural circuits dedicated to both

agonistic and mating behavior [82]. In a territorial Estrildid finch,

the violet-eared waxbill (Uraeginthus granatinus), increased cFos-ir (as

well as EGR-1-ir) neurons are found in the VMH and AH after

exposure to a male conspecific [83]. In breeding condition, male

European starlings (Sturnus vulgaris) behave territorially when in

possession of a nest box from which to vocally court females, and

have a higher baseline level of cFos-ir neurons in VMH and AH

than do males without nest boxes [84]. Interestingly, the number

of cFos-ir neurons in VMH and AH had a significant positive

relationship with total number of songs produced by breeding

condition males regardless of whether or not they possessed a nest

box [84]. The ability to perceive social acoustic stimuli is thought

to be adaptive only if it facilities an appropriate behavioral

response [8]. Previously, it was demonstrated that ‘‘challenging’’

male Gulf toadfish with a playback of other male advertisement

calls changes their internal physiological state (increases levels of

circulating 11-ketotestosterone and cortisol), and causes an

increase in both the rate and duration of a vocal response [23].

Our results suggest AT may play an important role for integrating

the natural social acoustic environment with a subsequent vocal

response [9,23]; however, we were unable to monitor vocalizations

in response to mate-call playbacks in this experiment. Future

studies will be needed to identify behavioral responses of males to

social acoustic signals in this species.

cFos-ir Response in TH-ir Neurons in the TPp and LC
While circulating steroid hormones are documented to increase

during playback of advertisement calls in male toadfish (see above),

they are unlikely to be the only chemical responders to such a

social challenge. Levels of the catecholamines DA and NE have

been shown to increase in the brains of the lizard (Anolis carolinensis)

during presentation of an actual [85] or simulated [86] opponent.

Similarly, male Lincoln’s sparrows exposed to challenging songs of

other males showed increased noradrenaline metabolites in the

auditory forebrain and may be involved in the modulation of a

motivated behavioral response to such a challenge [87]. DA has

been implicated in motivated sexual behavior [36,88] including

appetitive sexual behavior in the form of female directed

vocalizations in zebra finches [35,89,90] and European starlings

(Sturnus vulgaris) [91]. Additionally, much attention has been paid

to DA’s involvement in how the female brain responds to

conspecific male vocalizations [48,92–94]. Pharmacological de-

pletion of DA neurons within the posterior tuberculum of female

grey treefrogs (Hyla versicolor) decreased phonotaxis to male

advertisement calls, implicating this nucleus in auditory and/or

motor behavior in the anamniote brain [95]. However, to our

knowledge the present study is the first to demonstrate that specific

groups of dopaminergic and noradrenergic neurons are responsive

to merely ‘‘hearing’’ acoustic signals from one’s potential

competitor.

The large, pear-shaped TH-ir neurons within the diencephalic

TPp have been substantiated biochemically and genetically as

dopaminergic [51,53], and are the major source of far-reaching

(i.e., non-local) DA projections ascending into the ventral

telencephalon (including striatal homologues), and descending

into the hindbrain and spinal cord of teleost fish [31,33,39,51,96].

Teleosts lack an ascending DA system that originates in the

midbrain as found in cartilaginous fishes and tetrapods [27,32,97].

While there is strong anatomical and genetic evidence that TPp is

homologous to the A11 dopaminergic group found in amniotic

vertebrates (see [32] and refs within), hodological evidence has

lead to the proposal that TPp may serve a functionally analogous

role, at least in part, to the amniote ventral tegmental area (VTA),

a key nucleus in the mesolimbic reward system [8,33]. Impor-

tantly, because TPp’s chemical and hodological characteristics

may allow it to modulate behavior by serving as a sensorimotor

integration center, it is a good candidate nucleus within the teleost

brain to test the hypothesis that DA is involved in the neurological

response to a playback challenge and auditory-driven social

behavior. Our hypothesis that DAergic neurons would be involved

in the neural response to a playback challenge was supported by a

significant increase in the percentage of TH-ir cells that were

colocalized with cFos-ir in the TPp of males exposed to other

males’ advertisement calls. Our results show DA’s involvement in

the neural response to social acoustic signals in a teleost fish and

these data are consistent with the response of DAergic neurons

within both the diencephalon and midbrain to social and vocal-

acoustic stimuli in other vertebrates [34,37,90].

A significant positive correlation between percent cFos induc-

tion in TPp TH-ir neurons and in the number of cFos-ir neurons

in CP and AT supports possible functional connectivity of these

nuclei [62]. TPp, however, does not appear to receive direct

efferent projections from the auditory system [19], but rather is

indirectly connected to the auditory system via reciprocal

connections with the periaqueductal gray (PAG), a midbrain

vocal-acoustic center and node of the SBN [6,9,38,65]. Addition-

ally, multiple nuclei within SBN as well as auditory and vocal-

motor circuits (including TS, CP, AT, and vT) project to PAG

[38]. These nuclei may produce specific patterns of combined

input into PAG [5,98] that may be needed to gait activation of

TPp in auditory-driven social behavior. As some DAergic cells

within TPp send simultaneous ascending and descending projec-

tions [31,99], TPp may add salience to acoustic stimuli by both

modulating sensory perception and coupling it with higher-order

decision making and/or motivational processes [8].

Cues from one’s social-acoustic environment can lead to

detection of conspecific competitors [23,100] or potential mates

[13,15,94]. In midshipman fish, seasonal auditory plasticity in

females is steroid-dependent and improves peripheral auditory

encoding to better detect the male advertisement call [17];

however, the neurochemicals that potentially modulate the CNS

in both females and males to mediate behavioral responses to

social signals are less understood [101]. The catecholamine NE

has been implicated in general arousal, selective attention, and

neural encoding of salient sensory stimuli [26,102]. The locus

coeruleus (LC) within the isthmus of the rostral hindbrain

represents the primary ascending NEergic system in teleost fish

[31,32,52,103], and its projection targets are highly conserved

throughout vertebrates and include the auditory midbrain [27,31].

We report a greater percentage of TH-ir cells colocalized with

cFos-ir within LC of males exposed to other male advertisement

calls, which is consistent with results found in female zebra finches

exposed to male courtship vocalizations [104]. We also report that

cFos induction in the LC had a significant positive correlation with
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number of cFos-ir neurons at all levels of the auditory and vocal-

acoustic pathways that we analyzed. A positive correlation with

percent colocalization in LC with cFos-ir neurons in DOri as well

as TSnc, CP, AT, and vT, is consistent with NE’s involvement in

neural arousal [29]. A positive correlation between neural activity

within LC and acoustic circuits is consistent with the hypothesis

that NE is needed for both auditory processing and the

discrimination of social acoustic signals [87]. Pharmacological

depletion of NE projections with N-(2-chloroethyl)-N-2-bromo-

benzyl-amine hydrochloride (DSP-4) has been shown to reduce

the IEG (ZENK) response in multiple forebrain nuclei of female

zebra finches [105], as well as the behavioral response to sexually

stimulating songs when they were played back to female canaries

with increasing levels of white noise [106]. The data in the present

study similarly demonstrate a neural response in LC to social

acoustic signals in a teleost. Future studies will be needed to

elucidate the roles that both noradrenaline and dopamine play in

social acoustic and sociosexual behavior in teleost fishes. Overall

our data support a conserved and integral role for catecholamines

in vocal-acoustic social behavior across vertebrate taxa.
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