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Abstract: The human microbiome has been a focus of intense study in recent years. Most of the living
organisms comprising the microbiome exist in the form of biofilms on mucosal surfaces lining our
digestive, respiratory, and genito-urinary tracts. While health-associated microbiota contribute to
digestion, provide essential nutrients, and protect us from pathogens, disturbances due to illness or
medical interventions contribute to infections, some that can be fatal. Myriad biological processes
influence the make-up of the microbiota, for example: growth, division, death, and production of
extracellular polymers (EPS), and metabolites. Inter-species interactions include competition, inhibi-
tion, and symbiosis. Computational models are becoming widely used to better understand these
interactions. Agent-based modeling is a particularly useful computational approach to implement
the various complex interactions in microbial communities when appropriately combined with an
experimental approach. In these models, each cell is represented as an autonomous agent with its
own set of rules, with different rules for each species. In this review, we will discuss innovations in
agent-based modeling of biofilms and the microbiota in the past five years from the biological and
mathematical perspectives and discuss how agent-based models can be further utilized to enhance
our comprehension of the complex world of polymicrobial biofilms and the microbiome.

Keywords: agent-based modeling; individual-based modeling; biofilm; microbiome; review

1. Introduction

Challenges to the laboratory study of naturally occurring biofilms and host-associated
microbiomes lie in the inherent complexity of these systems. The microbiota within biofilms
form multi-species communities in which many different interactions (i.e., competition,
antagonism, synergy and mutualism) may occur simultaneously among different species.
A large number of species often coexist, which makes study of their potential interactions
in the laboratory impractical. Many different micro-environments are encountered by
microbes within biofilms on natural and artificial surfaces and in mammalian hosts. Condi-
tions change over time as biofilms form, as digestive processes occur and as disruptions
such as antibiotics or dietary changes are introduced. Such changes are difficult to predict
or replicate in the lab. Under differing conditions, various individual cell characteris-
tics and behaviors (phenotypes) may develop even within a single species of microbes.
Such heterogeneity among individuals within a bacterial population allows bet-hedging,
potentially allowing the population to better adapt to changing conditions. However, small
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local changes in conditions and the individual microbes’ response to them are difficult to
measure using laboratory methods. The recent explosion in -omics techniques (genomics,
proteomics, metabolomics, etc.) has created vast amounts of data that are difficult to vali-
date with bench-top approaches. Modeling can generate hypotheses from these complex
data sets that can then be validated experimentally. Many microbiome species have not
yet been cultured but genetic and metabolic data collected through -omics approaches are
beginning to be incorporated into ABMs, potentially allowing us to gain insights into the
roles played by lesser-known species.

Mathematical modeling addresses some of the many challenges to the study of
polymicrobial communities by mimicking complex environments computationally. Models
can predict the outcome of many complex processes that are occurring simultaneously.
Some models may utilize differential equations to understand the biofilm dynamics and
structure, and others use optimization along with genomics and metabolomics [1–4].
In particular, the constraint-based reconstruction and analysis approach (COBRA) has been
applied to human-microbial interactions [5].

One type of mathematical model is the agent-based model or individual-based model
(ABM/IBM) (See Figure 1 for brief description). Some examples of the use of ABMs are in
aiding policy and land-use management [6], developing conceptual models to understand
social science issues [7–9], investigating the tumor microenvironment [10], and represent-
ing energy use in animal populations [11]. In microbiology, ABMs have been used to
understand bacterial interaction in soil habitats [12], the pathogenesis of Aspergillus fumi-
gatus infections [13], COVID-19 transmission [14], metabolic processes [15], and bacterial
dynamics in experimental environments [16], including bioreactors [17]. Because they
represent each microbe as an individual, these models are uniquely able to model interac-
tions between individual microbes and between microbes and their environment. ABMs
can help to explain emergent properties of microbial communities such as self-organized
spatial patterns in biofilms.

Figure 1. The description of agent-based models is based on Macal and North, 2005 [18].

In the intervening years since Hellweger and colleagues’ excellent 2016 review on this
topic, the field has experienced an expansion in the application of ABMs to biofilm and
microbiome studies [19]. The range of systems explored include industrial and medical
optimization of biofilm growth, and exploration of the human microbiome. Models might
focus on emergent biofilm structural characteristics or on the different phenotypes that
develop in cells of the same species growing within a biofilm. The biological information
used to build the model likewise covers a broad range. Inputs vary from extremely simple
such as growth rates obtained from laboratory cultures, to very complex, incorporating
entire genome-based metabolic networks, for example. Others have attempted to build
extremely flexible and expandable models, able to incorporate many biological, chemical,
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and physical variables. Other recent reviews have focused on different computational
methods for the microbiome and emerging priorities for microbiome research, which will
not be addressed here [20–22].

In this review, we summarize the progress in agent-based modeling of biofilms and
microbiomes over the past five years. In section two we present the biological questions
investigated and summarize their results. The third section describes ABM techniques
applied to the study of microbiomes and biofilms. We conclude with a discussion of the
work done in the past five years and possible future research avenues.

2. Microbiological Questions Tackled by ABMs
2.1. Medical Microbiology

Microbes in the human body are found in biofilms on the skin or the mucosal surfaces
of the digestive, reproductive and respiratory tracts. Biofilms are at the root of multiple
medical problems. They grow on catheters and indwelling devices, which allows shedding
of microbes into the bloodstream and systemic infection. Microbes in biofilms often
become tolerant to antimicrobials, allowing them to persist on medical devices and in
living tissues [23,24]. On the other hand, research is revealing an ever-expanding number
of ways that our health depends on a well-balanced, commensal microbiome. Agent-based
models have been used successfully to explore the many aspects of biofilms and the human
microbiome that impact our health. Table 1 summarizes the various applications of ABM
to microbial systems described below.

2.1.1. Modeling of Biofilm Formation and Growth

Several models have been developed as flexible and accessible tools and researchers
have subsequently adapted these models to explore specific biological questions. Other
researchers have developed distinct models to address their specific research questions.
Here we describe studies which investigate specific aspects of biofilm formation; some of
the studies use models based on the open-source platforms iDynoMiCS and Netlogo, while
others created models within proprietary software [47,48].

Pseudomonas aeruginosa forms biofilms on implanted and indwelling devices, and is a
major cause of nosocomial infections such as ventilator-associated pneumonia and urinary
tract infections [49]. Cystic fibrosis patients also suffer from chronic pulmonary P. aeruginosa
biofilm infections, notoriously resistant to antibiotics [49,50]. Although bacterial cells in
these biofilms are encased in an extracellular matrix that protects them from environmental
dangers and immune system attack, detachment and dispersion of living cells is a well-
characterized attribute of mature biofilms [51] that can lead to systemic infection and sepsis.
In their adaptation of iDynoMiCS software, Li et al. explored the influence of 3 detachment
mechanisms (shear, nutrient-limited and erosion) on P. aeruginosa biofilm structure [35].
Rather than model shear detachment using complex fluid dynamics, they made it a function
of the thickness of the biofilm. Therefore, the biggest effects of shear detachment were seen
in the later stages of biofilm growth. The same was true of nutrient-limited detachment,
which didn’t affect the biofilm structure until it had become thick enough to limit nutrient
diffusion. After this time, hollow areas developed in biofilm clusters and sloughing
occurred. The erosion detachment mechanism was active throughout the time of growth
and tended to create isolated clusters in the biofilm structure. The authors concluded
that the mechanism of detachment affects the overall structure of the biofilm in a time-
dependent manner and supported their modeling results with reports from experimental
studies and previous modeling attempts [52].
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Table 1. Summary of models with information about the interactions represented within the model.

Reference Environment Interactions

Microbiome Biofilm Physical Biological Microbe/Host Metabolic Microbe/EPS Toxin/Antitoxin Chemotaxis

Acemel et al., 2018
[25] X X X

Bauer et al., 2017 [26] X X X X X

Beroz et al., 2018 [27] X X X X

Carvalho et al., 2018
[28] X X X

Das et al., 2017 [29] X X X X

Gogulancea et al.,
2019 [30] X X X X X

Hartmann et al.,
2019 [31] X X X

Head et al., 2017 [32] X X X X

Jayathilake et al.,
2017 [33] X X X X X

Kragh et al., 2016
[34] X X X X X

Li et al., 2015 [35] X X X X

Li et al., 2019 [36] X X X X X

Lin et al., 2018 [37] X X X

Naylor et al., 2017
[38] X X X

Pérez-Rodríguez
et al., 2018 [39] X X X X X

Rudge et al., 2012
[40] X X X X

Schluter et al., 2015
[41] X X X X X

Shashkova et al.,
2016 [42] X X X X

Sweeney et al., 2019
[43] X X X X X X

Tack et al., 2017 [44] X X

Wright et al., 2020
[45] X X X X X

Weston et al., 2015
[46] X X X X
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Most experimental models of biofilm development start with adhesion of individ-
ual bacterial cells on a surface. However, in nature, bacteria often exist in aggregates of
many cells, whereas single cells are rarer. Using well-coordinated ABM and experimental
methods, Kragh and colleagues explored the role of cell aggregates in P. aeruginosa biofilm
formation by modifying the iDynoMiCS software [34,47]. Their ABM was simple, incorpo-
rating only cell growth, competition for resources and mechanical interactions. Using their
model and experimental biofilm formation in vitro, they tested various ratios of aggregates
to single cells. When competition between aggregates and single cells is low, aggregated
cells are at a growth disadvantage because cells in the center of the aggregate lack access
to growth resources. However, when the density of single cells is high, single cell fitness
is reduced due to competition. In this situation, aggregate cells have a relative fitness
advantage because aggregate height allowed cells to reach growth resources not accessible
to single cells. As might be expected, single cells formed a more uniform biofilm while
aggregates contributed to a rough-textured biofilm. Addressing this biological question
with an ABM allowed standardization of aggregate size and a degree of reproducibility
which would have been practically impossible experimentally.

P. aeruginosa and Candida albicans are co-isolated from infections at several body sites,
notably burn wounds and the lungs of cystic fibrosis patients [53]. These organisms influ-
ence each other’s virulence [54,55]. One mechanism proposed for this interaction involves
a quorum sensing (QS) molecule produced by P. aeruginosa that inhibits the formation
of tissue-damaging hyphal morphology in C. albicans [56]. A simple model by Pérez-
Rodríguez and colleagues explores the effects of distance, distribution and orientation of
the rod-shaped P. aeruginosa on the diffusion of QS molecules towards C. albicans yeast [39].
These parameters are difficult if not impossible to control experimentally. The model was
calibrated using algebraic methods. The model can be adapted to other species or signaling
molecules.

Dental caries, a highly prevalent disease worldwide, is associated with regular intake
of refined sugars which drives a transition from a symbiotic to a dysbiotic makeup of dental
plaque biofilms that, in turn, causes reduced pH, dissolution of enamel minerals, and caries
lesions on tooth surfaces [32]. While frequency of sugar intake has been considered the
primary factor leading to the selection of cariogenic bacteria, recent evidence points to an
important role for total dietary sugar [57]. Head and colleagues adapted their previously
created ABM to explore a large number of variations of frequency and total amount of sugar
intake on plaque biofilm composition [58]. Total sugar strongly predicted the development
of caries-associated dysbiotic biofilms along with low pH levels capable of dissolving tooth
enamel. At very low and very high sugar intake levels, frequency of intake did not change
the outcome. At intermediate sugar levels, the frequency of intake was a determinant in
the formation of cariogenic plaque biofilms. These insights into the contributions of both
amount and frequency of sugar intake can inform dietary guidance for improving oral
health without the need for large-scale animal or human experiments.

Helicobacter pylori infects as many as 50% of humans worldwide and is the cause of
peptic ulcers, gastritis and gastric cancer [59,60]. H. pylori forms biofilms in the mucosal
lining of the stomach and its biofilm lifestyle may contribute to its ability to grow in the
hostile gastric environment and to survive antibiotic treatment [59,61]. The quorum sensing
(QS) molecule, autoinducer 2 (AI-2), acts as a chemorepellent in H. pylori and influences
biofilm formation [62,63]. Sweeney, et al. adapted iDynoMiCS to explain differences in
biofilm structure between wild type H. pylori and strains with mutations affecting their
production, detection, or chemotaxis behavior to AI-2 [43,47]. Wild-type biofilms have
a heterogeneous structure with towers and channels. Disruptions to their chemotaxis
behavior results in thicker and more homogeneous biofilms while overexpression of AI-2
creates thinner and more heterogeneous structures. The overarching question they wished
to investigate was whether biofilm structure is “a developmental program controlled by
stage-specific gene expression” or “the outcome of local adaptations of individual cells”.
More immediately, the biological question addressed by modeling, which was difficult
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to determine experimentally, was whether the structural differences emerged from the
behavior of individual bacteria or from some other effect of the AI-2-related mutations.
The authors adapted the existing iDynoMiCS modeling framework to include chemotaxis,
monitoring of planktonic cells, and the ability of cells to join or leave the biofilm. Not only
did the model determine that the chemotaxis behavior of individual bacteria could account
for the differences in the biofilm structure, but it also brought to light an unexpected
finding. While AI-2-dependent chemo-repulsion led to thinner biofilms, the number of
cells joining the biofilm was actually larger in the AI-2 overexpression model than in the
models of AI-2-deficient mutants. The authors explained that the more heterogeneous
structure of over-expressor biofilms provided more surface area where planktonic cells
were able to interact with biofilm cells. This behavior may have implications for treatment
as increased interchange between planktonic and biofilm populations could introduce
antibiotic-resistant or more virulent cells to the biofilm.

Structural features of biofilms such as “mounds”, “towers” and “mushrooms”, inter-
spersed with channels are thought to enhance fitness through better access to nutrients,
removal of waste and dispersal of quorum-sensing signals. Nontypable Haemophilus in-
fluenzae (NTHI) is a common causative agent of chronic and recurrent otitis media, found in
biofilms on mucosal surfaces of the middle ear [64,65]. Extracellular DNA (eDNA) is a com-
ponent of the EPS of many biofilms and several pathogenic roles have been proposed [66].
In a study using the methods of statistical physics to analyze high-resolution images of
NTHI biofilms, Das and colleagues described the fractal nature of NTHI biofilms [29].
They hypothesized that eDNA could play a role in forming the fractal structures. They then
created an ABM that simulated the production of eDNA and two effects it could have on
the bacterial agents: Type IV pili (Tfp)-dependent twitching movement along a network
of eDNA and a tendency for eDNA to prevent dispersion of agents into the surrounding
media. This model was able to recapitulate the fractal nature of the NTHI biofilms and
when eDNA was limited, the fractal structures failed to develop. Because eDNA release
depends on the ComE pore of the NTHI outer membrane, a ∆comE mutant was used to
confirm their predictions in experimental biofilms. This study nicely illustrates how ABMs
can be used to test hypotheses through creation of rules, the results of which can then be
tested using genetically altered organisms. One drawback to the study is that ComE is an
essential part of the Tpf machinery so it was not possible to separate the roles of eDNA
and twitching motility experimentally.

Biofilms are notoriously resistant to environmental stressors. One mechanism of this
resistance is the formation of persisters, metabolically inactive cells that have a reversible
tolerance to antibiotics and other stressors. Persister cells are produced both randomly
and in response to environmental changes. The heterogeneity of environmental condi-
tions within biofilms makes it difficult to study switching of cells between active and
persister states under such conditions experimentally. A modeling project by Carvalho
and colleagues aimed to predict how switching between susceptible and persister cell
phenotypes could contribute to antibiotic resistance of biofilms [28]. Three switching strate-
gies were modeled: constant, nutrient (substrate)-dependent and antibiotic-dependent.
A constant switching strategy resulted in impaired fitness against antibiotic treatment,
but substrate-dependent and antibiotic-dependent switching did not. If bacteria switch
randomly into and out of a persister state, they will be killed by the antibiotic so long as
the time of treatment is long enough for all to switch to a susceptible state. And of course,
antibiotic-dependent switching led to excellent survival since persister cells only switched
back to a vulnerable state once the antibiotic was removed. The fitness gained by substrate-
dependent switching was perhaps not as intuitively predictable; low substrate-induced
switching to the persister state did not greatly affect the overall growth rate of the biofilm
since the cells in low-substrate areas would not have been contributing substantially to
overall growth, even in the absence of antibiotic. However, the ability of those inner biofilm
cells to enter a persister state allowed them to survive, then grow once the susceptible
cells in the upper layers of the biofilm were killed, increasing the availability of substrate.
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Because of this dynamic, the longer period of antibiotic treatment was much more effective
against bacteria that used substrate-dependent switching. The different spatial positioning
of persister cells in the 3 strategies led to differences in biofilm structure which emerged
during the recovery period. These modeling results have yet to be validated experimentally.

ABMs are an excellent tool for the exploration of evolution since they allow researchers
to follow the fate of individuals subjected to varying conditions over time. Senescence
is defined as the deleterious effects of accumulated damage. In unicellular organisms,
damage could potentially be managed by repair or by asymmetric segregation of damaged
cellular components when dividing. Wright and colleagues explored the question of which
is the better strategy [45]. Previous studies considered this question only in planktonic
states. While their previous study of cultures under constant conditions pointed to repair
as the best strategy, the authors hypothesized that the clonal nature of biofilm populations
and the heterogeneous conditions encountered by organisms in biofilms could favor a
strategy of damage segregation over repair [67]. They created their model of a generic
unicellular organism in the iDynoMiCS software, incorporating damage to proteins and a
mechanism for cells to detect and respond to the damage. They used the model to test an
adaptive repair strategy (that is, resources were allocated to repair in proportion to the level
of damage) against asymmetrical segregation of damage (one daughter cell receives all
damaged proteins upon division) under many conditions. The model predicted that repair
is a better strategy under most conditions. Segregation of damage was only beneficial when
repair was made less efficient or when nutrients were in extremely high concentrations.
Their results were supported by a search of prokaryotic genomes which revealed that
almost all contained at least one repair-related gene.

Understanding the early events of biofilm formation is critical to preventing harmful
biofilms and encouraging growth of beneficial biofilms. Early ABMs modeled bacteria as
spherical particles but physical constraints on other bacterial shapes may be quite differ-
ent, a fact which has prompted modelers to incorporate another common bacterial shape:
rods [68]. Acemel and colleagues created a model to study the earliest physical events of
biofilm development: adherence, irreversible attachment and formation of microcolonies by
a non-motile, rod-shaped bacterial agent [25]. They explored the effects of growth rates and
simple Brownian motion on the structure of the developing biofilm in 2 dimensions. Physi-
cal parameters that predicted growth patterns included the aspect ratio (length/width) of
the rod-shaped bacteria and the interplay between Brownian motion and growth. When
growth dominated, tight microcolonies formed and growth occurred at the edges, but when
cellular diffusion prevailed, colonies were dispersed, with growth occurring throughout a
circular area, and filling in the spaces. Longer bacteria with high growth rates produced
higher internal organization, with rods growing in clusters of similar orientation. Shorter
rods formed less organized microcolonies with more random orientations of the parti-
cles. One aspect of the model, the Brownian diffusion rate, was cleverly manipulated
experimentally to validate their predictions. The attachment-deficient, non-motile mutant,
Pseudomonas putida MRB52, forms loose colony structure compared with the tight, highly
organized colonies of the wild type, P. putida KT2442. As diffusion was reduced with
increasing concentrations of dextran sulfate, P. putida MRB52 colonies grew progressively
denser and more organized, matching the relationship between diffusion rate and colony
architecture predicted by the model.

High-resolution imaging, made possible by recent advances in microscopy, is revealing
structural features of biofilms at the level of the single-cell. Vibrio cholerae, the gastro-
intestinal disease agent, forms biofilms with a high level of internal organization with rod-
shaped organisms vertically ordered, especially in the center of expanding biofilms [69,70].
Beroz and colleagues created a simple agent-based model to explore the mechanical basis
for this phenomenon [27]. In developing V. cholerae biofilms, cells grow and divide along
their long axes, lying parallel to the surface. After several hours of growth, cells in the
center of the expanding cluster begin to reorient to a vertical position. This reorientation
spreads outward as the colony grows, maintaining a rough circle of vertical cells in the
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center with a ring of horizontal cells around it. The modelers were able to recreate this
phenomenon by modeling forces acting on each cell: cell-to-surface adhesion and pressure
exerted by neighboring cells in the x, y and z directions. They explored the effect of cell
length on verticalization using both models and in vitro experiments in which chemicals
altered the length of V. cholerae cells. Several similarities in modeled and experimental
biofilms were noted: verticalization events were linked with cell division, and cell length
had similar effects on the surface expansion and the overall shape of the developing biofilm.
The study is a fine example of the use of modeling to learn how mechanical characteristics
of individual cells can predict emergent features of biofilms.

Adhesion of microbes to a surface is the initial step in biofilm formation and has
been intensely studied in that context [71]. The goal of a study by Schluter and colleagues
was to investigate the evolutionary costs and benefits of adhesiveness within a growing
biofilm [41]. They extended an existing ABM to include adhesiveness, affecting bacterial
agents in two ways: by resisting removal from the biofilm through erosion and by resisting
movement within the biofilm. While adhesion was necessary for cells to remain in a
biofilm, it exacted a cost in loss of mobility, which was detrimental to highly adherent
cells located at the base of a growing biofilm when nutrient concentrations were limiting.
Less adherent cells were displaced upwards and had better access to nutrients supplied
from above. These competitive dynamics changed when nutrients were either abundant
throughout the biofilm or were supplied from below. The authors used their model to
explore the role of EPS, which can influence adhesion and also serves to expand the volume
occupied by cell clusters. When limiting nutrients were supplied from above, volume
expansion by means of EPS production could compensate for the loss of fitness due to
adhesion. When nutrients were provided from below, EPS was advantageous because it
allowed cells to quickly colonize the substratum. Some predictions generated by the model
were tested in fluorescence-expressing V. cholerae mutants with either constitutive EPS
production or no EPS production. These experiments shed further light on the mechanisms
involved in the competitive advantage of EPS production: EPS+ cells grew in lineage-
related clumps and displaced EPS- cells from the substrate. The experimental data were
used to make adjustments to the model which then produced results more consistent with
the experiments. This study indicates the importance of adhesion to competition between
microbes as they compete for space and nutrients in growing biofilms.

In another study addressing physical aspects of early biofilm events, Hartmann and
colleagues describe biofilms as “self-replicating active liquid crystals” [31]. These re-
searchers used automated confocal microscopy of growing biofilms to guide their creation
of an agent-based model with the goal of learning whether the structure of V. cholerae
biofilms could be predicted entirely on the mechanical interactions between individual
cells. They compared their model predictions to actual biofilms of wild type V. cholerae and
a rbmA-expression mutant in which the level of RbmA, a protein that mediates cell-cell
adhesion, was controlled by arabinose levels. They concluded that physical interactions
between cells can account for biofilm structure, at least in the early stages of V. cholerae
biofilm formation.

2.1.2. Agent Based Models of the Microbiome

One of the properties of the human microbiome that creates a challenge for experi-
mental biologists and modelers is the remarkable number of different species that populate
the human oral cavity and digestive tract. Estimates put the number of individual bacte-
ria, archaea and single-cell eukaryotes in a human body at 3.8 × 1013, around the same
order of magnitude as the number of human cells [72]. ABMs have been limited by the
computational expense (time and computer capacity) of modeling large numbers of bac-
terial species. In addition, one goal of modeling is to create the simplest model that can
adequately replicate important characteristics of a natural system. Because several species
in the microbiome serve similar metabolic functions, one approach has been to model
bacterial metabolic types rather than individual species. Another approach extends the
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ability of ABMs to include more species by carrying out computations in parallel. In this
section, we describe four gut microbiome models in more detail.

Interactions between major gut bacterial types were modeled extensively by Shashkova
and colleagues [42]. The focus of their work was the interactions that contribute to the
maintenance of a healthy balance in the gut microbiota. Their ABM models only two
bacterial types that represent the most numerous phyla in the gut, Firmicutes and Bac-
teroidetes, along with metabolites and the gut mucosa. The authors hypothesized that a
stable modeled microbial community would develop only with metabolic feedback be-
tween the bacterial types. They tested numerous combinations of interactions (feeding,
toxin/antitoxin) plus perturbation with antibiotics with the aim of finding the minimum
number of interactions required to create and then re-establish a stable system after a
disturbance. They discovered that one feedback mechanism was adequate to establish a
stable state but that multiple feedbacks could result in more than one stable state. Feedback
mechanisms also affected the spatial distribution of the bacteria in the gut, something they
would not have discovered without a visual output as part of their model. The spatial
arrangement of the bacteria controlled their ability to withstand antibiotic treatment as
layering can protect those closest to the gut wall. Recovery from disturbance occurred more
quickly when the microbiome contained a greater number of feedbacks. While questions
such as these can be tested experimentally using bacterial strains genetically modified to
interfere with certain interactions, the value of modeling is clear in its ability to test many
hypothetical interactions and single out those that are likely to be important for further
study in the laboratory.

Autism Spectrum Disorder (ASD) affects more than 1% of children in the U.S. and the
origins of this disorder are not well understood. One hypothesis states that imbalances
in pro-inflammatory (i.e., Clostridia and Desulfovibrio) and anti-inflammatory microbes
(i.e., Bifidobacteria), lead to the development of ASD [73]. To test this hypothesis in silico,
Weston and colleagues used existing information from the literature concerning direct
and indirect interactions between these three bacterial genera to construct an ABM in an
existing modeling framework, NetLogo [46,74]. Factors tested included the initial size of
the bacterial populations, their growth rates, their competition for nutrients, and the effect
of prebiotics and lysozyme. Decreases in the growth rates of the pro-inflammatory bacteria
tipped the balance of the community towards a community composition associated with
health, while increasing Clostridium growth rate or decreasing that of Bifidobacteria, created
a steady state that theoretically favors ASD. Differences in the initial number of bacteria did
not affect the eventual steady state reached by the population, but adding prebiotics gave
an advantage to the anti-inflammatory Bifidobacteria that could compensate for a lower
growth rate. Lysozyme treatment caused a large decrease in Clostridia and thus may reduce
the potential for developing ASD.

Building on their previous work, this group created GutLogo, an ABM based on
NetLogo, to model a community of four bacterial genera that are members of the human
gut microbiota, adding Bacteroides to the three genera modeled previously [37,46]. The bio-
logical setting is the human ilium with six carbohydrates as nutrient sources. The model
simulates population responses to changes in flow rate, nutrition and probiotics. The au-
thors first adjusted the doubling times of the bacterial agents to achieve a steady state
that matched data from the literature. They then introduced perturbations: probiotics
(Bifidobacteria), changes in diet (2× higher or lower glucose), or changes in flow (constipa-
tion or diarrhea). Differences in glucose level altered the Bifidobacteria and Desulfovibrio
populations; under high glucose, Desulfovibrio rose sharply but disappeared under lower
glucose. Interestingly, adding a probiotic did not appreciably change the steady state levels
of the four genera. Under constipation, all bacteria increased in numbers and all were
reduced in numbers by diarrhea. The model was validated by comparisons with previously
published experimental data.

The flexible modeling platform BacArena, described in detail in Section 3.1.4, was
tested on a multispecies model of the gut microbial community [26]. Bauer, et al. based
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their model on SIHUMI, a seven-species SImplified HUman intestinal MIcrobiota, which
was previously created in gnotobiotic rats to test the effects of changes in diet on bacterial
cell counts and metabolism [75]. The ABM focused on metabolic interactions among
bacterial species and between host and bacteria and how these interactions shape the spatial
arrangements found within the gut microbiome. In the first iteration, metabolites for each of
the 7 species were included. In this condition, the microbiome developed in a dysbiotic way,
with Escherichia coli becoming dominant. However, when host production of mucus glycans
was added to the model, the mucus layer on the gut wall became dominated by Bacteroides
thetaiotamicron, a species which is able to degrade glycans, creating fermentation products
that can be utilized by other species. Under these conditions the microbiome developed in
a similar way to SIHUMI in gnotobiotic rats [75]. Thus, in this case, a previously published
experimental study was used as the basis for changes to make the model more realistic.

In contrast to models treating the microbial members of the microbiome as individual
agents, some ABMs address the microbiome as a property of the host who is modeled as
an agent [76–78]. The neutral models of microbiome evolution by Zeng et al. consider how
different host agents acquire their microbiomes and the role of the host or the environment
in shaping the microbial community [76,77]. The microbiome is acquired via the parent,
environment or both. Another such study describes VERA, an agent-based model created
by Glushchenko et al., that focuses on propagation of antibiotic resistance in the host
microbiota [78]. It uses gene transfer of resistance determinants within the community.
The agents are hosts who are either healthy or infected and whose microbiota have different
levels of antibiotic resistance. These models shed light on the role of the host in microbial
evolution.

2.2. Industrial Microbiology

Microbes impact industry in negative and positive ways. Biofilms corrode equipment,
increase fluid resistance in pipes, and drag forces on the hulls of ships, causing significant
economic loss [79,80]. Biofilm formation on equipment and microbial contamination of
foods are serious problems for the food-processing industry [81,82]. On the plus side,
microbes are used in the production of chemicals and biofuels, in wastewater treatment,
in fuel spill cleanup, and in preventing food spoilage [83]. ABMs are becoming popular
design tools for industrial-scale biotechnological systems.

Synthetic biology researchers, Rudge and colleagues, created the ABM Cell Modeler
with physical interactions and efficiency in mind [40]. They used their model to investi-
gate the ways that cell shape and orientation affect biofilm structure. They were able to
convincingly and quickly model several situations that had previously been explored exper-
imentally. Researchers studying food contamination created an ABM to model growth of E.
coli in biofilms on equipment and as micro-colonies submerged in a semi-solid food [44]. E.
coli is a facultative anaerobe and adjusts its metabolism according to the available oxygen.
Tack et al. used flux balance analysis (FBA) to model the complex E. coli metabolic network.
In two case studies, they found that when low oxygen levels occur due to limitations to
diffusion, cells within the community undergo metabolic differentiation and secrete weak
acids; this causes local reduction in pH. Acid stress causes suppressed growth and cell
death at the center of the submerged colonies and near the abiotic substrate in the biofilm
case, which leads to detachment of the biofilm. In addition to metabolism, attributes of the
model organisms included growth, death, division, shoving, adhesion to the substratum
and each other, and detachment. These factors accounted for much of the E. coli biofilm
characteristics highlighted in their references to previous experimental work.

Many models focus on either the biological, chemical or physical aspects of biofilm
formation and growth but some researchers have attempted to accurately model all three.
Jayathilake and colleagues developed an ABM containing 3 bacterial functional groups,
extracellular polymeric substances (EPS) and inert cells [33]. They first tested the effect
of nutrient gradients on biofilm formation. When gradients are less apparent, growth
rate is faster and occurs throughout the biofilm, which is compact and smooth-surfaced.
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When nutrient gradients are greater, overall growth is slower, growth occurs mainly at
the top of the biofilm, and a thicker, rough-surfaced biofilm forms. These results match
those of other biofilm simulations. In a second set of trials, the authors modeled bacterial
detachment under shear forces as an emergent property, a function of bacteria-EPS adhesion.
The model replicated deformation of biofilms, formation of streamers and detachment of
clusters. Flow affected the surface topography of the biofilms: under no shear they had
very rough surfaces, with medium shear force they had undulating surfaces, and under
high shear, smooth surfaces. Results are similar to those seen in experimental studies
except that the model lacked sloughing of large sections of biofilms that takes place at later
stages of growth.

More recent work from this group introduces the open-source software, Newcastle
University Frontiers in Engineering Biology (NUFEB) [36]. Like its predecessor, it incorpo-
rates three-dimensional modeling of biological, chemical, and mechanistic properties of
individual microbes in an ABM [33]. With this new version of their model, they repeated
their study of a single-species biofilm growing in fluid flow, obtaining results similar to
the previous version and matching well with experimental data. They again modeled
the 3-bacteria biofilm community of heterotrophs (HET), ammonia oxidizing bacteria
(AOB), and nitrite oxidizing bacteria (NOB). In this more complex model, new interactions
emerged. The HET grew faster and dominated the biofilm at first, but as organic substrate
was depleted, the nitrifying bacteria (AOB) took over. Surprisingly, the NOB didn’t grow,
apparently because low O2 levels at the bottom of the biofilm were established by the time
NO2

- was produced in sufficient amounts by the AOB.
The stated aim of a third recent paper from this group is to move ABMs from research

tools to engineering tools which will require even larger and more physically and biologi-
cally precise modeling methods [30]. Because the laws of thermodynamics have predictive
power in microbial communities, the authors altered NUFEB to incorporate a separate ther-
modynamics module which estimates overall biomass yield. The scenarios modeled are a
2-functional-group nitrification model (aerobic) and a three-functional-group anaerobic
community. In the aerobic nitrification system containing AOB and NOB, they tested three
scenarios related to pH-constant, freely changing, and buffered. They found differences
in the dominant and limiting chemical species: with freely changing pH, NH4

+ becomes
the dominant form, NH3 becomes limiting and the AOB do poorly. However, when pH
is buffered, O2 becomes limiting and the number of inert (dead) cells increases. Constant
pH led to biofilms with NH3 and O2 becoming limiting in different areas. The anaerobic
system contained glucose fermenters, acetoclastic methanogens and hydrogenotrophic
methanogens. Because the model was modular, the authors were able to test it with and
without thermodynamics coupled to the basic model. The two methods produced similar
biofilms which served as a validation of the thermodynamics method. Overall, the incorpo-
ration of thermodynamics in ABMs has advantages in that it can be applied to any system
in which the main redox reaction pairs are known and it relies on simpler factors unlike
Monod kinetics. The consideration of pH effects was edifying, and the authors urge that
it be included, even in models not based on thermodynamics, since it could account for
apparent inhibitory interactions between species.

3. Modeling Approaches

This section describes the different types of modeling approaches to understanding
the interactions within the microbiome and biofilms. The mathematical techniques and
rules (or mechanisms) of these models are discussed. Most of the agent-based models
described below have the microbes as autonomous agents which interact with each other
and the environment. The models may use partial differential equations to describe the
diffusion of the nutrients in the environment or within the biofilm/microbiome. Some of
the models also use different time scales for different biological processes to reflect realistic
situations. To speed up computations, parallel processing is often employed. Table 2
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provides a summary of the models discussed in Section 3 with details about how the model
was validated and what programming language was used.

3.1. Existing Software Platforms
3.1.1. Netlogo

Netlogo is a generic agent-based simulation software that has been widely used for a
variety of applications in fields as diverse as economics, environmental science, and soci-
ology [74,84–89]. Netlogo provides a generic graphical user interface (GUI) environment
that makes it easy to define ABMs. These models include the necessary agent types and
their rules, as well as diffusible substances that exist in the same space, in addition to
fluid flows. In Netlogo one can create sliders to easily alter parameter values such as
initial bacterial population size, nutrient intake rates, flow rates, metabolite production
rates, or parameters for switching mechanisms. The GUI also includes a map showing the
location of the agents, a graph of the populations over time, reporting on the number and
percentages of each agent group and level of nutrients. This real time visualization makes
Netlogo models easy to understand and modify as needed for each application.

Netlogo and its variation GutLogo are popular options for developing biofilm and
microbiome ABMs with three of the studies described thus far using them: the study by
Weston et al. on the interaction of Clostridia, Desulfovibrio, and Bifidobacteria in the gut
as a possible autism mechanism; the study by Lin et al. of four microbial genera within
the inner wall of the ileum; and the study by Carvalho et al. on the role of switching
between susceptible and persister phenotypes in antibiotic resistance of biofilms [28,37,46].
Specific rules in these models could easily be operated by Netlogo, such as the case in
Lin et al. where rules were created to allow cells to adhere to the mucosal surface of
the gut with a user defined probability [37]. This allowed cells to avoid washout due
to the unidirectional fluid flow. Another example are the rules in Carvalho et al. that
allowed cells to switch between susceptible and persister phenotypes according to several
schemes: (a) randomly at a constant probability, (b) dependent on substrate concentration
through a hyperbolic function, or (c) dependent on antibiotic concentration again through
a hyperbolic function [28].

3.1.2. iDynoMiCS

iDynoMiCS is an open-source software specific for simulations of biofilm growth,
written in Java [47]. It defines a computational domain divided into the substratum, biofilm,
boundary layer and the bulk liquid. The agents are the microbes with nutrients diffusing
from the bulk through the biofilm. It allows for cells to grow and divide and to apply
mechanical force to their neighbors (cell shoving). Due to its open-source nature, other
researchers have created special versions to expand its capabilities. iDynoMiCS was used
and modified to answer questions about the role that cell detachment, chemo-repellents or
cellular aggregates play in the biofilm structure [34,35,43].

Li and colleagues added three detachment mechanisms to the iDynoMiCS software
and used them to study the influence of cell detachment on P. aeruginosa biofilms [35].
The detachment mechanisms considered were fluid shear detachment, nutrient-limited de-
tachment, and erosion which were dependent on biofilm thickness, nutrient concentration,
and number of neighboring grid cells of an agent, respectively. To measure the biofilm
growth, the authors employed average and maximum biofilm thickness, and biofilm cell
numbers. To evaluate the morphology they estimated surface coverage, enlargement, and
surface roughness.
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Table 2. Summary of models with information about the programming language, validation and other model characteristics. Links to models are included. All links were last accessed on
16 February 2021.

Reference Environment Characteristics Validation Method Programming
Language

Microbiome Biofilm 2D 3D Parallel Experimental
Data, This Study

Experimental
Data, Literature None

Click Links to
Software if
Available

Bauer et al., 2017
(BacArena) X X X X R

Beroz et al., 2018 X X X X C++
Carvalho et al.,

2018 X X X NetLogo *

Das et al., 2017 X X X X not stated
Gogulancea et al.,

2019
(NUFEB)

X X X X C++-LAMMPS

Hartmann et al.,
2019 X X X X not stated

Head et al., 2017 X X X not stated
Jayathilake et al.,

2017
(NUFEB)

X X X X C++-LAMMPS

Jin et al., 2020 X X X Fortran
Kragh et al., 2016 X X X X Java **

Li et al., 2015 X X X X Java **
Li et al., 2019

(NUFEB) X X X X C++-LAMMPS

Lin et al., 2018 X X X Netlogo
Naylor et al., 2017

(Simbiotics) X X X X X X Java

Pérez-Rodríguez
et al., 2018 X X X Java ***

Rudge et al., 2012
(Cell Modeler) X X X X Python

Shashkova et al.,
2016 X X X Java, R

Sweeney et al.,
2019. X X X X Java **

Tack et al., 2017 X X Java ***
Wright et al., 2020 X X X X Java **
Weston et al., 2015 X X X Netlogo

* Source code is available under ‘Bacterial persistence in biofilms’ ** Modifications to the iDynoMiCS code *** Based on MASON toolkit.
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Sweeney et al. modified iDynoMiCS to incorporate the production of quorum sensing,
AI-2 molecules by the bacterial agents, diffusion of AI-2 through the environment, and
introduction of planktonic cells [43]. Another significant addition was the possibility of a
transition where some biofilm cells could become planktonic and vice versa. These tran-
sitions were controlled by crossing a threshold of chemotoxin concentration, which is
user-defined. The authors also developed a new visualization tool to interpret the sim-
ulation results. The model is a good example of the use of agent-based simulations to
examine the effect of chemotaxis on biofilm growth and structure. One limitation of the
model is that it does not incorporate cell growth, division, and chemotoxin production by
the planktonic cells.

Kragh et al. used iDynoMiCS to investigate how biofilm development can vary based
on how it is seeded, either by single cells or larger cell aggregates [34]. The computer
simulations were two-dimensional for computational efficiency. Oxygen was the limiting
nutrient in Monod growth equations since they did not observe any changes in the ex-
perimental results when the concentration of the carbon source was changed. The initial
aggregates were cut from a previously simulated biofilm and were then used to seed a new
biofilm. The simulations ignored EPS production, detachment and cell-cell signaling.

This modeling platform was also used by Wright et al. to investigate whether biofilms
favor damage segregation (DS), a fixed rate of repair (FR), or an adaptive repair (AR) [45].
The individuals in this model were “unicells” which were representative of unicellular
prokaryotes and eukaryotes. Age was defined as a measure of the fraction of the biomass
(or protein as referred in the paper) that is damaged due to metabolism. During growth,
the cells converted the nutrient to protein which became damaged and inactive at a certain
rate. Division was symmetric-both cells got half the damage, or asymmetric-old pole cell
received all damage and new one got none. The repair strategies were none, FR and AR.
Repair occurred when damaged material was converted into undamaged, active material
at a loss of energy. Repair also led to shrinking. The authors incorporated AR by making
the individual cells sensitive to their current intracellular damage levels and allocating an
appropriate amount of newly synthesized protein for repair. This made the cells capable
of responding to nutrient and stress gradients. FR allocated a fixed amount of protein to
repair. AR was found to be the optimal strategy when the supply of substrate was limited,
and when the rate of damage accumulation was proportional to the specific growth rate.

3.1.3. LAAMPS (Large-Scale Atomic/Molecular Massively Parallel Simulator) (C++)

LAAMPS is an open-source software written in C++ distributed by Sandia Na-
tional Laboratories, USA, which is primarily used for atomic and material modeling (
https://lammps.sandia.gov/ Last accessed on 16 February 2021). The models by Jay-
athilake et al., Li et al., and Gogulancea et al. adapted LAAMPS to microbiology and
created a biophysical agent-based model of biofilms, namely, the Newcastle University
Frontiers in Engineering Biology (NUFEB) model [30,33,36]. All three models included
biological, chemical, and mechanistic sub-models. These sub-models worked at different
time scales. The mechanical forces within the models were contact force, cell-cell adhesion
force, and fluid drag force. In all three models, the agents interacted with each other and
the fluid.

A precursor of the NUFEB model, the mechanistic individual based model in Jayathi-
lake et al. was a three-dimensional model with three functional groups and substrates [33].
The functional groups described above (HET, AOB, NOB) as well as their inactive coun-
terparts, were considered. EPS was secreted by HET. The 3D model has a biological and
physical sub-model. The former included Monod growth, division, shrinkage due to
lack of nutrients and death, while the latter included adhesion between bacteria and EPS,
contact between cells, and detachment. Additionally, fluid-bacteria interaction is included
to simulate deformation and adhesion.

The NUFEB added fluid dynamics, pH dynamics, thermodynamics, and gas-liquid
transfer to the Jayathilake et al. model [33,36]. NUFEB allowed for simulation of large

https://lammps.sandia.gov/
https://lammps.sandia.gov/
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complex microbial systems by dividing the entire domain into sub-domains, which allowed
processing of each sub-domain with minimal interactions between them. It also included
post-processing routines. Another innovation included the ability to model large numbers
of organisms (up to 107) through parallel computing and the addition of visualization and
analysis routines. Another novelty of this model is with respect to the growth mechanisms.
Growth of the bacterial agents depended on nutrient concentration, pH, and Gibbs free
energy. The growth could be Monod based or energy based. If it was energy based, there
was coupling with pH dynamics as well as gas-liquid transfer. Motion resulted from local
mechanical interactions and fluid flow.

The agent-based model in Gogulancea et al., connected thermodynamics, pH, chemi-
cal speciation (influence of different forms of chemicals) and environmental conditions [30].
The scenarios modeled were aerobic and anaerobic conditions. The model classified the
phenomena into three main categories: biological, chemical, and mechanical. Agents were
spherical with their own parameters for division or becoming inert. The biomass yield was
estimated using thermodynamics and the microbial growth was modeled using Monod
equations. Metabolic networks for anabolism and catabolism were reduced to two main
reactions. The growth expressions included the appropriate form of the chemical com-
pound the bacteria could use for growth. The chemical module was for the transport and
uptake of nutrients/excretion of metabolic products. The different processes modeled were
diffusion of nutrients, reactor mass balance equations, gas-liquid mass transfer (important
for wastewater treatment), and pH calculations. Mechanical interactions could describe
attachment and detachment as well as pressure released when bacterial division occurs.
Time steps for each process were user-defined. The code was also parallelized thus in-
creasing speed of computations. The mechanical interactions employed a spatial domain
decomposition strategy. For the biological and chemical processes, they decomposed the
contents of the grid cells. The aerobic simulations were run under different boundary and
pH conditions.

3.1.4. Flux Balance Analysis with R

BacArena is an R package which includes multi-scale models of P. aeruginosa biofilms
and a seven-species community of the human gut [26,90]. The R package is extendable,
and computations can be executed in parallel. It incorporates flux balance analysis (FBA)
with agent-based modeling and is based on the approach first developed for the MatNet
model [91]. FBA is a reconstruction of the organism’s metabolism based on its genome
annotation and subsequent calculation of the admissible steady state fluxes. In Bauer
et al., the spatial environment was a 2-D grid [26]. Each agent had its own metabolism
as well as followed biologically relevant rules like movement, duplication, chemotaxis,
and lysis. In each time step, metabolites diffused in the environment and could be ex-
changed between the agents. The metabolism was modeled by the FBA of the species.
The objective was to maximize biomass and the constraints were based on the metabolite
concentrations. They validated the growth of the biofilm model with experimental data
from literature. For the microbiome model, the seven species chosen were previously
characterized experimentally [75]. For new R users, the line-by-line code and the fact that
the package has multiple methods may be challenging. The lack of a robust GUI made
the results less intuitive and easy to understand for a new user. However, the scaling was
efficient, and plotting ranged from simple to complex with a lot of visual information.

3.1.5. MASON Multi-Agent Simulation Toolkit

Tack et al. and Pérez-Rodríguez et al. utilized the multi-agent simulation toolkit MA-
SON in Java to develop their agent-based models [39,44]. The model by Pérez-Rodríguez
et al. investigated the effect of diffused N-acyl homoserine lactones (AHL) on the pheno-
types within a P. aeruginosa and C. albicans biofilm [39]. Work by Tack et al. focused on
the relationship between oxygen and the secretion of products by E. coli [44]. The authors
developed a metabolic model for E. coli and incorporated it into MICRODIMS, (MICRObial
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Dynamics Individual-based Model and Simulator) [44,92]. The two case studies were 2D
biofilm growth and a 3D submerged colony growth. The cell metabolism was incorporated
using a linear model based on the intracellular metabolism in the form of FBA. The different
processes included in the model were diffusion, update of local pH, nutrient and oxygen
uptake, biomass growth, metabolite secretion, cell reproduction, cell lysis and movement.
The cell movement included cell shoving and detachment. The different subprocesses were
executed at different time steps. The simulations showed that oxygen limitations lead to
local pH drops which in turn influence the biofilm population dynamics and detachment.
The model is specific to E. coli and the authors caution that the model does not to apply to
other species like P. aeuroginosa, though it could be adapted for food pathogens that are
similar to E. coli.

AHL secreted by P. aeruginosa are known inhibitors of C. albicans hyphal development.
In the model by Pérez-Rodríguez et al., AHL and C. albicans were modeled as spheres and
P. aeruginosa as a rod [39]. AHL secreted by the bacteria diffuses within the biofilm until
collision with the fungus or the boundary. The diffusion was based on viscosity of the
medium and radius of the spherical particles. The simulations studied the impact of spatial
location of the fungal cells with respect to the bacteria, the impact of number, orientation,
and localization of cells over cell communication, influence of AHL molecules produced
outside the vicinity, and finally the interactions within a biofilm. The biofilm model was
seeded with 2 fungal and 5 bacterial cells which were randomly distributed within the
environment.

3.2. Other Modeling Strategies

The ABMs described in Section 3.2 have a variety of interesting features such as
inclusion of intracellular signaling, rod shape for the bacterial agents, inclusion of eDNA
strands, and using bacterial aggregates to seed a biofilm. However, these models are
encoded in software that is problem-specific, and therefore difficult to extend to other
problems.

A software tool called Cell Modeler was created to design synthetic biofilms for
industrial use [40]. The ABM was 3-dimensional and could include many cell properties,
including genetic regulation and intracellular signaling. The model employed different
time scales for different processes. Most of the rules as well as the growth function could be
user-defined. They validated their model using live cell culture and fluorescent microscopy
methods.

The model of bacterial biofilm growth by Jin et al. was a mix of the traditional
agent- based model and differential equations models [93]. The bacterial agents absorbed
substrates (nutrients, minerals, and other chemicals) and water and used them for growth,
reproduction, and EPS production. The EPS and water were modeled as interacting
continua using partial differential equations. Interactions between bacterial cells and cell-
to-wall were modeled using a discrete element method. The model was written using
FORTRAN and, unfortunately, no link to the software was provided.

The authors of Hartmann et al. investigated V. cholerae biofilms with emphasis on
the influence of external fluid flow on the structure and morphology of the biofilms [31].
This model has both a continuum and an agent-based component. In the ABM, the agents
were ellipsoids which grew and divided but were devoid of self-propulsion. The agents
were described by their position and orientation. There was a force of attraction and
repulsion between the agents and the wall boundary. The code could also be run in
parallel to reduce computational load. All the parameters were determined from experi-
mental biofilms and validation was done with parameters associated with the phenotypes
and morphology.

Das et al., employed statistical physics data analysis techniques with computational
analysis tools to study H. influenzae biofilms formed in the middle ear [29]. The authors
focused on the influence of the eDNA network and Tfp expression on biofilm structure.
The agent-based model is two dimensional with the simulation box divided into com-
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partments. The agents are the biofilm as well as planktonic cells, eDNA strands and
nutrients. The agents grew using a kinetic Monte Carlo scheme and replicated within a
single compartment. They moved to another compartment when a threshold was reached.
The biofilm cells could also disperse into the liquid medium. The eDNA strands were
produced by the bacterial cells at a fixed rate. These strands formed a network within
the substrate and could diffuse into neighboring compartments. In the model, the eDNA
network facilitated movement of the cells between compartments. At constant intervals,
nutrient was introduced into the system and several planktonic cells were removed. All the
model parameters were obtained from the literature.

The agent-based model by Head et al., has bacterial agents which were all assumed to
be acidogenic, i.e., capable of producing acid through glycolysis [32]. The population was
divided into aciduric (capable of metabolizing glucose to acid in a low pH environment)
and non-aciduric. The rectangular domain was divided into an enamel surface, biofilm,
and the saliva. The initial seed for the biofilm were cell aggregates. The biofilm cells grew,
produced EPS, and divided based on the glucose concentration and the pH. The cells also
were removed once a specified height was reached. The glucose was the sugar which
diffused through the environment. The authors chose glucose because of the large amount
of published data on glycolysis.

The agent-based model described by Beroz et al., was written in C++ and incorpo-
rated rod-shaped cells which grew, divided, adhered to the surface, and had cell-cell,
and cell-surface interactions [27]. The model investigated the phenomenon of vertical-
ization (cells have vertical orientation to the surface) observed in experimental biofilms.
They employed external forces on the cell to observe if there was instability to vertical
reorientation. When the pressure exerted by the external force crossed a specified threshold,
the cell became unstable to spontaneous reorientation. They observed that verticalization
depended on cell length and began when the surface pressures due to growth overcame
adhesive forces. The authors also employed a 2D continuum model using Python to better
understand the relation between local verticalization and global dynamics of the biofilm.

The Java agent-based model by Shashkova et al., of the microbiome was comprised of
two bacterial species, metabolites, and the gut; all of these were represented as autonomous
agents [42]. The bacterial agents were capable of inter-species interaction as well as
interaction with the gut. The bacteria were governed by metabolite and gut interactions as
well as the number of objects (metabolites and bacteria). The life cycle of the bacterium was
to produce metabolites, search for nutrients, divide, or die. The metabolites only moved
through the gut and were either absorbed by the bacterial agents or the gut wall. They could
also be excreted by the gut wall. The excretion controlled the abundance of the metabolites
and thus directly influenced their flux. The gut was divided into 3 areas, namely, the mucin
layer, lumen, and border between the two. The kinetics were modeled using ordinary
differential equations. The authors investigated the effect of antibiotic treatment on the
model. The scenarios tested were one or both of the bacteria being sensitive to the antibiotic,
or both being resistant. The model also incorporated a probability of antibiotic resistance
mutation.

The Simbiotics platform is a multicellular model with bacterial agents which interact
with each other and the environment [38]. It is a hybrid model that combined an agent-
based model of bacteria with a continuous chemical environment. The environment has
gradients of the nutrients. Cells may be spherical or rod-shaped and their local environment
has both information about their neighbors as well as the chemical environment. Motion of
cells was determined by Newtonian mechanics with force due to cell collisions, adhesion,
electrostatic interactions, diffusion, drag and force of gravity. The biological processes
implemented were growth, metabolism, division, movement, quorum sensing through
membrane transport, adhesion as well as gene regulatory networks. Intracellular processes
were discrete in the form of Boolean networks or differential equations. The software has
several customizable submodels for different processes. One could also use Z-stack images
to initialize the simulation. All the case studies in the paper were based on experiments.
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The authors also developed Easybiotics, a user-friendly version of Simbiotics [94]. It added
live graph-plotting and parameter sweeps to the output [94]. A visual representation of the
modular code was incorporated to allow for easier compiling.

4. Discussion

Flemming et al., described biofilms as one of the most ubiquitous and successful modes
of life on Earth, which also affect several biological processes in mammalian hosts [95].
Important polymicrobial interactions occur on skin and mucosal surfaces which contain
bacteria, archaea, and eukaryotes [4]. There is a strong effort by several large research
consortia such as MetaHIT, the Human Microbiome Project and American Gut to profile
the human microbiome in health and various disease states [96–98]. To better understand
the vast amount of data generated by these consortia, developing multi-species modeling
approaches becomes imperative. These approaches can lead to innovative, experimentally
testable hypotheses.

Our review focused on the agent-based modeling approaches adapted by various
research groups to understand interactions of microbial cells with each other and with their
environment while growing in a sessile or planktonic state. Their work explored a multitude
of different biological questions such as antibiotic resistance, control of medically important
biofilms, the microbiome, and industrial uses of biofilms [25,26,28,30,31,33–37,42,43,46,93].

Some models included interactions between agents and the environment. The en-
vironment in most of the models included the gut (for microbiome models) or a surface
of attachment (for biofilm models) with metabolites that diffuse with the help of differ-
ential equations. Several models included multiple time scales and parallel computing
to speed up computation [30,33,36,40,44]. Some of the models incorporated complex pro-
gramming concepts which would be daunting to a novice programmer and harder to mod-
ify [26,27,29,31,93]. Biological parameters in models are most often defined using data from
prior experimental studies, although flux balance analysis, based on organism genome anno-
tations, is a recently-introduced alternative to laboratory data [26,44]. Many modelers have
used existing experimental data to validate their results [26,30,32,33,35,36,39,40,42,44,46].
For example, cooperative metabolic phenotypes that were predicted by BacArena for P. aerug-
inosa biofilms were previously discovered experimentally in Bacillus subtilis biofilms [26,99].
Similarly, the model created by Tack, et al. predicted mushroom-shaped structures and
the formation of chains of E. coli cells at the exterior biofilm surface under flow, as seen
in earlier experimental studies [44,100,101]. The most comprehensive studies started by
building models, and making novel predictions, which were subsequently validated ex-
perimentally [25,27,29,31,34,38,41,43]. Some of these experiments involved generation of
new mutant strains, i.e., a V. cholerae mutant deficient in the production of EPS was used
to test predictions about the advantages of adhesion in biofilm formation [41]. Other re-
searchers used physical or chemical changes to the agents or their environment to validate
predictions. For example, after their model predicted that diffusion of bacterial cells was
a major determinant of biofilm structure, Acemel et al. used dextran to increase media
viscosity, slow diffusion of bacteria, and reproduce the predicted structure [25]. As ABMs
become more complex, incorporating more species and more varied interactions with their
environment, it will be increasingly important to ensure that they are accurate represen-
tations of biological systems. This can best be accomplished by close collaboration and
scientific exchange of experimental data and modeling tools between mathematicians and
microbiologists. However, one of the powerful contributions of mathematical modeling
in studying highly diverse microbial communities is producing a level of complexity that
cannot always be recapitulated experimentally.

Obviously, the applications that were developed with open and widely available soft-
ware platforms (NetLogo, iDynoMiCS, LAAMPS, MASON, and R) are easier to reproduce
than those that were based on special-purpose software. In our search of the literature
the latter were mostly unavailable and likely harder to adapt to other applications, if one
so desired. This has consequences for reproducibility as can already be inferred from the
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several studies which built upon existing models based on open-source software appli-
cations [102–104]. These open-source frameworks produce a base that can be modified
(e.g., expanding iDynoMiCs to include detachment and planktonic cells) and help propel
the field forward [35,43].

Agent-based modeling of biofilms and microbiomes is clearly becoming a popular
way to study microbial interactions, in part because of the accessibility of model con-
struction to domain experts with limited modeling expertise. We encourage biologists
to consider adopting one of several open-source and user-friendly modeling platforms
as part of their cycle of hypothesis generation and testing [26,37,38,46,47,94]. The trend
appears increasingly to be the use of models containing a limited number of species and
focusing on their interactions. Increasing the capabilities of these models to include a
higher number of functionally different microbial agents is needed so that they can be used
to model the complex microbiota harbored in the oral-digestive tract, and their interactions.
A development that is expanding the scope of research questions is the inclusion of specific
shapes for the microbial agents. Whereas older biofilm ABMs were restricted to agents
having spherical shapes, we are now seeing the appearance of studies with other shapes,
such as rods. We expect this trend to expand to other relevant shapes, such as the pleiomor-
phic shapes of certain commensal and pathogenic fungi. In the future we expect to see
more studies using agent-based modeling of diverse polymicrobial communities as tools to
generate novel hypotheses that can be followed by appropriate experimental validation.
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