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Abstract

Preterm birth (PTB), or birth that occurs earlier than 37 weeks of gestational

age, is a major contributor to infant mortality and neonatal hospitalization.

Mutations in the mitochondrial genome (mtDNA) have been linked to various

rare mitochondrial disorders and may be a contributing factor in PTB given that

maternal genetic factors have been strongly linked to PTB. However, to date, no

study has found a conclusive connection between a particular mtDNA variant

and PTB. Given the high mtDNA copy number per cell, an automated pipeline

was developed for detecting mtDNA variants using low‐coverage whole‐

genome sequencing (lcWGS) data. The pipeline was first validated against

samples of known heteroplasmy, and then applied to 929 samples from a PTB

cohort from diverse ethnic backgrounds with an average gestational age of

27.18 weeks (range: 21–30). Our new pipeline successfully identified hap-

logroups and a large number of mtDNA variants in this large PTB cohort, in-

cluding 8 samples carrying known pathogenic variants and 47 samples carrying

rare mtDNA variants. These results confirm that lcWGS can be utilized to re-

liably identify mtDNA variants. These mtDNA variants may make a contribution

toward preterm birth in a small proportion of live births.
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1 | INTRODUCTION

The mitochondrial organelle plays a central role in the energy me-

tabolism of the cell. The various functions of the mitochondrion are

performed by approximately 1500 genes encoded in the nuclear

genome of human cells, as well as a small number of genes carried by

a separate genome carried within the mitochondrion itself, commonly

referred to as “mitochondrial DNA,” or “mtDNA,” which is inherited

virtually exclusively from the mother. Mitochondrial diseases can be

caused by mutations in both the mtDNA as well as nuclear genomes.

Variants in the human mtDNA have been linked to a variety of rare

“primary” mitochondrial disorders, but may also influence more

common forms of the disease, such as cancer and diabetes (H. Li

et al., 2019, 2020; Thompson et al., 2020). In general, the diagnosis of

mitochondrial diseases is difficult since symptoms and severity can

vary widely among affected individuals.

Preterm birth (PTB), or birth that occurs earlier than 37 weeks of

gestational age, affects nearly 10% of newborns and is a major

contributor to infant mortality and neonatal hospitalization (Tucker &

McGuire, 2004). Environmental factors (infection/inflammation,

psychosocial stress, racism, or the age of the mother), as well as

genetic factors, are known to play a role in the occurrence of PTB

(Chang et al., 2020; Hallman et al., 2019). The occurrence of PTB

appears to vary significantly based on ethnicity (Anum et al., 2009;

Soltani et al., 2019; Tucker & McGuire, 2004). Regarding the role of

genetic factors in PTB, several genetic loci have been previously

shown to be associated with its occurrence (C. Zhang, Montooth,

et al., 2017; G. Zhang, Feenstra, et al., 2017). However, there are still

unknown genetic factors that remain to be uncovered. Mutations in

the mitochondrial genome (mtDNA) have been linked to various rare

mitochondrial disorders, and may also be a contributing factor in PTB

given that maternal genetic factors have been consistently linked to

the occurrence of PTB (Boyd et al., 2009; Hallman et al., 2019; Wu

et al., 2015; York et al., 2013). However, to date, no study has found

a decisive link between a particular mtDNA mutation and PTB, which

may be due, in part, to the unusual genetic properties of the

mitochondrial genome.

To properly examine whether or not mtDNA variants can con-

tribute to PTB, we must first ensure that we have a validated

methodology for detecting mtDNA sequence variants. Because there

are hundreds of mtDNA copies per cell, mtDNA variants can exist at

a continuum of frequencies of heteroplasmy. The severity of the

disease associated with these pathogenic variants is often de-

termined by their heteroplasmy level, with the severity increasing as

the heteroplasmy level rises above a certain threshold. Due to the

diversity of mitochondrial functions and physiological needs, mtDNA

copy number and mutation frequencies can exist in varying levels

across different tissues and cell types (M. Li et al., 2015; Robin &

Wong, 1988). For these reasons, confirmation of the diagnosis in the

clinical setting requires molecular genetic testing to determine both

the presence as well as the heteroplasmy level of the pathogenic

variant, given the critical role that the heteroplasmy level plays in the

severity of the disease. This is traditionally accomplished by poly-

merase chain reaction (PCR) amplification of the mtDNA, followed by

Sanger sequencing or next‐generation sequencing (Huang, 2011; Ma

et al., 2015; Tang & Huang, 2010). However, there has been

increasing interest in mining whole‐genome sequencing (WGS) data

sets to help identify patients with previously unidentified, pathogenic

mtDNA variants. For instance, given the fact that mtDNA data forms

a subset of the sequence data provided by WGS, we have recently

demonstrated that mtDNA heteroplasmy levels and mtDNA copy

number can be calculated using whole‐genome DNA sequence

(WGS) data (Brockhage et al., 2018; Husami et al., 2020).

Due to improving sequencing technology, improved genotyping

data quality, and decreasing costs, low‐coverage whole‐genome se-

quencing (lcWGS) has started replacing genotyping arrays in genome‐

wide association studies, particularly as it avoids the bias inherent in

the choice of variants to include in the genotyping array and can also

be utilized to detect structural and copy‐number variants (Homburger

et al., 2019). While lcWGS data possesses a very low nuclear DNA

coverage (usually around 1X to 2X), it still possesses a relatively high

mtDNA coverage due to the much higher copy number of mtDNA,

which is present at hundreds or thousands of copies per cell, de-

pending on the cell type (Wallace & Chalkia, 2013). Thus, while

standard variant calling on the low‐coverage nuclear DNA is chal-

lenging and prone to errors, reliable variant calling in the mitochon-

drial genome is feasible as the mtDNA read depth in the same sample

is likely to be hundreds to thousands of times higher. In fact, lcWGS

has been previously used in some cases to analyze mtDNA as part of

the 1000 Genomes Project (Abecasis et al., 2010), as well as phylo-

genetic analysis of mitogenomes in other species (Baeza, 2020).

However, until now, the mtDNA data generated by GWAS have been

largely ignored in the clinical diagnostic context despite having a high

enough read depth to meet standard variant calling thresholds.

Therefore, in this study, we have developed an automated pi-

peline for detecting mtDNA variants using lcWGS data, which can be

used for the high‐throughput analysis of a large number of samples.

This tool was then utilized for the task of analyzing mtDNA sequence

variants that may contribute to PTB. This pipeline was first validated

against previously analyzed samples of known heteroplasmy, and

then applied to a set of 960 samples, including 929 samples from

a PTB cohort and 31 non‐preterm samples as technical controls. This

pipeline was able to accurately identify haplogroups and mtDNA

variants for 957 out of the 960 lcWGS samples. Furthermore, we
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were able to identify the presence and heteroplasmy level of known

pathogenic variants in eight of the preterm patient samples, which is

overwhelmingly higher than in the general population. In addition, we

also identified 47 preterm samples carrying variants of uncertain

clinical significance (VUCS). The presence of these variants was

confirmed using our established next‐generation DNA sequencing

(NGS) techniques. These results suggest some new insights into the

relationship between mtDNA genotypes and PTB and demonstrate

that lcWGS is robust and efficient for identifying mtDNA variants and

their heteroplasmy levels in patients.

2 | MATERIALS AND METHODS

2.1 | Editorial policies and ethical considerations

This study was approved by the Institutional Review Board (IRB) of

Cincinnati Children's Hospital Medical Center (CCHMC) (Approval

Study ID: 2013‐7868). All patients provided written informed con-

sent to participate in this study. For the lcWGS data, patient tissues

were originally collected with consent for research by the Discover

Together Biobank, as approved by the IRB of CCHMC. The biobank

samples were deidentified for this project. Additional information

about the Discover Together Biobank can be found at https://www.

cincinnatichildrens.org/service/c/clinical-trials/biobank.

2.2 | lcWGS

The sequencing data were obtained from lcWGS of 929 patient

samples from a PTB cohort within the Discover Together Biobank at

CCHMC. The selection criteria for the samples were only limited to

gestational age using the CCHMC i2b2 system (https://i2b2.cchmc.

org/). Thirty‐one randomly chosen technical control samples, with no

known reports of PTB, were also included to test the basic cap-

abilities of our analytics pipeline. The sequencing data were first

aligned against GRCH38, using Burrows–Wheeler alignment. The

portion of the sequences aligned to the mitochondrial genome was

then extracted as BAM files, which were subsequently used for the

downstream analysis.

Multiplexed sequencing libraries were prepared using RipTide

High Throughput Rapid DNA Library Prep (HT‐RLP) Kit from

iGenomX, strictly following the manufacturer's protocol. The main

steps of the HT‐RLP protocol are (1) barcode extension, (2) DNA

capture, (3) extension, (4) amplification, and (5) size selection. In the

first step of the protocol, a polymerase‐mediated primer/barcode ex-

tension reaction is performed in a 96‐well plate. The reaction products

are then combined into one pool and all subsequent steps are per-

formed with the single pool. An index barcode is added to the library

during the PCR step. It acts as a plate identifier and permits the pooling

of multiple 96‐reaction library preps on a single Illumina flow cell. We

pooled ten 96‐plex libraries and generated a final pool of 960 libraries,

which was then sequenced on NovaSeq 6000 sequencer using two S4

flow cells, generating a total of ~20 billion paired‐end 2 × 150 bp se-

quencing reads. The demux tool from iGenomX was used to de-

multiplex sequencing reads into individual sample reads.

The sequencing reads were first aligned against the GRCH38

human reference genome, using the Burrows–Wheeler alignment

algorithm with options “bwa mem ‐B 4 ‐O 6 ‐E 1 ‐M.” The portion of

the sequences aligned to the mitochondrial genome was then ex-

tracted as BAM files, which were subsequently used for the down-

stream analysis.

2.3 | Automated pipeline for mtDNA variant calling

Variant calling on the aligned mtDNA sequences of each sample was

performed using GATK4 Mutect2 (Cibulskis et al., 2013). Mutect2 was

set to mitochondrial mode, with all other settings set to default. Variants

with allele fractions below 5% were then removed from theVCF file with

bcftools from samtools (the 5% cut‐off is based on previous experience

with mtDNA variation and sequencing error rates associated with NGS)

(H. Li et al., 2009). The final VCF file was used to create a consensus

sequence using bcftools consensus with the rCRS mitochondrial genome

reference (NC_012920.1). The consensus sequence was uploaded to

Mitomaster using the Mitomaster API and a report containing haplogroup

and variant information was obtained (Lott et al., 2013). The process of

Mutect2 variant calling and upload of consensus sequence to Mitomaster

was automated with a Python script, which can be provided upon re-

quest. Read depth at each base in the mtDNA portion of the aligned

sequences was generated using samtools depth (H. Li et al., 2009). Read

coverage of the mtDNA was generated by calculating the average read

depth across all 16,569 positions in the rCRS. All variant positions were

also numbered based on the corresponding positions in the CRS.

A flowchart summarizing our analysis pipeline is included in Figure 1c.

2.4 | Analysis of automated pipeline results

Each sample was manually checked for known pathogenic variants

and likely pathogenic variants (Table S1). Mitochondrial variants were

classified based on ACMG criteria (Richards et al., 2015), combined

with additional information from MitoMap (http://mitomap.org/bin/

view.pl/MITOMAP/WebHome).

2.5 | PCR‐NGS validation

The samples with pathogenic variants were checked with PCR‐NGS

and clinically validated techniques, according to our previously

described approach for detecting mtDNA variants (Huang, 2011; Ma

et al., 2015; Tang & Huang, 2010). For the PCR‐NGS analysis, whole

mtDNA molecules were first amplified by long‐range PCR, using the

following primers: mt16426F (CCGCACAAGAGTGCTACTCTCCTC)

and mt16425R (GATATTGATTTCACGGAGGATGGTG). PCR amplifi-

cation was performed with TaKaRa LA Taq Hot Start polymerase
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F IGURE 1 (See caption on next page)
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(TaKaRa Biotechnology) under conditions of 94°C for 1min;

30 cycles of 98°C for 10 s and 68°C for 16min; 72°C for 10min; and

a final hold at 4°C. The resulting PCR product was barcoded ac-

cording to the Nextera XT library preparation protocol (Illumina).

Sequencing was performed on the Illumina MiSeq platform (DNA

Core Facility, CCHMC) and data were analyzed with NextGENe

software (SoftGenetics). Briefly, sequence reads ranging from 100 to

200 bp in length were quality filtered and processed with NextGENe

software and an algorithm similar to BLAT. The sequence error cor-

rection feature (condensation) was performed to reduce false‐

positive variants and to produce a sample consensus sequence and

variant calls. Alignment without sequence condensation was per-

formed to calculate the percentage of the mitochondrial genome with

a depth of coverage of 1000X. Quality FASTQ reads were quality

filtered and converted to a FASTA format. Filtered reads were then

aligned to the human mitochondrial sequence reference,

NC_012920.1, followed by variant calling. Variant heteroplasmy was

calculated with NextGENe software as follows: base heteroplasmy

(mutant allele frequency %) =mutant allele (forward + reverse)/total

coverage of all alleles C, G, T, A (forward + reverse) × 100. Clinical

significance of the variants identified and the predicted haplogroups

were analyzed with MitoMaster software (http://www.mitomap.org/

MITOMASTER/WebHome).

3 | RESULTS

3.1 | Clinical summary

To test the ability of the automated pipeline to screen lcWGS data set

for mtDNA variants, lcWGS data were obtained for 929 patient

samples from a PTB cohort at CCHMC. Three of the 929 samples

were eventually excluded from analysis due to low sequence quality

and failure to pass the haplogroup‐identification step of our pipeline

(see below), leaving 926 samples for further analysis. For those 926

preterm samples, the mean gestational age was 27.18 weeks with

a standard deviation of 2.15 and a range of 21–30weeks. The dis-

tribution of gestational age and patient race are provided in

Figure 1a,b. For each preterm patient sample, the sex, race, ethnicity,

gestational age, current age, nuclear genome and mtDNA coverage,

and haplogroup were recorded. The haplogroups detected are shown

in Table S1. As a technical control to verify the basic capabilities of

our analytics pipeline, lcWGS data from 31 non‐preterm samples

were also included in the analysis, resulting in a total of 957 samples

for analysis.

3.2 | Mutect2 pipeline validation

Before applying our automated Mutect2 pipeline to mitochondrial

mutation detection on sequencing data, the pipeline was first vali-

dated using nine samples previously analyzed for mtDNA mutations

(Husami et al., 2020). In this previous publication, these samples were

analyzed using a traditional “PCR‐NGS” approach: That is, the DNA

samples were first enriched for mtDNA by long‐range PCR amplifi-

cation, and then sequenced with NGS and analyzed with clinically

validated methods. In comparison to the PCR‐NGS results, the new,

automated pipeline performed remarkably well, identifying the same

nine pathogenic mutations at essentially the same heteroplasmy

percentages, with a maximum difference of 2% for any given sample

(average difference, 0.67%; standard deviation, 0.67%) (Table S2).

A flowchart summarizing our analysis pipeline is included in Figure 1c,

and a complete description can be found in Section 2.

3.3 | Results of the automated Mutect2 pipeline
for the 960 sample data set

To test whether or not particular mtDNA variants and haplotypes

may be associated with PTB, lcWGS data were obtained for the

929 patient samples from our PTB cohort. Three out of the 960

samples were excluded from the analysis due to low sequencing

quality and the inability of the automated pipeline to properly identify

the haplogroup when it queried Mitomaster (see Section 2). This was

likely due to the low coverage of the mitochondrial genome in these

samples, which ranged from 39.8X to 336.1X.

After excluding the three low‐quality samples, this left 957

samples for further analysis. The mean mtDNA coverage for these

samples was 1389X with a standard deviation of 797.6X and a range

of coverage from 135.1X to 6169X (Figure 2a). In contrast, the mean

nuclear genome coverage was very low (as would be expected for

lcWGS data), averaging 1.9X with a standard deviation of 1.2X and

a range of coverage from 0.12X to 12.5X (Figure 2b). In comparing

the nuclear genome coverage to the mtDNA coverage for each

sample, there was a moderate positive correlation between nuclear

genome coverage and mtDNA coverage, with an R2 value of .5959

(Figure 2c). Given the fact that mtDNA copy number can vary widely

between individuals based on age or health status (Brockhage

et al., 2018; Cheau‐Feng Lin et al., 2014; Xia et al., 2017; Zhou

et al., 2014), while the nuclear genome remains relatively static in

copy number, it is noteworthy that the two genomes retain this

moderate level of correlation.

F IGURE 1 Summary of the preterm patient cohort and low‐coverage whole‐genome sequencing (lcWGS) analysis pipeline. (a) Histogram of
gestational age in the 926 preterm samples, not including the three discarded samples and 31 technical controls. (b) Summary of racial
demographics for the 926 preterm samples. (c) Flowchart for Mutect2 pipeline and visual summary of the lcWGS data analysis. The solid lines
represent the flow of information while the dashed lines indicate the criteria and settings for the data filtration steps. Manual inspection was
required for the identification of pathogenic variants (see Section 2)
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F IGURE 2 Comparison of sequencing coverage between the mitochondrial and nuclear genomes. (a) Mitochondrial genome (mtDNA)
coverage for the low‐coverage whole‐genome sequencing (lcWGS) samples. The mean mtDNA read depth for the 957 samples that passed the
haplogroup identification step was 1389X, with a standard deviation of 797.6X. The range of coverage was from 135.1X to 6169X.
(b) Nuclear genome coverage for the lcWGS samples. The mean nuclear genome read depth for the 957 samples that passed the haplogroup
identification step was 1.938X, with a standard deviation of 1.200. The range of coverage was from 0.1205X to 12.46X. (c) Comparison of the
nuclear genome coverage to the mtDNA coverage across all samples. There was a moderate positive correlation between nuclear genome
coverage and mtDNA coverage, with an R2 value of .5959. Please note that the scale for the y axis (mtDNA coverage) is 500 times that of the x
axis (nuclear genome coverage) to aid in the visualization of the line of best fit

F IGURE 3 Distribution of the top 20 haplogroups in the preterm patient cohort by race. Heatmap shows the haplogroup count by race for
the 20 most frequently observed haplogroups in the preterm patient cohort. The labels on the left axis represent the various self‐identified
ethnic or ancestry groupings, while the labels along the bottom axis represent the 20 most frequently observed mitochondrial genome (mtDNA)
haplogroups in the preterm patient cohort. The numbers in black within each square indicate the number of samples where a particular
mtDNA haplogroup was detected for a particular racial or ethnic category. Each square is also color‐coded based on the number of samples with
that particular combination of mtDNA haplogroup and self‐identified racial category, based on the key on the right side of the heatmap
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3.4 | Haplogroup composition of the preterm
patient cohort

Mitochondrial DNA haplogroups are generally well correlated with

ancestry and ethnic group, although there are notable exceptions,

particularly in populations with a high degree of admixture (Cardena

et al., 2013). Regarding the haplogroup composition of the PTB

samples described in this study, the top five haplogroups were L2a

(13.7%), J1c (6.4%), L3e (5.0%), K1a (4.8%), and L3 (4.6%) (Figure S1),

representing some of the most prevalent mtDNA haplogroups in

individuals of European or African ancestry (Johnson et al., 2015;

Torroni et al., 1996). This is broadly in agreement with the overall

demographic composition of the preterm patient cohort (Figure 1b

and Table S1), further confirming the accuracy of the output derived

from the lcWGS data set. Haplogroup composition of the 926 pre-

term samples that passed the haplogroup analysis and a heatmap of

reported race and haplogroup are also provided in Figures 3 and S2,

and further confirm the general concordance between the reported

ethnicity of the patients and the observed mtDNA haplogroups. One

striking discordance in the results, however, is the high frequency of

haplogroups L2a (13.7%) and L3 (4.6%) in the patient samples re-

ported as White, as both the L2 and L3 haplogroups are generally

present in <1% of individuals in the United States who self‐identify as

non‐Hispanic White (Mitchell et al., 2014). The heightened frequency

of these haplogroups in our non‐Hispanic white PTB samples may

suggest a possible link with PTB (see Section 4).

3.5 | Analysis of mtDNA variants found in preterm
patient samples

The mtDNA variants uncovered in the 926 preterm patient samples

were manually examined and classified based on ACMG criteria

(Richards et al., 2015), combined with additional information from the

human mitochondrial genome database “MITOMAP” (http://

mitomap.org/bin/view.pl/MITOMAP/WebHome). MITOMAP con-

tains a continually updated collection of information compiled by the

entire mitochondrial field, including population frequency informa-

tion curated from gnomAD, the Helix population database, GenBank,

and so forth, as well as pathogenicity predictions and other relevant

information about mtDNA sequence variation. By using these data-

bases, we can effectively leverage hundreds of thousands of samples

across the entire human population as our control set.

Using this approach, we identified eight samples (0.86%) containing

known pathogenic variants (Table 1), which is a noticeably higher fre-

quency than what is observed in the general population. For instance, 3

out of the 929 samples in our PTB cohort (or about 0.32%) showed the

pathogenic m.3243A>G variant that is known to cause mitochondrial

encephalopathy, lactic acidosis, and stroke‐like episodes (MELAS).

However, as of April 2020, only 6 out of the 56,383 individuals with

sequencing information at this position in gnomAD (https://gnomad.

broadinstitute.org/variant/M-3243-A-G?dataset=gnomad_r3), or about

0.011% in total, possess the m.3243A>G variant as either

a heteroplasmy or homoplasmy. Similarly, only 51 of the 195,983 in-

dividuals in the Helix database (https://www.mitomap.org/cgi-bin/

helix?id=2654), or about ~0.026%, were found to have the

m.3243A>G variant. This represents more than an order of magnitude

difference between our PTB cohort and either of these databases, and

even a simple Fisher's exact test will demonstrate that this is a sig-

nificant difference in both cases (p = .0003 for gnomAD and p= .022 for

the Helix database). Although the difference between our results and

the frequency observed in gnomAD could be attributed to their higher

detection threshold (gnomAD uses a cut‐off of 10%, while our cut‐off is

5%), the Helix database reports heteroplasmies down to a 1% cut‐off,

which would make it more likely to detect and report m.3243>G var-

iants than our own analysis. Yet, despite the fact that our cut‐off is more

conservative than the one used by Helix, we still observe a much higher

frequency for m.3243A>G in our preterm cohort than Helix reports for

their population database. Furthermore, most of our known pathogenic

variants are present at high heteroplasmy levels that are far above any

of these cut‐offs (only one of the eight patients with known pathogenic

variants would fall below the 10% cut‐off, and only two of the patients

have heteroplasmies below 50%). Thus, it would appear that our PTB

cohort shows fairly strong evidence for a heightened frequency of at

least one well‐known pathogenic mtDNA variant.

Besides known pathogenic mtDNA variants, 47 of the samples

(~5.1%) were also found to carry VUCS. Of the VUCS that affect

either protein‐coding or RNA‐coding regions, five variants were ob-

served in three or more individuals (m.7158A>G, m.15498G>A,

m.3421G>A, m.3736G>A, and m.7080T>C). At the gene level, the

largest number of variants were located in the MT‐ND1 gene

(13 samples in total), and the second‐largest were located in the MT‐

COI gene (8 samples in total). None of the VUCS were observed in

more than four samples.

The eight samples containing known pathogenic mutations were

confirmed using a clinically validated method based on PCR amplifi-

cation of mtDNA and deep sequencing of the resulting amplicons

(see Section 2). PCR‐NGS validation on the eight samples found the

same variants as were observed in the lcWGS data using the auto-

mated pipeline, and at similar heteroplasmy levels (Table S3). Overall,

there is a strong correlation between the heteroplasmy rate from

lcWGS analysis and NGS results, with an R2 value of .9228 (Figure 4).

Some small deviations were observed for several of the samples with

high heteroplasmy levels in the lcWGS results (ranging from 68.6% to

91.7%), which were found to be nearly homoplasmic according to the

NGS results (93.6%–99.62%) (Table S3). Repeating analysis on the

lcWGS data from the eight samples with more varied and more

stringent quality filters did not result in heteroplasmy values closer to

the NGS values (data not shown). The reasons for this discrepancy at

high heteroplasmy levels are unclear. There is reason to believe that

the PCR‐NGS values are likely to be closer to the true heteroplasmy

levels due to the higher coverage (>1000X) generally observed in the

PCR‐NGS data and the usage of sample preparation and analysis

methods optimized for mtDNA sequencing. However, there is also

a possibility that the geometric expansion inherent to the PCR

component of PCR‐NGS may distort the detected frequency of the
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variant more than the lcWGS approach, which incorporates far fewer

cycles of PCR during library prep. However, even in these cases, the

corresponding lcWGS heteroplasmy values would still pass the

threshold to flag these variants as likely contributing to pathogenesis

in the clinical setting. Thus, the automated pipeline described here is

confirmed as a reliable means of screening lcWGS data set for

pathogenic mtDNA variants.

4 | DISCUSSION

4.1 | Proof of concept

In this project, we have explored the effectiveness of using mtDNA

data from lcWGS to screen for pathogenic mitochondrial variants.

We found that the majority of the 960 lcWGS samples had at least

1000X mtDNA coverage, exceeding the necessary coverage

threshold for mtDNA variant calling. In addition, we were able to

reliably extract accurate haplogroup and variant heteroplasmy

estimates from the lcWGS data, with the pathogenic variants fully

confirmed by PCR‐NGS. Thus, these results have fully validated

the process of mitochondrial variant calling from lcWGS data.

More generally, since lcWGS data are readily available from ex-

isting projects that have used lcWGS for genotyping, we envision

a straightforward process to extract the mitochondrial portions of

these data and reveal any mtDNA variants in these patient samples

without the need for any additional sequencing.

4.2 | Possible relationship between mitochondrial
genotypes and PTB

Nearly two‐thirds of PTBs are idiopathic spontaneous cases (Ferrero

et al., 2016), and in the vast majority of these cases, genetic analyses

are not performed. However, mothers experiencing spontaneous

PTB or other pregnancy complications, such as pre‐eclampsia with

medically indicated delivery are at increased risk for spontaneous

PTB in subsequent pregnancies, suggesting that they share common

pathways (Ananth et al., 2006). This makes their inclusion in our

analysis potentially quite relevant. If labor is being induced for

medical reasons and the presence of potentially pathogenic mi-

tochondrial variants is unknown, then these variants could be very

important factors in creating the medical need premature induced

labor in the first place. The specific mitochondrial defects uncovered

here could provide new knowledge that might suggest alternative

therapy or management for such cases, thereby avoiding all the

problems that come with medically induced premature delivery.

Previous attempts to uncover a direct link between mtDNA

variation and PTB have shown inconclusive or mixed results. Most

notably, a meta‐analysis of two large‐scale GWAS studies from

Denmark and Norway showed no significant association between any

mtDNA variants and preterm delivery (Alleman et al., 2012). How-

ever, this analysis was restricted to 135 preselected “common” SNPs

with a minor allele frequency above 1% in Caucasian populations,

which essentially excludes all known pathogenic mtDNA variants. In

contrast, our analysis was based on an NGS approach that took an

F IGURE 4 Correlation of estimated
heteroplasmy between traditional PCR‐NGS and
lcWGS. The heteroplasmy level for the eight
pathogenic variants detected in the 960‐sample
data set was calculated based on the novel lcWGS
pipeline, versus a traditional PCR‐NGS
methodology. The two methods showed a high
degree of correlation for these variants, with an
R2 value of .9228. lcWGS, low‐coverage whole‐
genome sequencing; NGS, next‐generation
sequencing; PCR, polymerase chain reaction
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unbiased look at all possible mtDNA variants. These results show

a strikingly high prevalence of pathogenic mtDNA variants in this PTB

cohort. We found that approximately 1% of our 926 patient samples

with identifiable haplogroups (8 out of 926) contained disease‐

causing mutations and confirmed these results using clinically vali-

dated methods. This percentage is significantly higher than the oc-

currence of disease caused by pathogenic mtDNA variants in the

general population, which traditional estimates place at approxi-

mately 1 in 5000 individuals (Gorman et al., 2015; Schaefer

et al., 2008), suggesting that mitochondrial dysfunction may play at

least some role in PTB. The existing literature provides some support

for this hypothesis. Recent evidence suggests that the altered ex-

pression of proteins involved in the regulation of mitochondrial cal-

cium levels may play a role in triggering PTB (Vishnyakova et al., 2019).

More strikingly, a case‐comparison study comparing 67 women car-

rying the pathogenic mtDNA mutation m.3243A>G compared to 69

unaffected women found a significantly higher risk of pregnancy

complications as well as PTB in the woman carrying the m.3243A>G

variant (Feeney et al., 2019). A separate study from the Netherlands

also found that mothers carrying the m.3243A>G mutation showed

a wide range of obstetric complications, including premature delivery

(~25%), pre‐eclampsia (~12%), and gestational diabetes (11%) (de Laat

et al., 2015). In this light, we note that three of the eight samples with

pathogenic variants among our preterm cohort possessed the

m.3243A>G variant (Table 1). On the contrary, at least one study has

found that pathogenic mtDNA mutations may be more common than

the traditional “1 in 5000” estimate mentioned above, finding that ~1

in 200 neonates from a series of 3168 sequential live births harbored

a known pathogenic variant (Elliott et al., 2008). In fact, when you

expand the analysis beyond neonates to the general population, nearly

20% of the population appears to carry at least one mtDNA variant

implicated in human disease (Ye et al., 2014), although nearly all are

observed at an extremely low level of heteroplasmy. All of this would

be more in line with the ~1 in 100 prevalence observed in our preterm

cohort, which might suggest that the prevalence observed here is more

of a general phenomenon and thus unrelated to PTB. However, we

note that most of our samples with pathogenic variants (six out of

eight) showed mtDNA variants at a high heteroplasmy level (>50%)

that would traditionally be associated with an increased risk of disease

presentation. In contrast, most of the cases from the report of a 1 in

200 prevalence in the general population had a heteroplasmy level

below 50%, a level that is much less likely to be associated with overt

mitochondrial disease.

It should also be noted that in this study, we are only reporting

heteroplasmy from peripheral blood and not the placenta or other

tissues. On the contrary, the energetic demands of the fetus appear

to be the major trigger for parturition (Dunsworth et al., 2012). Thus,

tissues where dysfunctional mtDNA variants would impinge upon the

fetus, such as the placenta or the uterine lining of the mother, would

be strong candidates for future investigation in these or other pre-

term patient populations.

Although less obviously associated with pathogenicity, the VUCS

uncovered in over 5% of our PTB cohort also represent a source of

new candidate loci for involvement in PTB. At least one previous

study has linked mtDNA polymorphisms (such as m.4917A>G and

m.4216T>C) to smoking‐induced spontaneous PTB (Velez

et al., 2008), demonstrating that even seemingly common mtDNA

variants may play an unexpected role in PTB under certain condi-

tions. In particular, the high abundance of samples in our PTB cohort

with variants in the MT‐ND1 and MT‐COI genes may warrant further

investigation, although additional confirmation and contextualization

will clearly be necessary before any clinical management changes can

be recommended.

The unusually higher frequency of the L2a and L3 haplogroups

in our patient samples reported with a European ancestry also bears

further discussion in light of previous observations in the field. For

one thing, these haplogroups are extremely common in African‐

American populations, and it has been widely observed that the

African‐American population experiences a higher rate of sponta-

neous PTB than other racial groups within the United States

(Mohamed et al., 2014). Although the contributing factors to this

difference are not fully understood, it is conceivable that these two

haplogroups are major contributors to that increased frequency of

PTB. Furthermore, although the L2 and L3 haplogroups are

observed in <1% of individuals in the United States who self‐

identify as non‐Hispanic White, they are observed much more fre-

quently (4.8% and 7.8%, respectively) in other Hispanic populations

with a greater degree of genetic admixture, many of whom self‐

identify as White (Mitchell et al., 2014). This is particularly relevant

in the context of PTB, as previous studies have indicated that in-

dividuals with more divergence between their mitochondrial and

nuclear genome ancestry (as would more often occur with genetic

admixture) have a higher risk of PTB (Crawford et al., 2018). Be-

cause the nuclear and mitochondrial genomes exhibit a great deal of

interdependence and also tend to adapt to each other over evolu-

tionary time, incompatibility between nuclear and mitochondrial

genomes derived from genetically distinct populations has been

observed across a variety of animal species (Healy & Burton, 2020;

Ma et al., 2016; C. Zhang, Montooth, et al., 2017; G. Zhang,

Feenstra, et al., 2017). Conclusive evidence for a clear health effect

of mitochondrial nuclear mismatch in humans has remained elusive,

although a recent analysis of admixed populations in humans pro-

vided evidence for the selection of nuclear‐encoded mitochondrial

genes toward the source population of the mtDNA haplogroup

(Zaidi & Makova, 2019). The results we have described here may

provide further support for the idea that the interplay between

particular mtDNA variants and haplogroups and the nuclear genome

could play a role in triggering PTB.

5 | CONCLUSION

Overall, these results demonstrate a practical procedure for evalu-

ating mtDNA from lcDNA sequence data, as well as the first report of

particular mitochondrial variants that may play a role in PTB. The

results from our preterm cohort, combined with the existing

YANG ET AL. | 1611



literature on the subject, provide new insights into the relationship

between mtDNA mutations/variants and PTB that likely warrant

further investigation. Our automated Mutect2 analysis pipeline has

also been shown to be effective at analyzing both PCR amplified NGS

mtDNA sequences as well as lcWGS data, suggesting that this pi-

peline may be broadly applicable at extracting mtDNA variant data

from a wide range of sequencing data types. These results suggest

that, in the future, more attention should be paid to the feasibility of

mining mtDNA data from existing genomic data sets that have not

traditionally been utilized for this purpose.
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