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Synthesizing a genetic network which generates stable Turing patterns is one

of the great challenges of synthetic biology, but a significant obstacle is the

disconnect between the mathematical theory and the biological reality. Cur-

rent mathematical understanding of patterning is typically restricted to

systems of two or three chemical species, for which equations are tractable.

However, when models seek to combine descriptions of intercellular signal

diffusion and intracellular biochemistry, plausible genetic networks can con-

sist of dozens of interacting species. In this paper, we suggest a method for

reducing large biochemical systems that relies on removing the non-

diffusible species, leaving only the diffusibles in the model. Such model

reduction enables analysis to be conducted on a smaller number of differen-

tial equations. We provide conditions to guarantee that the full system forms

patterns if the reduced system does, and vice versa. We confirm our tech-

nique with three examples: the Brusselator, an example proposed by

Turing, and a biochemically plausible patterning system consisting of

17 species. These examples show that our method significantly simplifies

the study of pattern formation in large systems where several species can

be considered immobile.
1. Introduction
How cells coordinate with one another to form regular patterns of alternate

differentiated states is a foundational question in developmental biology [1].

Establishing general rules that biochemistry can follow to enable pattern formation

could impact on our ability to understand and cure developmental disorders [2],

construct synthetic organs/organoids [3] or enable synthetic biology applications

to use multicellular self-organization [4–6]. While there are several mechanisms

that are known to enable multicellular self-organization of regular patterns, such

as the french flag model [7], we focus here on diffusion-driven instability (DDI) first

described by Alan Turing [8]. He proposed that two ‘morphogens’ (intercellular

signalling molecules) could enable tissues to produce regular patterns, and intro-

duced a framework based on the reaction–diffusion equations that can establish

when a given chemical system has pattern-forming potential. Later, Gierer &

Meinhardt proposed that self-organization requires a self-enhancing activator,

which also upregulates an inhibitor, forming a negative feedback, and further

that the activator must diffuse more slowly than the inhibitor [9]. While an

activator–inhibitor system is the simplest pattern-forming network, requiring

only two chemical species but with differential diffusion, the introduction of a

third (non-diffusing) species has been found to enable pattern formation when

the morphogens have equal diffusion rates [10,11].

Despite the theory of Turing patterns having existed since the 1950s, only much

more recently has compelling evidence emerged that suggests that Turing patterns

are responsible for pattern formation in natural biological systems, including digit

patterning [12,13] and fish skin colouring [14]. In most cases, it has been

http://crossmark.crossref.org/dialog/?doi=10.1098/rsif.2017.0805&domain=pdf&date_stamp=2018-03-14
mailto:ndalchau@microsoft.com
http://orcid.org/
http://orcid.org/0000-0002-4872-6914
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


rsif.royalsocietypublishing.org
J.R.Soc.Interface

15:20170805

2
challenging to relate known biology involving many interacting

species to simple 2- and 3-species networks for which analysis of

DDI is more straightforward [13,15]. As such, it remains the sub-

ject of debate as to whether the examples of biological pattern

formation cited above actually depend on DDI, or might arise

due to other reasons. To help understand the biochemical mech-

anisms that can result in biological pattern formation, several

articles have proposed constructing synthetic biochemical

networks that are engineered to specifically implement pat-

tern-forming behaviours, some based on Turing instability

[16–19] but also other mechanisms [20–24]. Libraries of biologi-

cal parts/components have now been compiled that have been

demonstrated to be functional in specific cellular systems that

are frequently used in synthetic biology applications (e.g.

Escherichia coli and Saccharomyces cerevisiae). Knowledge of the

functioning of these components could then be used to demon-

strate how manipulating kinetic parameters influence the

conditions for DDI, and alter pattern wavelength, in predictable

ways. Establishing a close relationship between theory and

experiment would then provide further evidence that Turing’s

mechanism can drive biological pattern formation. However,

examples of synthetic biological circuits that can produce

Turing patterns have yet to emerge, further raising the question

of whether the Turing mechanism alone is sufficient to robustly

generate regular patterns in a biological system.

Analysis of DDI for two species is now well-established [25],

but quickly becomes more complicated with the introduction of

additional (often non-diffusing) species [10]. While more theory

and automated mathematical tools are now emerging that

facilitate the analysis of DDI in general n-dimensional systems

[11,26], it still remains a challenge when the underlying

system is nonlinear, as is typically the case in biological systems.

Therefore, it is not uncommon to start with a more detailed

mathematical description of a chemical system, then attempt

to reduce it to a simpler form while retaining the majority of

the behaviour of the detailed model [16]. However, little analy-

sis has emerged that establishes whether the conditions of DDI

are preserved during a model reduction, despite it being

observed that model reduction can change the required diffu-

sion ratio for pattern formation [10]. One paper has shown

that reaction–diffusion systems with a particular simple form

can be reduced without impacting on the dynamics (and conse-

quently the pattern-forming capabilities), but the result is not

generalizable beyond a small subset of systems [27].

Many techniques have been established that reduce the size

of ordinary differential equation (ODE) models, offering a

starting point for interpreting the impact of model reduction

on Turing pattern formation. Each technique is based on max-

imizing the fidelity between detailed and reduced models with

respect to a specific property (see [28,29] for reviews of model

reduction techniques). Some methods guarantee that equili-

brium solutions (and their stability properties) are retained

through a reduction, while others attempt to minimize the

deviation of the transient behaviour of a specified model vari-

able or variables, in response to a stimulus. Furthermore, some

methods preserve the model co-ordinates/variables, while

others do not. In biochemical systems, timescale separation

techniques are often used, of which the most common are

the quasi-steady-state approximation (QSSA) and the quasi-

equilibrium (QE) assumption [28]. Both involve removing

species that are fast, substituting the concentration of these

species for functions of the dynamic species that are derived

from equilibrium relationships arising from the full system.
In this paper, we investigate the question of whether model

reduction can be applied to a chemical reaction network (CRN)

in a manner that preserves Turing pattern-forming behaviour.

In §2, we prove that if a reduced model forms patterns, then so

does the corresponding full system (and vice versa), given that

some easily checkable conditions are fulfilled. In §3, we confirm

our results on three separate CRNs, including the Brusselator,

and a synthetic gene network with 17 species. These examples

show that the method developed in this paper allows for quick

and easy Turing pattern analysis of complex chemical systems

with an arbitrarily large number of non-diffusible species.

2. Theory
2.1. Background description of Turing instability
The majority of theoretical work on Turing patterns builds

upon the classical reaction–diffusion equations for a chemical

system undergoing diffusion. In the absence of convection/

advection, the reaction–diffusion equations are given by

@c

@t
¼ f(c)þDr2c, ð2:1Þ

where f : RN ! RN is in general a nonlinear system for the rate

equations of a CRN involving N species (X1, . . ., XN), and D is a

diagonal matrix containing the diffusion rates of each species.

Ther operator describes the spatial derivatives in Rd, where d
is the number of spatial dimensions. In one dimension, this

simply corresponds to @2c/@x2.

A Turing pattern arises when an equilibrium of the spatially

homogeneous system (c ¼ ĉ such that f(ĉ) ¼ 0) goes unstable in

the presence of diffusion. In our definition of a Turing pattern,

this equilibrium is also assumed to be stable in the absence of

diffusion. To analyse stability, we consider standard linear

analysis of the system about the equilibrium ĉ. If c ¼ ĉþ c̃

when jc̃j=jĉj � 1, then (2.1) becomes

@c̃

@t
¼ J:c̃þDr2c̃, ð2:2Þ

where J is the matrix of the first-order partial derivatives of f

with respect to each species j

Jij ¼
@fi
@cj

, ð2:3Þ

evaluated at c ¼ ĉ.

To assess stability in the presence of diffusion, we consider

how perturbations evolve over time. If wk(x) are the eigenmodes

of the Laplacian operatorr2, i.e.r2wk ¼ hkwk, then it has been

shown that hk � 0 (with zero flux boundary conditions) [30].

Therefore, it is customary to let hk ¼2 k2, with k corresponding

to the wavenumber of the eigenmode. As such, in one dimen-

sion, on a domain x [ [0, L], there are solutions of the form

c̃ ¼ c̃0 elt cos kx, k ¼ 0,
p

L
,
2p

L
,
3p

L
, . . . : ð2:4Þ

Accordingly, the original linearization problem (2.2) translates

into

(lIþ k2D� J)c̃0 ¼ 0: ð2:5Þ

Therefore, we are interested in the eigenvalues of J 2 k2D. If we

denote bysJ2k2D the spectrum of J 2 k2D, then this gives rise to

a dispersion relation

h(k2) :¼ max {<(sJ�k2D)}: ð2:6Þ

For Turing instability, we require that the system is stable

in the absence of diffusion, which translates to eigenvalues at
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k ¼ 0 all having negative real part. Additionally, we require

the existence of at least one unstable wavenumber, i.e. there

exists a wavenumber k* such that there is a corresponding

eigenvalue l* with positive real part.
 lsocietypublishing.org
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2.2. Model reduction
We now consider a system of N species in which the first M
species can diffuse with diffusion coefficients D1, . . ., DM,

while the remaining species cannot. Accordingly, we describe

a spatially inhomogeneous reaction–diffusion system as

@c1

@t
¼ f1(c1, . . . , cM, cMþ1, . . . , cN)þD1r2c1

..

.

@cM

@t
¼ fM(c1, . . . , cM, cMþ1, . . . , cN)þDMr2cM

@cMþ1

@t
¼ fMþ1(c1, . . . , cM, cMþ1, . . . , cN)

..

.

and
@cN

@t
¼ fN(c1, . . . , cM, cMþ1, . . . , cN):

9>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>;

ð2:7Þ

The associated spatially homogeneous system can therefore

be written compactly as

dci

dt
¼ fi(c1, . . . , cN), i ¼ 1, . . . , N: ð2:8Þ

Because we look for Turing patterns we further assume that

there exists a non-negative spatially homogeneous equili-

brium of (2.1) given by ĉi, which satisfies

0 ¼ fi(ĉ1, . . . , ĉN), i ¼ 1, . . . , N: ð2:9Þ

We now outline a strategy to reduce system (2.8) to a

smaller system of NR species, with M � NR , N, including

all diffusible species. Without loss of generality, we assume

that the reduced model consists of species X1,. . ., XNR
.

The reduction is obtained by defining the functions

�ci(c1, . . . , cNR ), (i ¼ NR þ 1, . . . , N), which satisfy

0 ¼ fi(c1, . . . ,cNR ,�cNRþ1(c1, . . . ,cNR ), . . . ,�cN(c1, . . . ,cNR )),

i ¼ NR þ 1, . . . ,N: ð2:10Þ

Intuitively, this amounts to solving the steady-state ODEs for

the removed species, as functions of the remaining species,

thereby eliminating N 2 NR species from the system.

Note that �ci(ĉ1, . . . ,̂cNR ) ¼ ĉi,(i ¼ NR þ 1, . . . ,N). The reduced

system of ODEs becomes

dci

dt
¼ fi(c1, . . . , cNR ,�cNRþ1(c1, . . . , cNR ), . . . ,�cN(c1, . . . , cNR )),

i ¼ 1, . . . , NR:

ð2:11Þ

Using the chain rule, the Jacobian of the reduced

system (2.11) is the NR � NR diagonal matrix given by

�J ¼

@f1
@c1
þ

XN

r¼NRþ1

@f1
@cr

@�cr

@c1
. . . @f1

@cNR
þ

XN

r¼NRþ1

@f1
@cr

@�cr

@cNR

..

. . .
. ..

.

@fNR

@c1
þ

XN

r¼NRþ1

@fNR

@cr

@�cr

@c1
. . .

@fNR
@cNR
þ

XN

r¼NRþ1

@fNR

@cr

@�cr

@cNR

0
BBBBBBBB@

1
CCCCCCCCA

,

ð2:12Þ
evaluated at ci ¼ ĉi, (i ¼ 1, . . . , NR). Accordingly, the diffu-

sion matrix of the reduced system (2.11) is the NR � NR

diagonal matrix given by

�D ¼

D1

. .
.

0
DM

0

0 . .
.

0

0
BBBBBBBB@

1
CCCCCCCCA

ð2:13Þ

where the first M diagonal entries are the diffusion rates of

the diffusible species, and the additional NR 2 M entries cor-

respond to non-diffusible species that were not removed

during the model reduction.

We now have two systems, (2.8) and (2.11), which are

models of the same underlying process. To consider how

Turing pattern formation is affected by the reduction

from (2.8) to (2.11), we return to the mathematical conditions

of pattern-forming behaviour introduced above.

We say a system is pattern-forming if there exist k1, k2,

k3, k4 . 0 with k1 � k2 , k3 � k4 such that all eigenvalues of

J 2 k2D have negative real parts when k , k1 and k . k4, and

there is a positive real eigenvalue when k2 , k , k3. This is a

strict definition that explicitly excludes certain systems that

are capable of forming patterns: (i) systems with patterns

formed by Turing–Hopf bifurcations, (ii) systems that are

unstable without diffusion, and (iii) systems that can form pat-

terns on arbitrarily small length-scales (‘noise-amplifying

networks’ [11]). Systems of type (i) are excluded because they

can form either spatial patterns or temporal oscillations

depending on the initial conditions, and so are not consistently

pattern-forming; systems of type (ii) are excluded because they

violate the concept of DDI; systems of type (iii) are excluded

because they violate physical principles by permitting, for

example, patterns on length-scales smaller than a molecule

[10].

Knowing that we are interested in the behaviour of the

matrix J 2 k2D, and its reduced counterpart �J� k2 �D, we note

the following relationship between the full and reduced systems.

Lemma 2.1. jJ 2 k2Dj and j�J� k2 �Dj change sign at the same
values of k.

Proof. We define

J1,1 ¼

@f1
@c1

. . . @f1
@cNR

..

. . .
. ..

.

@fNR
@c1

. . .
@fNR
@cNR

0
BBB@

1
CCCA, J1,2 ¼

@f1
@cNRþ1

. . . @f1
@cN

..

.
. . . ..

.

@fNR
@cNRþ1

. . .
@fNR
@cN

0
BBB@

1
CCCA,

and J2,1 ¼

@fNRþ1

@c1
. . .

@fNRþ1

@cNR

..

.
. . . ..

.

@fN
@c1

. . . @fN
@cNR

0
BBB@

1
CCCA, J2,2 ¼

@fNRþ1

@cNRþ1
. . .

@fNRþ1

@cN

..

. . .
. ..

.

@fN
@cNRþ1

. . . @fN
@cN

0
BBB@

1
CCCA,

9>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>;

ð2:14Þ

so that

J ¼
J1,1 J1,2

J2,1 J2,2

 !
, ð2:15Þ



rsif.royalsocietypublishing.org
J.R.Soc.Interface

15:20170805

4
and we define

L ¼

XN

r¼NRþ1

@f1
@cr

@�cr

@c1
. . .

XN

r¼NRþ1

@f1
@cr

@�cr

@cNR

..

. . .
. ..

.

XN

r¼NRþ1

@fNR

@cr

@�cr

@c1
. . .

XN

r¼NRþ1

@fNR

@cr

@�cr

@cNR

0
BBBBBBBB@

1
CCCCCCCCA

, ð2:16Þ

so that

�J ¼ J1,1 þ L: ð2:17Þ

We now compare jJ 2 k2Dj and j�J� k2 �Dj. In the former case,

the Schur complement of J2,2 provides the relationship

jJ� k2Dj ¼ jJ2,2j � jJ1,1 � k2 �D� J1,2J�1
2,2J2,1j, ð2:18Þ

while in the latter case

j�J� k2 �Dj ¼ j J1,1 � k2 �Dþ Lj: ð2:19Þ

The two determinants are directly proportional if L ¼ 2J1,2

J21
2,2 J2,1. We observe that we can write L ¼ J1,2

~L, where

~L ¼

@�cNRþ1

@c1
. . .

@�cNRþ1

@cNR

..

.
. . . ..

.

@�cN
@c1

. . . @�cN
@cNR

0
BBBB@

1
CCCCA, ð2:20Þ

so that the condition for proportional determinants becomes

that J2,1 þ J2,2
~L ¼ 0, or algebraically, that

@fi
@cj
þ

XN

r¼NRþ1

@fi
@cr

@�cr

@cj
¼ 0, i ¼ NR þ 1, . . . ,N,

j ¼ 1, . . . ,NR: ð2:21Þ

We note from equation (2.10) that, fi(c1, . . . , cNR ,�cNRþ1

(c1, . . . , cNR ), . . . ,�cN(c1, . . . , cNR )), (i ¼ NR þ 1, . . . ,N) is a con-

stant function of c1, . . ., cNR
, i.e.

0¼ @

@cj
fi(c1,... ,cNR ,�cNRþ1(c1,...,cNR ),...,�cN(c1,...,cNR )),

i¼NRþ1,... ,N, j¼1,...,NR: ð2:22Þ

Expanding this gives precisely the condition (2.21). It follows

that the determinants of the full and reduced systems are

directly proportional, and consequently change sign at

exactly the same values of k. A

We next turn our attention to the conditions of Turing

pattern formation, specifically considering when eigenvalues

can cross the imaginary axis. We can make the following

statement.

Lemma 2.2. A system is pattern-forming if it has the following
properties:

(I) the system is linearly stable without diffusion (i.e.
max {<(sJ)} < 0),

(II) the non-diffusible subsystem is either linearly stable without
diffusion (i.e. max {<(sJ2,2

)} < 0), or else non-existent (i.e.
M ¼ N),

(III) jJ 2 k2Dj changes sign at least twice as a function of k, and
we denote smallest two such values of k as k2 and k3, with
0 , k2 , k3.
Proof. By (I), the real parts of eigenvalues of J 2 k2D are negative

when k ¼ 0, and by continuity, also negative up to some k1 . 0

with k1 � k2. When k is very large, the characteristic polynomial

of the system will have the form (l þ k2D1)(l þ k2D2) � � � s(l þ
k2DM)jlI 2 J2,2j þ O(k2M22) ¼ 0 if N . M, or else (l þ
k2D1)(l þ k2D2) � � � s(l þ k2DM) ¼ 0 if N ¼M. The eigenvalues

of J 2 k2D will therefore converge to 2k2D1, 2k2D2, . . .,

2k2DM and if N . M, also the eigenvalues of J2,2, which all

have negative real part, by (II). It follows that all eigenvalues

of J 2 k2D have negative real part for sufficiently large k
(say, larger than some k4 � k3). Furthermore, by (III), jJ 2 k2Dj
changes sign first at k2 and second at k3. As there exist k , k2

and k . k3 both corresponding to all negative real part

eigenvalues of J 2 k2D, it follows that there is at least

one eigenvalue with positive real part when k2 , k , k3.

The system therefore satisfies all conditions required for

pattern-forming behaviour. B

The combination of lemmas 2.1 and 2.2 directly provi-

des the conditions for which model reduction preserves

pattern-forming behaviour. In particular, we have the

following result.

Lemma 2.3. If a full (reduced) system is pattern-forming, then the
reduced (full) system is also pattern-forming if both the reduced
(full) system and—if it exists—its non-diffusible subsystem are
stable without diffusion.

Proof. Conditions (I) and (II) of lemma 2.2 hold by defini-

tion. As the full (reduced) system is pattern-forming,

there must exist distinct smallest values of k, k2 and k3, with

0 , k2 , k3 such that jJ 2 k2Dj changes sign at them.

By lemma 2.1, the full and reduced systems change

signs at the same values of k, so condition (III) of

lemma 2.2 also holds. Therefore, the reduced (full) system

is pattern-forming. B

There are two important implications of this result for

model reduction in practice. Firstly, if we reduce a large

model and find a set of parameters for which the reduced

model forms patterns, then we only have to check the

Jacobian of the full model to find if it also forms patterns.

This is useful because checking the stability of a Jacobian is

computationally much simpler than finding largest real

eigenvalues as functions of k, especially for systems with

many species. Secondly, if the reduced model is stable for a

region of parameter space, then the full model cannot form

patterns in that region. This is useful because the stable

region is typically large, and unstable regions frequently

correspond to physically impossible parameter values, and

so model reduction can be an efficient way of eliminating

systems incapable of pattern formation.

In the next section, we apply our technique to some

example systems and confirm that our results hold.
3. Examples
3.1. Brusselator
One of the simplest chemical systems that is known to exhibit

Turing patterns is the Brusselator, which in its original form
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The parameter values used in these analyses were a ¼ 1, DX ¼ 1, b ¼ 1.88, DY ¼ 10. Spatial simulations used a domain length of 20 (arbitrary units).
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is described by four reactions involving only two essential

chemical species X and Y [31]

A! X, Bþ X ! YþD, 2X þ Y! 3X, X! E: ð3:1Þ

Here, the species A, B, D and E are explicitly included to ensure

that mass is conserved. However, they are often removed

during analysis as they do not contribute to the characteriz-

ation of the system behaviour, under the assumption that A
and B are never depleted.

Following some debate over the chemical plausibility

of reactions with more than two reactants, it was propo-

sed in [32] that by introducing a third chemical species, the

trimolecular reaction could be converted to a pair of

bimolecular reactions

2X! Z, Zþ Y! Zþ X: ð3:2Þ

As the resulting bimolecular Brusselator system has

not previously been analysed for Turing pattern forma-

tion explicitly, we applied our model reduction approach

to determine conditions for which Turing instability

is preserved. To simplify the reaction network while

retaining full coverage of the space of possible behaviours

of the bimolecular Brusselator system, we remove the

non-essential species and remove two of the rate parameters,

leaving

;Oa

1
X, X�!b Y, 2X O

1

1
Z, Zþ Y�!1 Zþ X: ð3:3Þ
Note that we allow for the first new reactions to be reversible

(2X O Z), but keep the subsequent reaction irreversible, which

together produces an essentially irreversible transition from

2X þ Y to 3X, as in the original scheme. Assuming that X dif-

fuses with unit rate, Y at a relative rate DY and Z is immobile,

the concentrations of X, Y and Z for this system evolve as

@x
@t
¼ a� (1þ b)x� 2x2 þ 2zþ zyþr2x,

@y
@t
¼ bx� zyþDyr2y

and
@z
@t
¼ x2 � z,

9>>>>>>>=
>>>>>>>;

ð3:4Þ

with equilibria x̂ ¼ a, ŷ ¼ b=a, ẑ ¼ a2. We perform a model

reduction which removes Z from the system. As per

our strategy, this is achieved by solving dz/dt ¼ 0 for

z ¼ �z(x, y). We get

�z ¼ x2: ð3:5Þ

The reduced model is obtained by substituting equation (3.5)

into equation (3.4)

dx
dt
¼ a� (1þ b)xþ x2y

and
dy
dt
¼ bx� x2y,

9>>=
>>; ð3:6Þ

which recovers the reaction–diffusion equations for the classical

Brusselator model.
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In general, we find that parameter values which lead to

patterns in the bimolecular Brusselator model also lead to

patterns in the classical Brusselator model (figure 1a,b). To

see this, we varied the parameter b and the diffusion constant

DY over large ranges, and compared the bifurcation dia-

grams. As we would expect from lemma 2.3, these show

that parameter values which lead to patterns in the reduced

system also lead to patterns in the full system; correspond-

ingly, parameters which lead to patterns in the full system

lead either to patterns or instability in the reduced system.

In figure 1c,d, we show the patterns formed by the species

X in systems (3.4) and (3.6), respectively.

In figure 2, we show the dispersion relations for sys-

tems (3.4) and (3.6). As predicted by lemma 2.1, while the

relations themselves are different, they both change sign at

the same values of k, implying that both systems will form

patterns on the same wavelengths.
3.2. Turing’s example
We next considered a larger example that is closely related to

one proposed by Turing [8]. It consists of species X, Y, W, C
and C0, and concentrations x, y, w, c and c0 respectively.

X and Y can diffuse with diffusion coefficients DX and DY,

and the reactions are given by

XþY�!k1 W , W�!k2
2Y, 2X�!k3 W , ;�!k4 X,

and Y�!k5 ;, YþC�!k6 C0, C0 �!k7 XþC:

9>=
>; ð3:7Þ

We note that the C and C0 are related via a conservation law,

and so we substitute c0 ¼ cTot 2 c (cTot constant), which leads

to four independent ODEs that completely characterize the

deterministic behaviour of the system

dx
dt
¼ �k1xy� 2k3x2 þ k4 þ k7(cTot �c),

dy
dt
¼ �k1xyþ 2k2w� k5y� k6yc,

dw
dt
¼ k1xy� k2wþ k3x2

and
dc
dt
¼ �k6ycþ k7(cTot � c):

9>>>>>>>>>>>>=
>>>>>>>>>>>>;

ð3:8Þ
To demonstrate how the model reduction can be applied

to different extents, we reduce this system to both 3- and

2-species system approximations. First, we eliminate c by

solving dc/dt ¼ 0 for �c(x, y, w), which gives

�c ¼ k7cTot

k7 þ k6y
: ð3:9Þ

Substituting c ¼ �c in system (3.8), we obtain a three species

system defined by

dx
dt
¼ �k1xy� 2k3x2 þ k4 þ y

k6k7cTot

k7 þ k6y
,

dy
dt
¼ �k1xyþ 2k2w� k5y� y

k6k7cTot

k7 þ k6y

and
dw
dt
¼ k1xy� k2wþ k3x2:

9>>>>>>>>=
>>>>>>>>;

ð3:10Þ

Next, we eliminate w by solving dw/dt ¼ 0 for �w(x, y),

which gives

�w ¼ k3

k2
x2 þ k1

k2
xy, ð3:11Þ

Substituting w ¼ �w in (3.10), we obtain a two species system

defined by

dx
dt
¼ �k1xy� 2k3x2 þ k4 þ y

k6k7cTot

k7 þ k6y

and
dy
dt
¼ k1xyþ 2k3x2 � k5y� y

k6k7cTot

k7 þ k6y
:

9>>>=
>>>;

ð3:12Þ

We therefore arrive at three models of system (3.7) with

varying levels of dynamical complexity. A complete model is

described by four species, whereas two successive equili-

brium assumptions applied to C and then W generate two

simpler models. To demonstrate the equivalence of Turing

instability (lemma 2.3) across these models, we illustrate

bifurcation diagrams of the full system (figure 3a), and the

reduced three (figure 3b) and two species (figure 3c) sys-

tems. These show that the four and three species models

have indistinguishable parameter-dependent behaviour,

while the two species model is unstable for a region of par-

ameter space where the other models are stable. We note

that this unstable region prevents the two species model

from forming patterns when the diffusion rates of X and

Y are equal (DX ¼ DY ¼ 1), though such equal diffusion

rates can produce patterns for the three and four species

models. We also observe that pattern-forming parameters

in the two species system also lead to patterns in the

larger systems (figure 3d– f ). This is similar to the situation

observed for the Brusselator, whereby model reduction

leads to a shrinkage of the parameter space that produces

patterns. Intuitively, adding immobile species should lead

to an expansion of the permissible parameter space in gen-

eral, and therefore we are observing the opposite of this

when applying our form of model reduction.

In figure 4, we show the dispersion relations for the

4- (3.8), 3- (3.10) and 2-species (3.12) systems. As predicted

by lemma 2.1, while the relations themselves are generally

different (although the 3- and 4-species relations are near-

indistinguishable), they all change sign at the same values

of k, implying that all systems will produce patterns on

the same length scales.
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3.3. A synthetic gene circuit
In our final example, we consider a much larger system

consisting of 17 species, which is based on the synthetic

gene circuit proposed in [18]. While this publication

presents only a theoretical analysis of the synthetic gene cir-

cuit, it represents a biologically plausible approach to

realizing a synthetic cellular Turing patterning circuit in live
cells. The synthetic gene circuit is arranged in an activator–

inhibitor network, whereby the intercellular signalling mol-

ecule acyl homoserine lactone (AHL) plays the role of a

short-range activator, and hydrogen peroxide gas (H2O2)

plays the role of a long-range inhibitor. Activation is

achieved by AHL binding a constitutively expressed

LuxR receiver protein, forming an activating complex for

PLux promoters, which are placed upstream of coding

sequences for the AHL synthase luxI [33] and the H2O2-

producing ndh. The inhibitory loop is formed by an

H2O2-sensitive topA promoter stimulating production of

the AHL lactonase aiiA, which degrades AHL [34], thus

inhibiting its action.

In [18], it is shown that a model containing five variables

(but analysis over four variables due to the presence of a

conservation law) can give rise to DDI for certain para-

meter choices. Already, analysis of Turing instability is

made challenging by virtue of there being more than two

essential dependent variables. One might categorize their

model as having intermediate complexity, as a simpler

model could be arrived at by considering only the concen-

trations of the diffusive signals AHL and H2O2. By contrast,

a more complex model might be considered that describes

more of the intracellular components, and complexes

between them, directly.

Here, we show that the bifurcation properties of models

of the synthetic gene circuit in [18] are preserved across

models of varying complexity. To demonstrate this, we start

by considering a model described by elementary chemical

reactions, as follows:
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LuxR activity : ;O
aR

dR

luxR 2 AHL:luxR O
kdim

kun

D

Signal binding : AHLþ luxR O
bR

uR
AHL:luxR FisþH2O2 O

bF

uF
FisA

Promoter binding : P1 þD O
b1

u1

PA
1 P3 þD O

b3

u3

PA
3 P4 þ FisA O

b4

u4

PA
4

Transcription : PA
1 �!

a1 PA
1 þ luxI PA

3 �!
a3 PA

3 þNdh PA
4 �!

a4 PA
4 þAiia

Degradation : luxI�!dI ; aiiA�!g3 ; H2O2�!
g2 ; Ndh�!dN ;

Lactonase activity : aiiAþAHL O
bA

uA
aiiA:AHL�!kA

aiiA

Synthesis : luxI �!kAHL
luxIþAHL Ndh �!

kH2O2
NdhþH2O2:

9>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>;

ð3:13Þ
15:20170805
For brevity, we do not write out the full system of reaction

rate equations here (although code is available from the

authors upon request). We reduce the full system of equations

to one of intermediate complexity consisting only of AHL,
H2O2, AHL.luxR and aiiA (as considered in [18]), whose con-

centrations we write as L, H, P and A, respectively. The

reduced ODEs are
dL
dt
¼ uR þ

a1kAHLb1kdimPnP

b1dIkdimP2 þ dIkunu1

� �
P� bRaR

dR
þ bAA

kA

uA þ kA

� �
L,

dH
dt
¼ b3kdimP2a3kH2O2

nP

dN(b3kdimP2 þ kunu3)
� g2H,

dP
dt
¼ bRaR

dR
L� uRP

dA
dt
¼ a3b4bFHnFnP

b4bFHnF þ u4(bFH þ uF)
� g3A,

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

ð3:14Þ
where nP is the total promoter concentration and nF is the total

Fis concentration. While this system is very similar to the four

species model studied in [18], there are some minor differences,

but we nevertheless still find that Turing instabilities arise.

These differences arise because we arrived at equation (3.14)

by reducing a full mass-action system equation (3.13), while
the system in [18] is not obtained systematically from a more

complex model.

Finally, we can further reduce the system of intermediate

complexity to a system comprising only the diffusive

molecules AHL and H2O2:
dL
dt
¼ a1kAHLL2b1b2

Rkdima2
RnP

L2b1dIb2
Rkdima2

R þ dId2
Ru2

Rkunu1
� L

nPa3b4bFHkAbAnF

g3(uA þ kA)(b4bFHnF þ u4(bFH þ uF))

dH
dt
¼ L2b3b2

Rkdima2
Ra3kH2O2

nP

dN(L2b3b2
Rkdima2

R þ d2
Ru2

Rkunu3)
� g2H

9>>>>=
>>>>;

ð3:15Þ
In figure 5a–c, we show bifurcation diagrams of the full

system (3.13), the four species model (3.14) and the two species

model (3.15). In this case, we find that the diagrams for the

full (3.13) and intermediate (3.14) complexity systems are iden-

tical, while the diagram for fully reduced system (3.15) shows

an unstable region of parameter space where the larger

models are stable (in accordance with lemma 2.3). All three

models have identical pattern forming regions. In figure 5d– f,
we show stable two-dimensional patterns of [AHL] in each

system, which illustrates how patterns of a similar wavelength

emerge. This is confirmed by the dispersion relations shown

in figure 6, which show that each system’s dispersion rela-

tion changes sign at precisely the same wavenumbers (in

accordance with lemma 2.1).
4. Discussion
In this paper, we have proposed a technique for reducing a

large chemical system to a small one, in a manner that pre-

serves pattern-forming behaviour as far as possible. In

essence, the reduction relies on a QSSA, since it assumes that

the concentrations of the removed species can be written in

terms of the remaining species without reference to time. How-

ever, the QSSA is a method to eliminate species which can be

considered to be in equilibrium, to simplify the description of

the non-equilibrium species; in Turing patterning systems all

species are necessarily in equilibrium, so it may be misleading

to equate our reduction method with the QSSA, although they

are mathematically equivalent. Comparison with other model
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reduction techniques is also difficult, as unlike typical

approaches, our strategy is not necessarily interested in preser-

ving the correct dynamical behaviour of the full system:

indeed, we make no claims that the reduced model is an accu-

rate description of the original system. But as a consequence, it

is notable that our approach does not require specific values of

kinetic parameters, unlike model reductions in other systems

and their behaviours.

The reduced model is derived with one aim in mind: to

help find parameters of the full model which can lead to

Turing patterns, or to help prove that none exist. In that respect,
our technique is very successful. We have shown that, if we can

find a pattern-forming parameter set for the reduced system,

then it is simply a matter of checking the stability of the Jaco-

bian of the full system to determine whether it, too, forms

patterns with those parameters. Furthermore, if we can find a

region of parameter space for which the reduced system is

stable, then we know for certain that the full system cannot

form patterns in that region.

The power of our technique is demonstrated very well on

system (3.13): a biologically plausible system consisting of 17

species and 31 reactions. At face-value, it is impossible to

know whether this system is capable of forming patterns, and,

if so, which parameters correspond to pattern-forming behav-

iour. By performing a dramatic reduction from 17 to 2 species,

due to there only being two diffusive species, we quickly

found regions of parameter space corresponding to pattern-

forming and stability in the reduced model. Our results prove

that these regions necessarily correspond to potential-pattern-

forming and no-pattern-forming, respectively, in the full

system. The fact that both systems generate near-indistinguish-

able patterns is an added bonus. Temporal dynamics are not

conserved, which can be seen in the larger eigenvalues of

reduced systems (figures 2, 4 and 6), which is known to correlate

with faster pattern emergence [35]. However, this is not surpris-

ing. Our model reduction technique is to simply assume that

certain species equilibrate infinitely fast, and so the overall

dynamics of reduced systems will be faster, in general.

Overall, our results provide a quick and rigorous way to

check for pattern-forming behaviour in large biochemical net-

works. While we do not attempt to automate this process here,
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such automation could be of serious utility to synthetic biol-

ogists in their attempts to find and synthesize genetic

networks capable of forming stable patterns. While the results

here are unfortunately not applicable to the purely diffusive

systems, we feel they will be of general interest to those in

the reaction–diffusion field, as they provide a means to

extend the current analytical tools developed for two or three

species Turing-patterning systems to systems that additionally

include an arbitrary number of non-diffusible species.
 .org
J.R.Soc.Interface
5. Numerical methods
All simulations and figures were prepared using Matlab

R2016a. Code is available from GitHub: https://github.

com/ndalchau/turing-model-reduction.
15:20170805
5.1. Dispersion relations
Dispersion relations (figures 2, 4 and 6) were evaluated

numerically using Matlab’s built-in eigenvalue function

eig. The eigenvalues were computed for J and J 2 k2D
(as defined in §2.1), with the equilibrium points as specified

in the text of each example, and Jacobian entries differen-

tiated by hand.
5.2. Bifurcation diagrams
Bifurcation diagrams (figures 1a,b, 3a–c and 5a–c) were

constructed by sampling parameter values uniformly in

two-dimensional subspaces of the overall parameter space

for each example. Then for each parameter set, a dispersion

relation was numerically evaluated. Region colours were

then assigned according to the sign of the maximum of the

real part of the eigenvalues at each wavenumber.

5.3. PDE simulations
PDE simulations (figures 1c,d, 3d– f and 5d– f ) were carried

out using an explicit finite difference scheme on a regular

grid. The code was implemented in Matlab R2016a, making

use of the del2u function to generate a finite difference

approximation of r2 at each time step.

Data accessibility. Code for reproducing the numerical results is available
from https://github.com/ndalchau/turing-model-reduction.
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