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Magnetic Resonance Imaging-Based
Radiomics Features Associated with Depth

of Invasion Predicted Lymph Node
Metastasis and Prognosis in Tongue Cancer
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Xiqiang Liu, MD, PhD3*

Background: Adequate safe margin in tongue cancer radical surgery is one of the most important prognostic factors. However,
the role of peritumoral tissues in predicting lymph node metastasis (LNM) and prognosis using radiomics analysis remains unclear.
Purpose: To investigate whether magnetic resonance imaging (MRI)-based radiomics analysis with peritumoral extensions
contributes toward the prediction of LNM and prognosis in tongue cancer.
Study type: Retrospective.
Population: Two hundred and thirty-six patients (38.56% female) with tongue cancer (training set, N = 157; testing set,
N = 79; 37.58% and 40.51% female for each).
Field Strength/Sequence: 1.5 T; T2-weighted turbo spin-echo images.
Assessment: Radiomics models (Rprim, Rprim+3, Rprim+5, Rprim+10, Rprim+15) were developed with features extracted from
the primary tumor without or with peritumoral extensions (3, 5, 10, and 15 mm, respectively). Clinicopathological charac-
teristics selected from univariate analysis, including MRI-reported LN status, radiological extrinsic lingual muscle invasion,
and pathological depth of invasion (DOI) were further incorporated into radiomics models to develop combined radiomics
models (CRprim, CRprim+3, CRprim+5, CRprim+10, CRprim+15). Finally, the model performance was validated in the testing set.
DOI was measured from the adjacent normal mucosa to the deepest point of tumor invasion.
Statistical Tests: Chi-square test, regression analysis, receiver operating characteristic curve (ROC) analysis, decision analy-
sis, spearman correlation analysis. The Delong test was used to compare area under the ROC (AUC). P < 0.05 was consid-
ered statistically significant.
Results: Of all the models, the CRprim+10 reached the highest AUC of 0.995 in the training set and 0.872 in the testing set. Radi-
omics features were significantly correlated with pathological DOI (correlation coefficients, �0.157 to �0.336). The CRprim+10 was
an independent indicator for poor disease-free survival (hazard ratio, 5.250) and overall survival (hazard ratio, 17.464) in the
testing set.
Data Conclusion: Radiomics analysis with a 10-mm peritumoral extension had excellent power to predict LNM and prog-
nosis in tongue cancer.
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Oral cancer (OC) is a highly heterogeneous disease with
aggressive behavior, and accounting for nearly 377,713

new cases and 177,757 deaths worldwide in 2020.1 Despite

great development in treatment strategies, the 5-year survival
rate of OC patients remains at 50% to 60%.2,3 Regional
lymph node metastasis (LNM) is considered to be the most
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important factor contributing to poor prognosis.3,4 With the
presence of cervical LNM, the survival rate dramatically
decreases by approximately 50%.5 Hence, accurate preopera-
tive identification of cervical LN involvement is crucial for
optimal treatment strategy and prognosis prediction.

Depth of invasion (DOI) is a well-known predictor of
neck nodal metastasis, local recurrence, and survival in
patients with OC.6–8 Tongue cancer, the most common OC,
has a clear anatomical boundary. Because of the specialized
function of the tongue (eg, tongue movement due to speech
and swallowing), tumor cells tend to migrate along the mus-
cle fibers, making the measurement of DOI at multiple spa-
tial dimensions very important.9 The peritumoral tissues, a
crucial component of the microenvironment, carry tumor
aggressiveness-associated information and play an important
role in metastasis and recurrence.10,11 However, it is still a
challenging task to effectively find out the “true” margin of
the primary tumor and excavate subtle change of peritumoral
tissues using conventional medical images, such as magnetic
resonance imaging (MRI), computed tomography, and so
on. Therefore, a comprehensive evaluation of tumoral and
peritumoral features may provide valuable information in the
prediction of LNM.

MRI has been routinely used to preoperatively char-
acterize primary tumors and assess clinical staging to estab-
lish treatment strategy for patients with OC. Tumor-
associated qualitative variables measured on MRI may con-
tribute to the diagnosis of LN status; however, the reported
sensitivity and specificity have been variable.12,13 More-
over, conventional MRI such as T1-weighted images and
T2-weighted images were insufficient to detect micro-
metastases of less than 3 mm.14 Hence, there is an urgent
need to develop a more effective and noninvasive technique
for mining information from MRI and facilitating the
prediction of LNM.

“Radiomics” refers to a process that extracts and
mines quantitative features from medical images via high-
throughput computational techniques, thus uncovering
disease characteristics that fail to be detected by the naked
eye.15 Compared with invasive biopsy, radiomics charac-
terizes complete tumor and its microenvironment hetero-
geneity in a noninvasive and cost-effective way without
spatial and temporal limitations. Previous radiomics
studies in intratumoral and peritumoral regions have
shown to predict staging, treatment response, LNM, and
survival.16–19 Furthermore, the radiomics nomogram
incorporating radiomics signature and clinicopathological
characteristics, including LN stage and molecular subtype,
performed better than radiomics signature in disease-free
survival estimation.20

The aims of this study were: 1) to construct model
based on radiomics features extracted from primary tumor to
predict LNM of patients with tongue cancer; 2) to explore

the incremental value of peritumoral extensions and clinico-
pathological characteristics in LNM prediction; 3) to assess
the predictive power of radiomics model in MRI-reported
LN negative subgroup; 4) to explore the correlation between
three-dimensional (3D) radiomics features and pathological
DOI; 5) to investigate the association between the optimal
radiomics model and survival outcomes.

Materials and Methods
Patients
This study was approved by our Institutional Review Board with
written informed consent waived (ERC-[2016]-30). In total,
861 patients who had undergone radical resection glossectomy with
or without neck dissection between September 2012 and November
2019 were recruited consecutively. The patient recruitment scheme
is presented in Fig. S1 in the Supplemental Material. The inclusion
criteria were as follows: 1) patients who had undergone standard
head and neck MRI less than 30 days before radical resection; 2)
availability of complete clinical and pathological information; and 3)
the presence of newly diagnosed and surgically treated tongue can-
cer. The exclusion criteria were as follows: 1) missing survival infor-
mation; 2) the presence of a concurrent malignant tumor other than
on the tongue; and 3) MRI either degraded or with obvious artifacts.
Finally, 236 patients conformed to the inclusion and exclusion
criteria, and were randomly divided into two groups, a training set
(N = 157) and an independent testing set (N = 79). The two sets
were used to train and validate the radiomics models to preopera-
tively identify patients with high-risk LNM.

The baseline demographic information was obtained from
medical records. To evaluate DOI and tumor budding, hematoxylin
and eosin-stained tumor specimens were reviewed independently by
two oral surgeons (J.S.H. and X.Q.L., with more than 20 years of
experience) who were blinded to the clinicopathological data. Any
disagreement was resolved by consensus. The LN status was deter-
mined according to pathological report in patients had undergone
neck dissection at initial surgery. For patients had undergone radical
excision of the primary tumor only, the LN status was evaluated
during 2-year follow-up period. Patients who developed suspicious
LNM during follow-up and were subsequently subjected to fine-
needle aspiration, biopsy, or neck dissection. MRI parameters,
including DOI, LN status, neurovascular invasion (NVI), extrinsic
lingual muscle invasion (EMI), and lingual-septum invasion (LSI),
were assessed blinded by three observers (J.S.H., X.Q.L., and
Xiangbo Wan, two oral surgeons and one radiologist with more than
20 years of experience reading MRI). The assessment criteria are
described in the Supplementary Information.

MRI Acquisition
Before undergoing radical resection, all patients had undergone stan-
dard head and neck MRI with a 1.5T Avanto MR scanner (Siemens
Medical Solutions, Erlangen, Germany). Axial T2-weighted turbo
spin-echo images were retrieved for feature extraction. The image
acquisition parameters were as follows: repetition/echo time,
5800/87 or 6500/78 msec; number of averages, 2; echo train length,
13; flip angle, 15 degree; acquisition matrix, 224 * 320; reconstruc-
tion matrix, 320 * 320; number of slices, 36; slice thickness, 4.5 or
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5 mm; spacing between slices, 6.5 mm; and field of view,
246 * 246 mm2.

Region of Interest Segmentation and Image
Preprocessing
As depicted in Fig. 1, the contour of the primary tumor and tongue
body were manually delineated on consecutive axial slices with the
open-source software ITK-SNAP (version 3.6.0, www.itksnap.org)
by two trained oral surgeons (F.W. and K.F., each with 5 years of
experience) independently in a blinded fashion. For avoiding possi-
ble dilatation beyond the structure of tongue and mouth floor, we
limited the surface of tongue body as the upper boundary. As for the
mouth floor, the inner side of musculus mylohyoideus was the lat-
eral boundary, with musculus genioglossus and sublingual gland,
tongue base, and hyoid bone as the anterior, posterior, and inferior
boundaries, respectively. Then, the ROIs were 3D dilated (3, 5,
10, and 15 mm, respectively) outside the primary tumor with
AIMED software (version: 1.6.4, Blot Info & Tech Co. Ltd, Beijing,
China). Finally, the extended regions intersected with extension
boundaries to produce the true ROIs for the subsequent radiomics
analysis. Differences in image acquisition parameters, such as slice
thickness, may introduce noise interference into the data. Therefore,
the images were normalized in the whole slice images and resampled
to a voxel resolution of 1 � 1 � 1 mm3.

Feature Extraction and Selection
To extract comprehensive information from the tumor and peri-
tumoral microenvironment, we regarded the ROIs as a whole to
extract radiomics features instead of analysis of intratumoral and
peritumoral radiomics features separately. Radiomics features were
extracted from ROIs with Python (version 3.5.2; https://www.
python.org). In total, 786 radiomics features were extracted from
each ROI, including 540 histograms of oriented gradient (HOG)
features, 42 texture features, 156 statistical features, and 48 wavelet
features. The normalization procedure was performed to change the
values of extracted features to a range of 0 to 1. To reduce dimen-
sionality and redundant features, a three-step procedure was per-
formed to select LNM relevant radiomics features from the training
set: 1) invalid features, including infinite values, null values, and
values with variance of zero were removed; 2) intraclass correlation
coefficient (ICC1) and interclass correlation coefficient (ICC2) of
each radiomics feature were calculated to quantity feature extraction
reproducibility (Supplementary Information). Features with ICC1
and ICC2 values greater than 0.8 were considered reproducible and
robust, and therefore retained for analysis; 3) Subsequently, principal
component analysis was conducted to select a small number of
unique features, which is one of the most widely used data dimen-
sion reduction algorithms. The process of principal component anal-
ysis was described in the Supplementary Information.

Figure 1: Workflow of region of interest (ROI) segmentation and feature extraction. First, ROIs of the primary tumor and extension
boundaries were segmented on T2-weighted images. Then, the ROIs were three-dimensional dilated (3, 5, 10, and 15 mm,
respectively) outside the primary tumors. Finally, the extended regions intersected with extension boundaries to produce the true
ROIs for following radiomics analysis. Three-dimensional radiomics features, including 540 histogram of oriented gradient (HOG)
features, 156 statistical features, 42 texture features, and 48 wavelet features were extracted to quantify shape, intensity, texture,
and wavelet.
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Model Development and Validation
The support vector machine (SVM) was performed on the training
set to evaluate and optimize model hyperparameters employing
5-fold cross-validation. The radiomics models (R) were developed
based on selected radiomics features. The radiomics models with 3D
features extracted from the primary tumor or dilated ROIs were
called Rprim, Rprim+3, Rprim+5, Rprim+10, Rprim+15, respectively. To
evaluate the incremental value of clinicopathological characteristics
including age, sex, T-staging, MRI-reported LN status, and so on in
LNM risk prediction, we conducted a univariate analysis. Character-
istics with P values <0.05 were incorporated into R models to build
combined radiomics models (CR), which were called CRprim,
CRprim+3, CRprim+5, CRprim+10, CRprim+15, respectively. Besides,
clinicopathological model (CP) was constructed using the selected
clinicopathological characteristics. The predictive performance was
then validated in the independent testing set.

Statistical Analysis
Statistical analyses were implemented with R software (version 3.5.2;
R Foundation for Statistical Computing, Vienna, Austria) and SPSS
(version 24.0; IBM Corporation, Armonk, NY, USA). The chi-
square test was performed for the analysis of categorical variables.
Patients with a prediction probability greater than 0.5 were consid-
ered to be at high-risk for LNM. The predictive ability of the prog-
nostic models was evaluated by the area under the receiver operating
characteristic curve (AUC) values and AUC’s 95% confidence inter-
val (CI). The DeLong test was performed to compare AUC values
between prognostic models.21 Calibration curves were plotted to
compare the predicted and actual values. In addition, accuracy rate,
sensitivity, and specificity value were calculated. To calculate the
clinical usefulness of the optimal prognostic model, decision curve
analysis was conducted to quantify the net benefits at different
threshold probabilities in the testing set.22 Spearman correlation
coefficient was used to calculate correlations between pathological
DOI and radiomics features. Kaplan–Meier analysis and the log-rank
test were performed to depict and compare disease-free survival
(DFS) and overall survival (OS) curves, respectively. Univariate and
multivariate Cox regression analysis was performed to investigate the
association between model-predicted LNM and survival outcomes. A
two-sided P value <0.05 was considered statistically significant.

Results
Patient Characteristics
The clinicopathological characteristics of patients with tongue
cancer in the training and independent testing sets are pres-
ented in Table 1. Patients of 61.44% (145/236) were men,
and the average age of all patients were 50.83 � 13.58 years
(range, 19–86 years). All patients received radical excision of
the primary tumors, and 166 underwent neck dis-
section simultaneously. Of the 99 patients with LNM,
56 patients were diagnosed at surgery. The remaining
43 patients developed LNM during 2-year follow-up period.
The LN-positive patients constituted 42.04% (66/157) and
41.78% (33/79) in the training and testing sets, respectively
(P = 0.969). Clinicopathological characteristics showed no

differences between the two sets, indicating balanced
distribution.

Tumor Boundary Visualization
As shown in Fig. 2a, the tumor was infiltrated towards the
lingual-septum and mouth floor, which reflects the invasive-
ness of tongue cancer. The 3D extension toward mouth floor
was visualized using anatomical diagram in Fig. 2b. Not only
peritumoral tissue on the MR cross section images, but also
tissue in mouth floor was included to extract radiomics fea-
tures. The image of hematoxylin and eosin-stained tongue
squamous cell carcinoma was shown in Fig. 2c, which reflects
the infiltrative growth pattern of tumor.

Clinicopathological Model
As shown in Table 1, univariate analysis in the training set
showed MRI-reported LN status, radiological EMI, and path-
ological DOI were significantly associated with LNM. Multi-
variate logistic regression analysis identified MRI-reported LN
status (OR 2.432, 95% CI, 1.093–5.411) as an independent
predictor of LNM. As shown in Table 2, the MRI-reported
LN status had an AUC of 0.643 (95% CI, 0.545–0.741,
Fig. 3a) in the training set, with the accuracy, sensitivity, and
specificity of 64.97%, 40.91%, and 82.42%, respectively. In
the testing set, the AUC, accuracy, sensitivity, and specificity
were 0.649 (95% CI, 0.522–0.777, Fig. 3b), 69.62%,
36.36%, and 93.48%, respectively. The SVM-based CP
model, which included MRI-reported LN status, radiological
EMI, and pathological DOI, yielded an AUC of 0.933 (95%
CI, 0.873–0.993, Fig. 3a) in the training set, with the accu-
racy, sensitivity, and specificity of 86.06%, 84.84%, and
86.87%, respectively. In the testing set, the performance
declined, with the AUC, accuracy, sensitivity, and specificity
of 0.700 (95% CI, 0.660–0.740, Fig. 3b), 72.15%, 60.61%,
and 80.44%, respectively. Nevertheless, the SVM-based CP
model performed significantly better than the MRI-reported
LN status, with the AUC elevated 0.051 (0.700 vs. 0.649) in
the testing set.

Radiomics Model with Peritumoral Extensions
After feature reduction, top 15, 17, 18, 25, and 10 radiomics
features from the primary tumor, and the primary tumor with
3D peritumoral extensions (3, 5, 10, and 15 mm, respec-
tively) were selected to build R models, respectively. The
importance of selected features to R models are presented in
Figs. S2–S6 in the Supplemental Material. In the training set,
the Rprim showed a favorable predictive performance, with an
AUC of 0.978 (95% CI, 0.963–0.993, Fig. 3a). After differ-
ent peritumoral extensions, the Rprim+3, Rprim+5, Rprim+10,
and Rprim+15, achieved 0.978 (95% CI, 0.966–0.990), 0.985
(95% CI, 0.975–0.995), 0.992 (95% CI, 0.984–1.000), and
0.987 (95% CI, 0.978–0.996), respectively.
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TABLE 1. Baseline Characteristics of Patients in the Training and Testing Sets

Characteristics

Training Set (N = 157)

P Value

Testing Set (N = 79)

P Value*

P Value†

LN (�)
(N = 91)

LN (+)
(N = 66)

LN (�)
(N = 46)

LN (+)
(N = 33) 0.969

Age, years 0.811 0.152 0.978

<60 66 49 31 27

≥60 25 17 15 6

Sex 0.947 0.525 0.663

Female 34 25 20 12

Male 57 41 26 21

T-staging 0.220 0.058 0.107

T1–T2 49 29 32 16

T3–T4 42 37 14 17

MRI-reported LN status 0.001 0.001 0.157

Negative 75 39 43 21

Positive 16 27 3 12

Radiological NVI 0.155 0.058 0.446

Negative 70 44 39 22

Positive 21 22 7 11

Radiological DOI 0.240 0.058 0.154

≤10 mm 50 30 32 16

>10 mm 41 36 14 17

Radiological EMI 0.014 0.012 0.207

Negative 76 44 43 23

Positive 15 22 3 10

Radiological LSI 0.995 0.595 0.874

Negative 80 58 42 28

Positive 11 8 4 5

Tumor budding 0.050 0.013 0.088

Low 46 23 31 13

High 45 43 15 20

Pathological DOI 0.006 0.102 0.394

≤10 mm 72 39 38 22

>10 mm 19 27 8 11

LN = lymph node; NVI = neurovascular invasion; DOI = depth of invasion; EMI = extrinsic lingual muscle invasion; LSI = lingual-
septum invasion.
*P value represents the difference in clinicopathological characteristics between LN-positive and LN-negative cohorts in the training and
testing sets; †P value represents the comparison between training and testing sets.
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Figure 2: MR image, anatomical diagram, and H&E-stained slide of tongue squamous cell carcinoma. (a) The tumor is infiltrated
toward the lingual-septum and mouth floor. (b) The primary tumor and peritumoral extensions are visualized on coronal
section using anatomical diagram. (c) The image of H&E-stained tongue squamous cell carcinoma.

TABLE 2. Performances of Prognostic Models in the Training and Testing Sets

Model Set AUC Accuracy (%) Sensitivity (%) Specificity (%)

MR Training 0.643
(0.545–0.741)

64.97
(55.36–73.26)

40.91
(32.68–48.94)

82.42
(73.56–90.02)

Testing 0.649
(0.522–.0777)

69.62
(60.16–76.38)

36.36
(30.74–44.37)

93.48
(96.33–89.79)

CP Training 0.933
(0.873–0.993)

86.06
(80.86–91.26)

84.84
(80.84–88.84)

86.87
(88.85–92.89)

Testing 0.700
(0.660–0.740)

72.15
(66.15–78.15)

60.61
(52.61–68.61)

80.44
(75.43–85.45)

Rprim Training 0.978
(0.963–0.993)

92.99
(89.15–86.09)

89.39
(85.19–93.59)

95.6
(93.12–98.18)

Testing 0.710
(0.680–0.740)

73.42
(68.3–78.54)

60.6
(56.00–65.20)

82.6
(78.59–86.61)

Rprim+3 Training 0.978
(0.966–0.990)

94.9
(92.1–97.71)

92.42
(88.42–96.42)

96.70
(94.97–98.46)

Testing 0.793
(0.765–0.821)

77.21
(73.06–81.36)

66.67
(62.47–70.87)

84.78
(81.27–88.29)

Rprim+5 Training 0.985
(0.975–0.995)

96.17
(93.57–98.77)

93.93
(90.23–97.63)

97.8
(96.32–99.31)

Testing 0.784
(0.759–0.809)

81.01
(77.01–85.01)

72.72
(68.92–76.52)

86.96
(83.73–90.19)

Rprim+10 Training 0.992
(0.984–1.00)

97.45
(94.95–99.95)

95.45
(92.25–98.65)

98.9
(98.00–99.83)

Testing 0.855
(0.833–0.877)

86.08
(82.50–89.66)

78.79
(75.59–81.99)

91.30
(88.73–93.87)

Rprim+15 Training 0.987
(0.978–0.996)

95.51
(93.31–97.71)

95.38
(92.38–98.38)

95.60
(93.44–97.83)

Testing 0.823
(0.795–0.851)

83.54
(79.81–87.27)

75.75
(72.15–79.35)

89.13
(85.88–92.38)

CRprim Training 0.987
(0.974–0.992)

93.63
(90.73–96.53)

90.9
(86.9–94.9)

95.6
(93.63–97.57)
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In the testing set, the AUC of the Rprim declined to
0.710 (95% CI, 0.680–0.740, Fig. 3b); however, AUC was
still significantly higher than that of MRI-reported LN status
and SVM-based CP. With the increase of the scale of peri-
tumoral extension, the AUC increased and reached the maxi-
mum value at 10-mm peritumoral extension. Therefore, the
Rprim+10 yielded the highest AUC of 0.855 (95% CI, 0.833–
0.877), which was significantly higher than the AUC of other
radiomics models, including Rprim, Rprim+3 (AUC = 0.793,
95% CI, 0.765–0.821), Rprim+5 (AUC = 0.784, 95% CI,
0.759–0.809), Rprim+15 (AUC = 0.823, 95% CI, 0.795–
0.851). Meanwhile, the accuracy, sensitivity, and specificity
of the Rprim+10 were higher than the above models with
values of 86.08%, 78.79%, and 91.30%, respectively.

Radiomics Model with Clinicopathological
Characteristics Integrated
MRI-reported LN status, radiological EMI, and pathological
DOI were integrated into R models to construct CR models.
The importance of selected features to CR models is presented
in Figs. S7–S11 in the Supplemental Material. In the training
set, CRprim, CRprim+3, CRprim+5, and CRprim+15 achieved
AUCs of 0.987 (95% CI, 0.974–0.992), 0.988 (95% CI,
0.979–0.997), 0.992 (95% CI, 0.985–0.999), and 0.991 (95%

CI, 0.984–0.998), respectively, while the CRprim+10 achieved
the AUC of 0.995 (95% CI, 0.991–0.999, Fig. 3a), significantly
higher than other CR models. In the testing set, the CRprim+10

still achieved the highest predictive power with the AUC of
0.872 (95% CI, 0.847–0.897, Fig. 3b), which was significantly
higher than the AUC of CRprim (AUC = 0.720, 95% CI,
0.680–0.760), CRprim+3 (AUC = 0.787, 95% CI, 0.757–
0.817), CRprim+5 (AUC = 0.793, 95% CI, 0.764–0.823), and
CRprim+15 (AUC = 0.808, 95% CI, 0.788–0.828). The accu-
racy, sensitivity, and specificity of the CRprim+10 were 87.34%,
78.78%, and 93.47%, respectively, which were consistently
higher than other models. The detailed results are summarized
in Table 2. The calibration curves of prediction models, espe-
cially the CRprim+10, showed good agreement between model-
predicted probability and the actual LNM rate in both the
training and independent testing sets (Fig. 3c,d). Compared with
the Rprim+10, Rprim, CP model, treat-all, and treat-none scheme,
the CRprim+10 provided the greatest net benefits for predicting
LNM for threshold probabilities of 0.415–0.806 (Fig. 4a).

Discriminative Ability of the CRprim+10 in the MRI-
Reported LN-Negative Subgroup
Of all cases, 60.61% (60/99) with pathologically positive
nodes were understaged and 13.87% (19/137) with

TABLE 2. Continued

Model Set AUC Accuracy (%) Sensitivity (%) Specificity (%)

Testing 0.720
(0.680–0.760)

78.48
(73.47–83.49)

66.67
(62.57–70.77)

86.96
(83.45–
90.47)

CRprim+3 Training 0.988
(0.979–0.997)

96.15
(93.35–98.95)

93.93
(90.43–97.28)

97.77
(96.57–98.96)

Testing 0.787
(0.757–0.817)

81.01
(76.96–85.06)

69.69
(65.69–73.26)

89.13
(85.93–92.33)

CRprim+5 Training 0.992
(0.985–0.999)

96.81
(94.31–99.31)

95.45
(92.25–98.65)

97.8
(96.75–98.78)

Testing 0.793
(0.764–0.823)

84.81
(80.96–88.66)

75.76
(72.56–78.88)

91.30
(88.77–93.83)

CRprim+10 Training 0.995
(0.991–0.999)

97.45
(95.35–99.95)

95.45
(93.39–98.76)

98.9
(98.12–99.82)

Testing 0.872
(0.847–0.897)

87.34
(84.32–90.36)

78.78
(75.78–81.63)

93.47
(91.21–95.73)

CRprim+15 Training 0.991
(0.984–0.998)

95.54
(93.14–97.94)

92.42
(89.92–94.82)

97.80
(96.61–99.01)

Testing 0.808
(0.788–0.828)

80.24
(76.72–83.76)

68.57
(62.38–74.57)

89.13
(86.32–91.94)

MR = MRI-reported lymph node status; SVM-CP = support vector machine-based clinicopathological model; R = radiomics models;
CR = combined radiomics models; AUC = area under the receiver operating characteristic curve.
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pathologically negative nodes were overstaged according to
MRI reports, which suggested that MRI reports had high
specificity but low sensitivity. In the MRI-reported LN-
negative subgroup, CRprim+10 presented a favorable predic-
tive performance with an AUC of 0.883 (95% CI, 0.862–
0.902, Fig. 4b). The LN status of 87.5% (56/64) were
correctly identified, with only three positive and five nega-
tive patients misclassified, showing discriminative capability of
the CRprim+10 (Fig. 4c).

Correlation Analysis
In NVI-negative subgroup, there was a significant negative
correlation between pathological DOI and statistic_1_0_-
1-Homogeneity (r = �0.157, Fig. 5a). In NVI-positive sub-
group, pathological DOI was negatively correlated with
statistic_0_1_0-MaxProbability (r = �0.278, Fig. 5b). In radio-
logical EMI-positive subgroup, a significant negative correlation
between pathological DOI and statistic_0_1_0-MaxProbability
(r = �0.336, Fig. 5c) was found. In tumor budding number

Figure 3: Receiver operating characteristic curves of different diagnostic models in the training set (a) and testing set (b). The
combined radiomics model of the primary tumor with a 10-mm peritumoral extension (CRprim+10) reached the highest AUC of 0.995
(95% CI, 0.991–0.999) in the training set and 0.872 (95% CI, 0.847–0.897) in the testing set. Calibration curves of prognostic models
in the training set (c) and testing set (d). The CRprim+10 showed good agreement between model-predicted probability and the
actual LNM rate. The lines of diagnostic model have a closer fit to the 45� dotted grey line, indicating their better predictive
accuracy.
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≥5 subgroup, there was a significant positive correlation between
pathological DOI and statistic_1_1_-1-ClusterShade (r =

�0.185, Fig. 5d). Also, there were significant correlations
between pathological DOI and some HOG features (Fig. S12
in the Supplemental Material).

Representative LN-negative and LN-positive cases were
showed in Fig. 6a–f. The signal intensity within ROI was rel-
atively higher in the LN-positive patients as compared with
the LN-negative patients, which indicated distinct textural
pattern on MR images between LN-negative and LN-positive
patients with tongue cancer.

The Predictive Value of the CRprim+10 in Survival
Outcomes
The median follow-up period was 41 months (range: 4–
95 months). The DFS rates and OS rates at 2, 3, and 5 years
were 66.67%, 55.70%, 44.79%, and 77.78%, 67.13%,
48.96%, respectively. A significant association between the
CRprim+10 and survival outcome was identified, and the
LNM high-risk group had worse DFS and OS compared with
the low-risk group identified by the CRprim+10 (Fig. 6g,h).
Tumor budding and CRprim+10-predicted LN status were
incorporated into the multivariate Cox analysis of DFS. MRI-
reported LN status, radiological lingual-septum invasion, and
CRprim+10-predicted LN status were incorporated into the
multivariate Cox analysis of OS. Multivariate Cox regression
analysis showed that the CRprim+10 was an independent pre-
operative indicator for poor DFS (hazard ratio, 5.250 [95%
CI, 2.152–12.808]) and OS (hazard ratio, 17.464 [95% CI,
3.660–83.330]) (Table 3).

Discussion
In this study, we developed radiomics models with 3D peri-
tumoral extensions to predict LNM and prognosis preopera-
tively. Our results showed that the CRprim+10 had the

greatest predictive performance, especially in the MRI-
reported LN-negative subgroup. The 3D radiomics features
were significantly correlated with pathological DOI. Impor-
tantly, the CRprim+10 was an independent indicator for poor
DFS and OS.

To develop the radiomics models, we investigated
tongue cancer, the most common cancer of the oral cavity.
The tongue is a unique muscular organ with legible 3D anat-
omy architecture, making it relatively leisurely to determine
the tongue boundary and tumor border with MR imaging.
Therefore, the tongue is an appropriate model to study the
infiltrative growth pattern of tumor cells and 3D peritumoral
extension of primary tumors using radiomics analysis.

Previous radiomics studies in OC have focused on the
primary tumor or LN without taking peritumoral regions into
account.23,24 In our study, we focused not only on the primary
tumor, but also the peritumoral extensions. Furthermore,
instead of simple 2D peritumoral extensions on the MR cross
section images, here, we conducted 3D extensions to extract
comprehensive information from the cancer nest and peri-
tumoral microenvironment. Our results verified that a 10-mm
peritumoral extension improved the predictive performance of
the radiomics model. Peritumoral tissue has morphological and
phenotypic differences from non-tumor-bearing healthy
tissue.25–27 These substantial phenotypic and genetic changes
are apparent up to 10 mm from the tumor margins. Lym-
phatic vessel and immune cells in peritumoral regions are an
accurate predictor of occult LNM and prognosis.28–30 Also, a
large number of studies have shown the power of peritumoral
radiomics features for predicting tumor phenotype, recurrence,
LNM, and prognosis.16–19 Similarity, a recent study demon-
strated that features from the intratumoral and 10-mm peri-
tumoral region provided the best performance for pretreatment
prediction of response to chemotherapy in hepatocellular carci-
noma.31 Our findings agree with prior studies in that the

Figure 4: (a) Decision curve analysis of prognostic models in the testing set. The x-axis represents the threshold probability. The
y-axis represents the net benefit. The decision curve demonstrated that in threshold probabilities of 0.415–0.806, applying the
CRprim+10 to predict lymph node metastasis (LNM) adds more benefit than other models. (b) The CRprim+10 presented a favorable
predictive performance in the MRI-reported LN-negative subgroup, with an AUC of 0.883. (c) The distribution of the CRprim+10-
predicted LN status in the MRI-reported LN-negative subgroup, indicated that the CRprim+10 had a good discriminate ability.
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peritumoral extension could potentially improve the ability of
the radiomics model to predict LNM. According to the Eighth
American Joint Committee on Cancer Guidelines, a “safe”
excision of tongue cancer is routinely recommended at least
15–20 mm away from the primary tumor border.32 Studies
have demonstrated that insufficient excision of tumor tissues
can result in a poorer outcome.33,34 Also, our results verified
that the en bloc resection with a margin more than 10 mm
was relatively safe for patients with tongue cancer.

Numerous studies have suggested that DOI is an inde-
pendent predictor of neck nodal metastasis, local recurrence,

and survival in patients with OC.6–8 For this reason, now
DOI is included in routinely postoperative pathology
reports.32 In our study, DOI was integrated into radiomics
analysis. Results demonstrated that clinicopathological charac-
teristics, including pathological DOI, enhanced the predictive
power of radiomics model in LNM prediction. Similarly, pre-
vious radiomics studies have shown that clinicopathological
characteristics have incremental value in LNM and prognosis
prediction.20,35 We further conducted the correlation analysis
between pathological DOI and radiomics features. Although
no significant correlation was observed in all samples,

Figure 5: Spearman correlation analysis showed a significant correlation between pathological depth of invasion and three-
dimensional radiomics features in radiological neurovascular invasion (NVI) negative subgroup (a), radiological NVI positive subgroup
(b), radiological extrinsic lingual muscle invasion (EMI)-positive subgroup (c) and tumor budding number ≥5 subgroup (d),
respectively.
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pathological DOI were significantly correlated with homoge-
neity, maximum probability, and cluster shade in different
subgroups, including radiological NVI negative, radiological
NVI positive, radiological EMI-positive and tumor budding
number ≥ 5 subgroups. Homogeneity feature and maximum
probability feature have been associated with survival and
metastasis in glioblastoma patients.36 Cluster shade feature
has been significantly correlated with recurrence-free survival
in breast cancer.37 These results indicate that radiomics fea-
tures could evaluate tumor heterogeneity to some extent.

The traditional MRI reports have the disadvantage of
low sensitivity and may lead to delayed treatment and a
poor prognosis for OC patients with occult LNM. A previ-
ous study has demonstrated that radiomics analysis is able
to classify LN status in clinically LN-negative subgroup.38

Similarly, in our study, the CRprim+10 showed good pre-
dictive properties in the MRI-reported LN-negative sub-
group, indicating its ability to detect micrometastasis. The
CRprim+10 greatly improved the sensitivity in LNM pre-
diction, suggesting that patients with tongue cancer would

Figure 6: Axial MR images of tongue cancer in a 33-year-old patient without LNM and a 43-year-old patient with LNM, respectively
(a,d). Segmentation and three-dimensional peritumoral extensions of the primary tumor (b,e). Heat map of radiomics feature
extracted from the primary tumor with a 10-mm peritumoral extension showed differences between LN-negative and LN-positive
patients (c,f). Kaplan–Meier survival analysis indicated that the CRprim+10-predicted high-risk of nodal metastasis had a poor disease-
free survival and overall survival in the testing set (g,h).
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greatly benefit from the radiomics models in terms of
treatment strategy.

Limitations
First, this was a retrospective study with relatively small sam-
ple size. A prospective multicenter validation with larger

sample size is needed. Considering that the tumor border
could be easily identified based on the most commonly used
T2-weighted images, we only chose the representative
T2-weighted sequence to build radiomics models. However,
this approach may lose complementary information on tumor
heterogeneity, which is available from other sequences, such

TABLE 3. Univariate and Multivariate Cox Regression Analysis of DFS and OS in the Testing Set

Characteristics

DFS OS

Univariate analysis Multivariate analysis Univariate analysis Multivariate analysis

Hazard ratio P value Hazard ratio P value Hazard ratio P value Hazard ratio P value

Age
(<60/≥60)

0.465
(0.159–1.354)

0.160 0.743
(0.210–2.64)

0.646

Sex
(Female/male)

1.557
(0.672–3.610)

0.302 0.905
(0.322–2.55)

0.850

T-staging
(T1–T2/T3–T4)

1.238
(0.562–2.727)

0.596 1.841
(0.667–5.079)

0.238

MRI-reported
LN status

(negative/
positive)

1.629
(0.680–3.901)

0.273 3.256
(1.151–9.208)

0.026 0.979
(0.245–3.906)

0.976

Radiological
NVI (negative/
positive)

0.772
(0.290–2.059)

0.606 1.339
(0.426–4.212)

0.618

Radiological
DOI
(≤10 mm/
>10 mm)

1.238
(0.562–2.727)

0.596 1.841
(0.667–5.079)

0.238

Radiological
EMI (negative/
positive)

1.170
(0.439–3.120)

0.754 1.897
(0.602–5.980)

0.275

Radiological LSI
(negative/
positive)

1.559
(0.535–4.545)

0.416 3.201
(1.018–10.068)

0.047 4.501
(0.983–20.599)

0.053

Tumor budding
(low/high)

3.255
(1.402–7.559)

0.006 2.389
(1.015, 5.624)

0.046 2.760
(0.943–8.079)

0.064

Pathological
DOI
(≤10 mm/
>10 mm)

0.975
(0.389–2.442)

0.957 0.883
(0.249–3.133)

0.847

CRprim+10-
predicted LN
status
(negative/
positive)

6.230
(2.587–15.004)

<0.001 5.250
(2.152–12.808)

<0.001 15.130
(3.393, 67.472)

<0.001 17.464
(3.660–83.330)

<0.001

DFS = disease-free survival; OS = overall survival; LN = lymph node; NVI = neurovascular invasion; DOI = depth of invasion;
EMI = extrinsic lingual muscle invasion; LSI = lingual-septum invasion; CRprim+10 = combined radiomics model with a 10-mm peri-
tumoral extension.
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as T1-weighted sequences, contrast-enhanced sequences.
Third, studies have shown the potential of radiomics inte-
grated with genomics.39,40 However, the unavailability of
genomic information from this retrospective study hindered
us to further enhance our model.

Conclusions
We have proposed a radiomics model with a 10-mm peri-
tumoral extension and clinicopathological characteristics
incorporated to accurately predict LNM and prognosis in
tongue cancer. This model exhibited powerful discrimination
ability and sensitivity in LNM prediction, especially in MRI-
reported LN-negative patients.
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HOG histogram of oriented gradient
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