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1,2, Stéphane RossetID
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Abstract

Proteins are typically represented by discrete atomic coordinates providing an accessible

framework to describe different conformations. However, in some fields proteins are more

accurately represented as near-continuous surfaces, as these are imprinted with geometric

(shape) and chemical (electrostatics) features of the underlying protein structure. Protein

surfaces are dependent on their chemical composition and, ultimately determine protein

function, acting as the interface that engages in interactions with other molecules. In the

past, such representations were utilized to compare protein structures on global and local

scales and have shed light on functional properties of proteins. Here we describe Rosetta-

Surf, a surface-centric computational design protocol, that focuses on the molecular surface

shape and electrostatic properties as means for protein engineering, offering a unique

approach for the design of proteins and their functions. The RosettaSurf protocol combines

the explicit optimization of molecular surface features with a global scoring function during

the sequence design process, diverging from the typical design approaches that rely solely

on an energy scoring function. With this computational approach, we attempt to address a

fundamental problem in protein design related to the design of functional sites in proteins,

even when structurally similar templates are absent in the characterized structural reper-

toire. Surface-centric design exploits the premise that molecular surfaces are, to a certain

extent, independent of the underlying sequence and backbone configuration, meaning that

different sequences in different proteins may present similar surfaces. We benchmarked

RosettaSurf on various sequence recovery datasets and showcased its design capabilities

by generating epitope mimics that were biochemically validated. Overall, our results indicate

that the explicit optimization of surface features may lead to new routes for the design of

functional proteins.

Author summary

Finely orchestrated protein-protein interactions are at the heart of virtually all fundamen-

tal cellular processes. Altering these processes or encoding new functions in proteins has
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been a long-standing goal in computational protein design. Protein design methods com-

monly rely on scoring functions that seek to identify amino acid sequences that optimize

structural configurations of atoms while minimizing a variety of physics-based and statis-

tical terms. The objectives of the large majority of computational design protocols have

been focused on obtaining a predefined structural conformation. However, routinely

introducing a functional aspect on designer proteins has been more challenging. Our

results suggest that the molecular surface features can be a useful optimization parameter

to guide the design process towards functional surfaces that mimic known protein bind-

ing sites and interact with their intended targets. Specifically, we demonstrate that our

design method can optimize experimental libraries through computational screening, cre-

ating a basis for highly specific protein binders, as well as design a potent immunogen that

engages with site-specific antibodies. The ability to create proteins with novel functions

will be transformative for biomedical applications, providing many opportunities for the

design of novel immunogens, protein components for synthetic biology, and other pro-

tein-based biotechnologies.

Introduction

Proteins are key components in living cells, performing many functions that commonly rely

on physical interactions between molecules. The molecular surface arising from the three-

dimensional arrangement of the many atoms that compose a protein is determinant for pro-

tein function and is therefore crucial for biological processes [1]. While discrete atomic-level

protein representations have been invaluable for our understanding of protein function, near-

continuous surface-based representations offer the opportunity to study protein structures

using a different subset of features (e.g. electrostatic potentials, geometry).

In 1971, Lee and Richards introduced the concept of solvent-accessible surfaces, which in

practice are generated by rolling a probe approximating a solvent molecule over the protein

atoms [2]. The molecular surface, often denoted as solvent-excluded surface or Connolly sur-

face [3–5], consists of the surface that can be directly contacted by the probe and the reentrant

surface which smooths over gaps between the atoms that were not accessible to the probe

sphere [4,6,7]. Numerical representations of surfaces have also been developed, ranging from

dot surfaces, to voxel representations and graphs [1,8–12]. These representations allow the

mapping of molecular and geometric properties onto the generated surface, including physico-

chemical properties (such as electrostatics and hydrophobicity), and geometrical features (e.g.

protrusions or cavities) [6,8,13–15].

Intuitively, the molecular surface forms the boundary of the protein and its surroundings,

thus acting as the interface that engages in interactions with other molecules. The study of pro-

tein structures as near-continuous molecular surfaces is therefore important to understand

structural and functional aspects of proteins, which may not be fully captured by a discrete

atomic representation [13,16]. A widely studied category of features of molecular surfaces is

their chemistry, in particular electrostatic potentials, and their implications for protein func-

tion. Most notably, such representations have been used to study various types of protein-sub-

strate interactions [17,18]. Other important metrics used to study molecular surfaces are their

shape-derived properties, commonly focusing on shape complementarity (SC) or shape simi-

larity (SS). Shape complementarity is frequent in the study of molecular recognition, e.g. pro-

tein-protein or protein-ligand interactions. In particular, protein-protein interactions (PPIs)

have been extensively studied in terms of complementarity, showing that protein-protein
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interfaces are often highly complementary, both in shape and in charge [19,20]. On the other

hand, shape similarity has been used to globally and locally compare biomolecules, aiding the

functional annotation of proteins that show structural similarities but lack detectable sequence

homology [11,21].

An important extension of such successful applications in analysis and prediction tasks

using surface-based representations is that of protein design [6], where the objective is to

guide the sequence search process to optimize specified surface features.

Here we present a new, surface-centric computational design strategy, termed RosettaSurf,

that uses a description of the molecular surface shape and electrostatic properties as objective

function for scoring optimization in protein design. Working at the surface-level of protein

structures offers a unique approach for the design of proteins and their functions, as molecular

surfaces are, to some extent, independent of the underlying sequence [11,14]. This means that

different sequences in different proteins may present similar surfaces [11,14]–a premise that

drives our proposed methodological approach. In contrast, the large majority of computational

design workflows entail a discrete atomistic description of the proteins and sequence design is

typically performed on the atom arrangements and interactions; i.e. by sampling different

amino acid side chains and adjusting atoms in the protein structure to optimize a given energy

function.

While these strategies have been successfully applied to design novel protein topologies

[22–24], the design of functional proteins based solely on computational calculations remains

a challenge [25–32].

RosettaSurf is a protocol implemented in the Rosetta software package [33] and we assessed

its performance with several benchmark tests, demonstrating the protocol’s capabilities

through the recovery of protein interfaces and its application to functional protein design.

Results

RosettaSurf framework

The RosettaSurf protocol operates at the solvent-excluded surface level of a protein structure,

and its core operation is the comparison between surfaces. To compare molecular surfaces, we

defined a score that quantifies the similarity between two surfaces considering both shape and

electrostatic features, and incorporated it within the Rosetta software package. The molecular

surface is generated from the three-dimensional atomic coordinates of a protein [3,4] and

stored as a discrete point cloud (Fig 1). Representation of the surface as a point cloud allows

the featurization of the points with geometrical and chemical descriptors (Fig 1) and enables

rapid calculations of the surface similarity score. We refer to the mutable surface as target

while the reference surface used for comparisons is denoted as reference.

To describe the surface geometry, we developed a descriptor based on concepts introduced

by Lawrence and Colman [19] that quantifies shape relationships of two surfaces relying on

normal vector comparisons that are derived at each point of the surface (Fig 1). For all pairs of

closest points of the target and reference surface the geometric similarity is evaluated. Averag-

ing these individual similarity values yields an overall shape similarity (SS) score that quantifies

the similarity of the geometry of two given molecular surfaces. The SS score ranges from 0 (no

similarity) to 1 (identical shape).

Electrostatic similarity (ES) of two surfaces is derived from comparing their electrostatic

potentials, i.e. ES is assessed by computing the correlations of the two electrostatic fields origi-

nating from the target and reference surface, respectively (Fig 1). Correlation coefficients are

derived from this comparison that describe the similarity of the electrostatic fields. Values of

ES range from -1 (highly similar) to +1 (highly complementarity).
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To accurately capture the relative contributions of both shape and electrostatics on the simi-

larity of molecular surfaces, we combined both scores into a single surface similarity score

(SurfS). Since we were interested in assessing similarity of surface sites that are well maintained

and relevant to functional protein design, we focused on interfaces of PPIs and performed

logistic regression on a dataset of 2,660 protein complexes to optimize the individual weights

of the SurfS score for each component, shape and electrostatics.

The SurfS score is defined as follows:

SurfS ¼
1

1þ exp ð13:79986756 � 14:64347448�SS þ 13:78594078 � ESÞ

The final SurfS score combines both properties into a single score scaled from 0 to 1, where

1 represents highly similar surfaces. A detailed explanation of the computation of the individ-

ual scores and the resulting SurfS score can be found in Materials and Methods. We note that

the developed surface similarity score can be straightforwardly converted to surface comple-

mentarity (SC) by inverting the normal vectors of the reference surface. Complementarity has

been typically used to evaluate PPIs and was first demonstrated by Lawrence and Coleman for

molecular shapes [19].

Fig 1. Computation of the surface similarity score (SurfS). Protein surface is converted into a point cloud where

each point is used to compute shape and electrostatic features. To compute the SurfS score, all individual points of the

point clouds are compared and the shape similarity value is derived from closest points of the two surfaces in space

while electrostatic similarity is evaluated by correlation analysis of the electrostatic potentials of both surfaces.

https://doi.org/10.1371/journal.pcbi.1009178.g001
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Surface-centric protein design protocol

We developed the RosettaSurf design protocol, as part of the RosettaScript software environ-

ment [34], which utilizes the described surface scoring function during the sequence sampling

stage of the design process to bias the selection of amino acids and rotamers towards a desired

surface configuration in terms of geometric and electrostatic properties (S1 Fig). Thereby, it is

possible to design proteins for function without relying on protein grafting but by optimizing

the molecular surface, for instance, to mimic a given active site.

With the RosettaSurf design protocol we explicitly optimize molecular surface features dur-

ing the protein design process. In practice, RosettaSurf performs sequence design in a way

where the mutable surface of the design scaffold (target) is optimized to closely match the sur-

face features of a reference protein (reference) (S1 Fig). To efficiently explore the sequence

space during the design process, Monte Carlo simulated annealing guides the optimization of

rotamers, where substitutions of residues are scored based on the resulting surface and

accepted if they pass the Monte Carlo criterion that is implemented as the SurfS score.

To reduce computational time spent on rotamer sampling in a combinatorial fashion on

the overall surface, we implemented a single amino acid scanning surface-centric protein

design approach (RosettaSurf-site). This protocol samples amino acids individually at each

position of the design surface, selects the top three rotamers according to the surface and sam-

ples those combinatorially with other designable positions, reducing the combinatorial

possibilities.

In our benchmark studies we sought to compare the developed surface-centric design pro-

tocol, RosettaSurf, to state-of-the-art macromolecular design approaches implemented in

Rosetta. The Rosetta energy function has been parametrized to evaluate and optimize the

energy of many different aspects of molecular interactions (e.g. protein stability, protein-

ligand, protein-protein and protein-nucleic acids, etc.); it contains both statistical and physics-

based terms, being calibrated using a discrete atomic representation of the molecules. This

type of optimization has been particularly successful for the design of novel sequences that fold

into defined protein structures. However, to design proteins that display defined motifs which

can perform biological functions has proven to be difficult. By focusing the design process on

the areas where molecular interactions occur–the protein surfaces–novel approaches attempt-

ing to design function into proteins may represent new routes to address this problem.

Two types of metrics in surface comparison are considered: surface complementarity and

surface similarity. We show how the surface similarity score captures features of individual res-

idues and demonstrate the ability of the RosettaSurf protocol to recover amino acid sequences

of native protein interfaces. Furthermore, we highlight the performance of RosettaSurf for the

design of surface patches at protein interfaces.

Single amino acid recovery

To evaluate the accuracy of our design protocol, we performed a benchmark on the recovery

of single amino acids in native protein interfaces. The amino acid of interest is substituted by

each of the 19 amino acid identities, excluding cysteine as it can form covalent bonds in the

form of disulfide bridges, thus rendering the resulting surface dependent on the interplay of

two amino acids, and the surfaces of the substituted amino acids are compared to the surface

of the native rotamer (Fig 2A). These calculations are performed without the knowledge of the

native amino acid surface and this information is only used for the assessment of similarity

upon each substitution. For each amino acid type a dataset of 100 crystal structures of protein

complexes forming transient interactions was compiled, resulting in a total of 1,900 complexes

(for details see Materials and Methods). The energy computed by Rosetta, Rosetta Energy Unit
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(REU), serves as a baseline for comparison to the surface-centric design strategy. We evaluated

the recovery of the different amino acids for mutations made in the bound and unbound state

of the protein complex, respectively (Fig 2B). The recovery of an amino acid is deemed suc-

cessful when the native amino acid has the best score among all 19 amino acids and is uniquely

identifiable. In this benchmark we evaluated the performance of shape similarity, electrostatic

similarity and both combined in a surface similarity score. The surface similarity measurement

is highly accurate in identifying native amino acids in the bound state of the protein com-

plexes, showing consistently higher sequence recovery rates than Rosetta energy (Fig 2B).

Incorporating the electrostatic similarity term into the surface score generally results in a

boost in recovery rates over shape similarity alone, in particular for amino acids that have

Fig 2. Single mutant discrimination using surface similarity score in protein-protein complexes. A) Surface

similarity evaluation protocol for single amino acids. B) Recovery for all 19 considered amino acid types in bound

(top) and unbound (bottom) complex states, evaluated with four different metrics: SS (shape similarity), REU (Rosetta

energy unit), ES (electrostatic similarity), and SurfS (surface similarity). C) Average surface similarity score when

performing all-against-all amino acid comparison for bound (top) and unbound (bottom) complex states. The highest

mean SurfS score for every amino acid is highlighted.

https://doi.org/10.1371/journal.pcbi.1009178.g002
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close structural doubles but differ in chemical properties, e.g. glutamine and glutamate, as well

as, asparagine and aspartate (Fig 2B).

The Rosetta energy function shows the best recovery rates for amino acids with unique

features on their side-chains, i.e. glycine and proline. However, even for these cases, surface

similarity outperforms the recovery by REU. A similar trend can be observed for the

unbound complexes, although the general success of retrieving the native amino acid

decreases for certain amino acids. This trend is most obvious for polar residues and large

side chains (e.g. arginine, lysine, or methionine) that have access to a variety of different

rotamer conformations as the lack of the binding partner allows a larger conformational

space for different rotamers to be explored. For these types of amino acids, the sequence

recovery rate is higher in the bound conformation as the presence of the binder restricts the

possible rotamer space that can be explored, especially for highly exposed residues (S2A and

S2B Fig). A similar degradation in performance can be observed for tyrosine, phenylalanine,

and histidine in the unbound benchmark case. These amino acids share common surface

signatures according to our score (Fig 2C), complicating their recovery which is amplified

in the unbound benchmark cases.

Moreover, the surface similarity scores retrieved from an all-against-all amino acid compar-

ison demonstrate the high accuracy by which most amino acids can be identified (Fig 2C).

Here, we computed mean surface similarity values for all substitutions tested, i.e. for each

native amino acid across the 100 protein complexes we computed the similarity of all other 19

amino acids to the native one on average. The results show that each of the 19 amino acids is

generally most similar to itself, demonstrating that the method can accurately distinguish

between the different amino acid types. Notable exceptions are residues that share similar geo-

metrical features, e.g. phenylalanine and histidine or tyrosine.

Close inspection of the considered surface of a single amino acid demonstrates the local

precision of the surface similarity score (S3 Fig). Small off-rotamer deviations are captured on

the point cloud and are specific for the mismatching surface area. These results indicate that

the surface similarity score is sensitive to small differences in the comparison of two surface

point clouds. Overall, these results clearly show that the developed surface similarity score can

capture local differences in surfaces providing the basis for the evaluation of differences

between full surface patches.

Protein interface sequence recovery

Having shown that the implemented surface similarity score is sufficiently accurate to recover

individual amino acids, the following benchmark expands on recovering entire surface patches

in protein interfaces. We evaluated the ability of our surface-based sequence design protocols

(RosettaSurf and RosettaSurf-site) to recover natural protein interfaces as a gateway for the

design of proteins endowed with biochemical function. By focusing on protein interfaces, the

correct sequence does not solely depend on minimizing the Rosetta scoring function, but

rather needs to represent the surface properties of the interface site. While such design sce-

nario has limited applicability for the de novo design of protein-protein interactions, it is

important for applications in the domain of immunogen design for vaccine development

where the surface mimicry of known surfaces (neutralizing epitopes) is critical for the biologi-

cal activity of this type of design [28,30–32].

In this benchmark we considered nine protein-protein complexes forming transient inter-

actions (for details see Materials and Methods), grouped into three categories (low comple-

mentarity, high complementarity, antibody/antigen), and evaluated the performance by

assessing sequence recovery (Fig 3A). We compared three different design approaches:
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1. Standard Rosetta design (FixBB)

2. Surface-centric design (RosettaSurf)

3. Single-site-scanning surface-centric design (RosettaSurf-site)

All protocols operate on fixed backbones of the protein complexes that are presented in the

native conformation that mediates the interaction. Consequently, the sequence recovery suc-

cess will largely depend on side-chain placement in a given backbone. The surface-centric

design approaches are compared to the standard FixBB Rosetta design protocol, using the

ref2015 scoring function [35]. In the presented benchmarks, the Rosetta FixBB design protocol

serves as baseline to assess the impact of surface-centric design on sequence recovery.

In a first step, the target protein’s interface is stripped off its native sequence by mutating all

interface residues to alanine. Second, the different design protocols were employed on the

interface positions with FixBB using the Rosetta energy function to select mutations while

Fig 3. Sequence recovery of protein interfaces. A) Sequence recovery benchmark pipeline. Sequences in the

interfaces of protein-protein complexes are evaluated in the presence and absence of the binding partner. The tested

complexes were grouped into interfaces with low and high shape complementarity, and antibody-antigen complexes.

Surface-centric design (RosettaSurf and RosettaSurf-site) is compared to a standard structural protein design protocol

(FixBB). B) Interface sequence recovery of the complete dataset. C) Sequence recovery of low shape complementarity

interfaces. D) Sequence recovery of high shape complementarity interfaces. E) Sequence recovery of antigen-antibody

complexes. Dashed lines represent median and triangles represent mean recovery values.

https://doi.org/10.1371/journal.pcbi.1009178.g003
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RosettaSurf was guided by our surface similarity scoring term (Fig 3A). RosettaSurf was there-

fore provided with the native protein surface that we aimed to mimic as reference surface, thus

actively optimizing towards that given native surface during the design process. With this

setup it is possible to evaluate the sensitivity of the SurfS score to recover native amino acids

compared to a known ground truth. This is in contrast to the single amino acid recovery

benchmark where the reference surface solely served as comparison to evaluate the similarity

of the native surface and the surface resulting from the mutation without affecting the amino

acid change itself.

All different design protocols were employed for the bound and unbound states of the pro-

tein complexes and results are reported by their category as mean sequence recovery rate (Fig

3A). Overall, sequence recovery rates were higher for surface-centric design pipelines while

standard Rosetta sequence design showed lower recovery rates regardless of the presence of

the binder (Fig 3B). For all studied complexes, RosettaSurf and RosettaSurf-site outperformed

FixBB by 36–39 percentage points in the unbound and 30–31 percentage points in the bound

state. As expected, sequence recovery was in general more successful in the presence of the

binding partner due to the reduced number of possible side-chains and rotameric conforma-

tions. However, even in the presence of the binder, surface-centric design can be applied to

improve results. FixBB demonstrated improved performance for the antibody/antigen test set,

however, the surface-centric protocols still reached better results that were comparable to the

other categories. Worth noting is the 100% sequence recovery success of RosettaSurf-site for

the D8 protein-vv138 antibody complex. The FixBB protocol performed slightly better for

low-complementary (55%) than for high-complementarity complexes (48%), while Rosetta-

Surf and RosettaSurf-site resulted in similar recovery rates of ~85% in both cases with the

notable exception of RosettaSurf-site for low-complementarity complexes. Here, RosettaSurf-

site was able to recover 92% of the sequence and for one complex of that category, the Entero-

toxin G–T-cell receptor complex, even 100%.

Furthermore, we analyzed more closely outlier decoys, i.e. structures that scored high in

surface similarity but showed only little sequence recovery when designing with RosettaSurf.

We set a threshold of up to 50% as low recovery and a SurfS score of greater or equal to 0.9992

as this value marks the lower end of structures with high sequence recovery (> = 70%), leading

to one candidate from the RSV epitope-scaffold-Motavizumab complex. When investigating

which types of amino acids were common failures, we identified general geometric resem-

blance as likely reason. Several amino acids are frequently replaced by structurally similar resi-

dues, e.g. isoleucine by valine and lysine by arginine.

As for sequence recovery without the binder, RosettaSurf and RosettaSurf-site performed

better for complexes of low shape complementarity with 81% and 80% recovery, respectively.

However, sequence recovery obtained for high-complementary interfaces reached 66% for

RosettaSurf and 68% for RosettaSurf-site. For antibody/antigen complexes we observed 76%

for RosettaSurf and 66% for RosettaSurf-site. All these performances were substantially higher

than those of FixBB, that reached 25% and 45% for high-complementary and antibody/antigen

complexes, respectively.

In addition, we investigated possible reasons for structures with low sequence recovery but

high surface similarity scores. We adjusted the selecting criteria to structures with< = 30%

sequence recovery and> = 0.9996 SurfS score, observing similar results as for the bound

benchmark. Four structures, all from the Colicin E9-IM9 complex fulfill these criteria. Again,

mainly amino acids with similar geometrical features were common mismatches between

recovered and native amino acids, e.g. phenylalanine, tyrosine, and histidine, aspartatic acid

and asparagine, as well as valine and threonine.
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Overall, similar performance of RosettaSurf and RosettaSurf-site showed that performing

the combinatorial sampling of all possible rotamers simultaneously was not necessary. During

the RosettaSurf-site pipeline amino acids were sampled individually at each design position

and only a subset of the amino acids was used for combinatorial sampling based on the surface

similarity score, resulting in similar recovery outcomes. Furthermore, despite small differences

in the sequence recovery rate between the three selected categories of protein complexes, over-

all no strong correlation between the shape complementarity of the considered complexes and

the success in sequence recovery could be observed. We considered groupings based on differ-

ent metrics, namely total interface area, hydrophobic interface area, and number of recover-

able positions. No correlation with sequence recovery was observed for these different

properties (S4 Fig). Additionally, we grouped the complexes based on their proportion of

amino acids with access to diverse rotamer conformations to the total number of residue posi-

tions considered during the recovery. A weak correlation could be observed between reduced

recovery rate and higher numbers of flexible amino acids (S4 Fig), in line with the results from

the single amino acid recovery benchmark (Fig 2B). Together, these results suggest that the

proposed method is largely independent of the provided protein structure.

Our results have thus implications for the design of functional proteins as the high success

of recovering natural protein interfaces may be promising for the design of proteins displaying

defined surface properties, as is the case for immunogen design.

Computational SSM screening to improve protein binding

A common problem in protein design is the optimization of PPIs to generate high affinity pro-

tein binders. Experimental screening methods, e.g. site-saturation mutagenesis (SSM) and

combinatorial libraries, provide insights into mutations that improve binding interactions but

are time and resource-consuming experiments. While in silico saturation mutagenesis has

been used previously to identify stabilizing mutations or improve binding affinity, these

approaches were based on energy functions to identify beneficial mutations [36–40]. However,

to our knowledge, surface metrics have not been considered as sole selection criterion and

compared to experimentally determined mutations. Based on our observations in the sequence

recovery benchmarks, we tested if RosettaSurf-site could be a fast and efficient computational

screening alternative to experimental based approaches. We studied the optimization of de
novo designed interleukin-2/15 antagonists that bind specifically to the IL-2Rβγc receptor

[41]. The computationally designed interleukins were optimized for binding to the interleukin

receptor by performing SSM followed by combinatorial libraries based on the identified muta-

tions. The described study did not only report sequence information but included additional

structural characterization of the resulting design, thus allowing a fair comparison to our

computational method. This level of data completeness is rare in many other design endeavors

that have used this type of optimization strategy [42,43].

We performed RosettaSurf-site similar to the approach described above (see “Protein Inter-

face Sequence Recovery”), however, with the selection criteria being shape complementarity of

the design and IL-2Rβγc interface rather than similarity as shape complementarity has been

shown to be a key feature of high affinity binding interactions [44]. RosettaSurf-site allows

exhaustive computational sampling of amino acids similar to SSM experiments, screening all

possible amino acid substitutions at the interface of the interleukin design. Our study is based

on the reported crystal structure of the interleuking-2/15 design in complex with its cognate

receptor (PDB: 6DG5). We selected interface positions that were tested during SSM and later

included in the combinatorial library for our benchmark screening. Positions not interacting

with the receptor, i.e. not within a Cβ-distance of 7 Å, were excluded from the selection,
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resulting in a total of 18 positions that can be regarded as interface. From these 18 possible

interface residues, four positions were also present in the experimental library. One additional

position (residue 39) was included that lies at the boundary of the interface, within 9 Å of the

receptor, and was tested in the experimental library, resulting in a total of five positions as

design input for our benchmark. In our design protocol, the five selected residues were sam-

pled with RosettaSurf-site and mutations were evaluated based on the shape complementarity

to the receptor surface. The computational results were compared to the composition of the

combinatorial library that was constructed based on the preceding SSM screening. We ana-

lyzed whether RosettaSurf-site was able to identify mutations that are present in the highest

affinity binder as well as the performance of the Rosetta energy function to retrieve similar

mutations. After performing all possible mutations with RosettaSurf-site, the four top-ranking

amino acids for each position were selected (Fig 4), in line with the maximum number of

amino acids included in the combinatorial library.

RosettaSurf-site recovered four out of the five mutations present in the best design, with

residue 39 being at the edge of the interface and contributing minimally to the protein-protein

interaction, thus making it more challenging for this approach. Four additional residues

included in the combinatorial library were recovered, that were observed to improve binding

in the SSM but were not present in the highest affinity binder. In contrast, selecting mutations

based on Rosetta energy alone recovers only a single mutation observed in the best binder and

two residues present in the combinatorial library. These results show the potential of surface-

based design of single point mutants as fast and promising approach to select candidates for

combinatorial libraries to improve binding interactions without requiring preceding screening

experiments like SSM.

Surface-centric design of a novel RSV site 0 immunogen

In recent years, protein design has shown promising results in the field of immunoengineer-

ing, allowing the computational design of epitope-focused immunogens that were shown to

elicit functional antibody responses in mice and non-human primates [28,30,31,45]. To

achieve an epitope-specific immune response, the epitope is transplanted from the viral

Fig 4. Comparison of SSM data obtained for the designed interleukin-2/15 antagonists in comparison to

RosettaSurf-site predictions. The structure highlights the five selected positions of the interleukin design that were

computationally and experimentally sampled. Different sampling results of the experimental SSM, RosettaSurf-site

with SC, and Rosetta’s energy function are reported in the table. Mutations resulting in the experimentally reported

best binding design are highlighted in dark green. RosettaSurf-site was able to recover four out of five key binding

mutations (dark green) while evaluating mutations with Rosetta’s energy function could only retrieve one binding

mutation at position 98. Additionally, RosettaSurf-site was able to recover four affinity improving mutations not

present in the best binding design, whereas Rosetta’s energy function could identify only two of these mutations (light

green).

https://doi.org/10.1371/journal.pcbi.1009178.g004
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antigen to an unrelated small protein scaffold, presenting the antigenic site in isolation. We

applied the RosettaSurf protocol to the design of immunogens mimicking the antigenic site 0,

an epitope on the F-glycoprotein of Respiratory Syncytial Virus (RSV) which consists of an

irregular α-helix and a 10-residue long loop. Previous studies have shown that identifying scaf-

folds that can present such complex structural motifs is challenging, and specifically for site 0

they are currently not available in the known structure space. De novo design methods have

been successfully used to build scaffolds from scratch [31,32], but the design process remains

challenging and expertise in de novo protein design is critical. The RosettaSurf approach allows

to rescue protein scaffolds that only present partial structural matches to the epitope structure

motif.

As a demonstration of the use of RosettaSurf to transplant the epitope site into an unrelated

scaffold, a two-step strategy was employed: 1) side chain grafting of the α-helical segment onto

a small, monomeric protein scaffold (Fig 5A); 2) RosettaSurf design of the remaining antigenic

site, including the surface generated by the epitope loop and transition to the helical fragment

Fig 5. Surface centric design of a viral antigenic site present the in RSVF. A) Design process of site 0-mimicking

protein scaffolds. Starting scaffolds are selected from the PDB based on structural alignments with the epitope helix.

The surface mimicking designs are generated by grafting the side chains of the helix segment of the epitope onto the

scaffold and surface-centric design is employed to optimize the loop region. Before and after design of the surface

compared to native site 0. Blue areas indicate high similarity. B) Mimicry of surface geometry of WT scaffold,

RSV_FixBB, and Surf_03 designs compared to native site 0. C) Representative SPR measurements of Surf_03 and

RSV_FixBB against site 0-specific antibodies D25 and ADI14496. D) Binding profiles of Surf_03, a FixBB designed

protein, and a helix-only design against a panel of site-specific antibodies with green indicating binding and red cells

corresponding to non-binding. A knockout mutant of Surf_03 and the WT protein binding profiles are listed as

reference.

https://doi.org/10.1371/journal.pcbi.1009178.g005
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(Fig 5A). The grafted helical segment serves as anchor point around which the surface can be

optimized to mimic the complete antigenic site.

We identified the NarX histidine kinase receptor (PDB: 3EZI) [46] as promising scaffold.

The small, monomeric protein can accommodate the epitope α-helix (Cα RMSD: 0.4 Å) and

offers a sufficiently large surface area around the helix to be optimized with RosettaSurf. We

generated 760 designs using the RosettaSurf pipeline and the site 0 surface, as observed in

complex with site-specific antibody D25 [47], as a sequence optimization target. The best

design was selected based on the highest surface similarity score and was further optimized

with six mutations (Surf_03). First, five point mutations, which were not part of the interface,

were introduced to resolve clashes between native scaffold and epitope residues in the α-helix

as well as steric hindrance with residues introduced during surface-centric design. In addition,

we mutated a polar residue in the binding pocket to a hydrophobic residue based on the

sequence profile of the top 20 surface-designed decoys.

Two additional variants of the same protein scaffold were designed to test whether there

were advantages in using RosettaSurf. One design containing only the α-helix of site 0

(RSV_helix) and three point mutations that resolve clashes with the side chain grafted epitope

helix, similar to Surf_03. The second design was generated with FixBB (RSV_FixBB), starting

with side-chain grafting of the epitope α-helix, and allowing to design the same amino acid

positions as those of Surf_03. The RosettaSurf design (Surf_03) reaches a surface similarity

score of 0.45 compared to the antigenic site in the native viral protein RSVF, while the native

scaffold scores 0. The helix-grafted base-design scores 0.06 and the RSV_FixBB design 0.04 in

surface resemblance.

To test experimentally our predictions, the designs were expressed and purified, and the

binding affinities were measured using a panel of monoclonal antibodies that engage the site 0

epitope (Fig 5B) [31,47,48]. In essence, this panel of monoclonal antibodies (mAbs) was used

as conformational probes to assess the surface mimicry presented by the designs. We com-

pared the binding profiles of the three designs, a negative control (Surf_03 KO) and the WT

scaffold using surface plasmon resonance (S5 Fig). All three designs bound to the D25 and

ADI19009 mAbs, indicating that these mAbs mostly rely on the helical segment of the epitope.

Surf_03 was the only design recognized by two additional antibodies (ADI14496 and

ADI18900), indicating that the higher surface mimicry achieved through RosettaSurf design

improves the presentation of the antigenic site and promotes binding of additional site-specific

antibodies. The designed immunogen demonstrates RosettSurf’s capabilities to sculpt protein

surfaces with a high degree of accuracy which could be of use to introduce functional sites into

protein scaffolds by optimizing the molecular surface.

Discussion

In this work we propose a surface-centric protein design approach and demonstrate its accu-

racy in several in silico benchmarking and experimental design tasks. The protocol can either

be used to optimize surface similarity or surface complementarity depending on the design

task at hand.

Our ideas to leverage the surface geometrical and chemical features stem from observations

that surfaces displaying similar patterns can have similar functional roles (e.g. in PPIs

[1,11,14,49]). Technically, our framework is derived from earlier work by Lawrence and Cole-

man that introduced a fast and efficient way to evaluate shape complementarity as well as

work by McCoy et al. that addressed electrostatic complementarity in interfaces. Based on

some of these principles, we further implemented a surface similarity score to evaluate both

shape and chemistry of surfaces. The resulting surface similarity score is implemented with a
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focus on surface-centric protein design pipeline, allowing easy interaction and modification of

the algorithm inside Rosetta design protocols.

We showed the high accuracy of the surface score in recovering single amino acid identities

by their surface properties and show its benefit when used in conjunction with the Rosetta

energy score. Further, we highlight the use of surface similarity score inside a Monte Carlo

sampling approach and its performance in the sequence recovery of complete protein inter-

faces. The incorporation of surface similarity clearly increases sequence recovery rates relative

to other scoring schemes.

This approach can be readily applied for the design of experimental combinatorial libraries

to reduce library sizes, as the high sequence recovery rates suggest that surface-centric design

is especially interesting to design novel proteins that mimic surface patches of other proteins,

as it is the case for the design of novel immunogens for vaccine development [30–32].

We demonstrated that surface-centric design could be used to generate targeted libraries to

optimize binding specificity of a previously reported IL-2 design [41]. With the ranking of all

mutations, we were able to recover amino acid variants that were also obtained by experimen-

tal screening through a saturation mutagenesis library. This approach represents a straightfor-

ward computational screening method to detect mutations that modulate specificity and

affinity in protein-protein interactions. Specifically, this strategy is a fast and accessible alterna-

tive to experimental screening techniques.

The provided benchmarks highlight the protocol’s design capabilities when operating on

static backbones. However, the modelling of protein flexibility remains a challenge for compu-

tational methods at large. Due to RosettaSurf’s modular implementation within the Rosetta

framework, we anticipate that the protocol may perform well when working with conforma-

tional flexibility but will be dependent on the quality of the conformational ensembles gener-

ated by upstream methods.

Finally, we applied the surface-centric design protocol to engineer novel immunogens to

present the surface patch of an antigenic site present in the RSVF protein. We used a structur-

ally complex epitope (site 0 from RSVF), that consists of two structural segments, as an exam-

ple for structurally challenging sites that remain difficult for computational design approaches.

The surface-centric designs show a broader binding profile across a panel of monoclonal anti-

bodies as compared to other design approaches, suggesting that the surface presented is a

closer mimic of the native antigenic site.

Possible applications for surface-centric design range from the computational design of

highly specific protein-protein interactions, focusing on optimizing the surface complemen-

tarity both in shape and chemistry. While the herein presented examples work under the

premise of a known protein structure to be optimized for binding, an important related prob-

lem is the design of a target surface in the absence of a known backbone template. To our

knowledge, identifying backbones with compatible target surfaces remains an open research

question, however, we envision two approaches that can readily be combined with RosettaSurf.

One simplified approach could utilize a database of protein backbone scaffolds that could be

used as initial docking candidates and subsequently optimized with RosettaSurf to improve

complementarity towards the target. A second potential approach is to apply a recently devel-

oped geometric deep learning framework called MaSIF [14]. Due to its excellent speed, MaSIF

allows the comparison of a given surface to all surfaces in the PDB for their complementarity,

and this way identifying potential design templates that could be further optimized with

RosettaSurf.

In the scope of translational applications, surface similarity enables the computational

design of proteins that may recapitulate precise surface features of target surfaces, which could

then find applications in immunogen design, where surface similarity allows the design of
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immunogens mimicking an antigenic site of interest that could ultimately be used as probes

for antibody isolation or vaccine antigens.

Ultimately, we introduce a new conceptual approach in computational protein design

where the fine features of molecular surfaces are explicitly optimized. Through this route it

will now be possible to explore the tantalizing hypothesis of the existence of a “surface degener-

acy code”, which in some cases may allow to represent similar surface patches using very dis-

tinct sets of amino acids. Importantly, this capability could also enable the presentation of

similar surface patches in proteins with completely different backbone architectures which

could again realize many endeavors in functional protein design that are thus far out of reach.

Materials and methods

Surface similarity calculation

The described surface similarity (SurfS) score is composed of shape and electrostatic similarity

components. To evaluate surface shape similarity, two protein structures are first aligned and

the closest surface points between target and reference are identified. Next, the normal vectors

of the surface points are compared by first computing their dot product to obtain the enclosed

angle, followed by distance-based scaling that penalizes points that are far apart (Fig 1). Each

comparison yields a shape similarity score for the considered pair of points and the similarity

of the entire surface results from computing the mean of all pair-wise point comparisons.

Since the identification of closest points depends on the starting surface, the surface scores are

not identical depending on which structure is the considered the reference and the target and

thus the scores are computed in both combinations. A robust surface similarity score is

obtained by considering the similarity of the target surface compared to the reference surface

and vice versa, effectively averaging the shape similarity to correct for differences during the

selection of closest points.

To quantify surface electrostatics, the electrostatic potentials are computed over the contin-

uous electrostatic field and discrete charge values are assigned to every point of the surface

using the APBS software [50] (Fig 1). The representation of the target and reference surface

point clouds as vectors allows fast computation of Pearson’s and Spearman’s rank correlations

as described by McCoy and colleagues [20]. The resulting correlation coefficients capture the

similarity of the individual potential values as well as the overall trends in electrostatic similar-

ity of the two surfaces [18,20].

We combined both, the shape and electrostatic similarity scores, into a single SurfS score to

facilitate accurate description of molecular surfaces. To identify a set of optimal weights that

describe the relative contributions of the geometric and biochemical features towards the over-

all properties of the molecular surface, we aimed to derive weights from native protein sur-

faces. As our goal was to ultimately apply the SurfS score to design novel protein binders, we

focused on surfaces arising at the interface of PPIs.

The dataset of protein complexes was compiled from the PDBbind [51], the SAbDab [52],

and the Affinity Database versions 1.0 and 2.0 [53] databases, containing crystal structures of

transient PPIs. We used RosettaScripts to determine the frequency of each amino acid type

across all interaction interfaces. For each amino acid type (excluding cysteines) a total of 140

complexes (19 x 140 = 2,660 complexes) containing the respective amino acid in the interface

region were considered to allow for a balanced dataset with equal numbers of complexes for

each amino acid type and no distinctions were made based on rotameric conformations. All

possible point mutations to non-native amino acids were generated and their geometric and

electrostatic similarity to the native surface measured, resulting in a dataset containing shape

and electrostatic properties for each mutation. Logistic regression was applied to identify the
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optimal set of weights to combine shape and electrostatic features to optimize for the highest

recovery rates of the native amino acids. In total, the dataset contained 2,660 true positive and

47,880 true negative (18 x 19 x 140 = 47,880) data points. The dataset was split into training

and testing subsets, with the testing set containing 20% of the data. Logistic regression was per-

formed using Python’s scikit-learn library [54], with the model reaching an accuracy of 98%.

The resulting model parameters, i.e. an intercept of -13.79986756 and coefficients 1 and 2 with

-13.78594078 and 14.64347448 respectively, provide the weights to combine shape and electro-

static similarity measurements.

Benchmark datasets

The dataset of the single amino acid recovery benchmark consists of 1,900 protein complexes,

with 100 complexes for each amino acid identity except cysteine. All structures used during

the various benchmarks as well as the proteins used to generate the SurfS score were subjected

to constrained energy minimization in their complexed state using Rosetta to adapt them to

the Rosetta energy function and the resulting energy optimized decoy served as input for the

subsequent benchmark analysis. The protein complexes were randomly selected from the

same pool of transient PPIs used for the logistic regression analysis while ensuring that no

duplicated complexes were used for the logistic regression training and the single amino acid

recovery benchmark. We divided each of these protein complexes into target proteins, where

the interface can be mutated, and binders, the proteins that serve as context for the target. The

interface of the target protein is defined as residues that are within 7 Å Cβ-distance of the

binder and have the Cβ-atom pointing towards the binder. This selection ensures that the

amino acid side chains are part of the interface and the contribution of the residue to the bind-

ing interaction is not solely due to backbone interactions. The full target interface is converted

to alanine, effectively removing any side chain memory of the native structure that would

restrict the placement of new rotamers and introduce biases towards the native sequence. Cys-

teine residues are ignored as they can form chemical linkages in the form of disulfide bonds,

thus generating a surface that is not attributable to an individual residue.

To test the performance of the surface scoring function we sought to perform a benchmark to

evaluate sequence recovery at the interfaces of protein-protein interactions with varying shape

complementarity. We assembled a diverse dataset consisting of nine protein complexes capturing

different aspects of PPIs and grouped them into three different categories: 1) low-shape comple-

mentary interactions which include Enterotoxin G–T-cell receptor complex (PDB: 3MC0) [55],

Ribonuclease A in complex with its inhibitor (PDB: 1DFJ) [56] and domain 2 of VEGFR1 in

complex with PIGF (PDB: 1RV6) [57]; 2) High-shape complementarity interactions which

include the complex between Colicin E9 and IM9 (PDB: 1EMV) [58], Bovine beta-trypsin in

complex with CMTI-I (PDB: 1PPE) [59] and PD-L1 in complex with a nanobody (PDB: 5JDS)

[60]; 3) antigen-antibody interactions which include HIV-gp120 in complex with CD4-binding

site antibody b13 (PDB: 3IDX) [61], RSV epitope-scaffold in complex with Motavizumab (PDB:

4JLR) [28] and the Vaccinia virus D8 protein in complex with the antibody vv138 (PDB: 6B9J)

[62]. The shape complementarity of the complexes in the first two categories was assessed by the

Rosetta shape-complementarity filter. Protein complexes with a shape complementarity score

less than 0.65 were classified as low-complementarity. During the benchmark analysis we distin-

guish between bound and unbound proteins, where unbound proteins are obtained by removing

the protein binder from the holo-crystal structure.

Data analysis was performed with the help of the rstoolbox Python library [63].
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Computational design of proteins mimicking the antigenic site 0 in RSV

The structure of antigenic site 0 was extracted from the crystal structure of prefusion stabilized

RSVF in complex with antibody D25 (PDB: 4JHW) [47]. The D25 epitope consists of an irreg-

ular α-helix (residues 196–209) and a 10-residue loop (residues 61–70). To identify putative

scaffolds, we performed a structural search based on the irregular α-helix against 55,574

monomeric, helix-containing crystal structures from the Protein Data Bank (PDB, from Sep-

tember 2015) using Rosetta’s MotifGraft algorithm [64]. Matches were filtered at a backbone

RMSD threshold below 0.55 Å and less than ten atomic clashes at the interface, resulting in 13

scaffold candidates. After visual inspection, we selected the NarX histidine kinase receptor

(PDB: 3EZI) [46] as scaffold, a 107-residue long, monomeric protein that aligned to the epi-

tope helix with a Cα RMSD of 0.4 Å and provided additional surface area to mimic the entire

antigenic site.

In a first step, we transplanted the side chains of the epitope helix contacting the D25 antibody

onto the selected scaffold using MotifGraft, followed by the introduction of three mutations on

the protein scaffold that were not part of the interface to resolve steric clashes with the transferred

side chains, resulting in the design RSV_helix. Subsequently, we performed surface-centric design

on 19 residues using the RosettaSurf pipeline to increase surface mimicry of the site 0 around the

epitope helix, resulting in 760 design decoys. Surface-centric design was performed in the pres-

ence of the D25 antibody and site 0 of RSVF served as a reference to which our designed surface

was optimized. We selected the decoy with the highest surface mimicry score, named surf_01,

and optimized the design in additional steps. To allow accurate display of the designed surface,

we introduced two point mutants in the scaffold adjacent to the optimized surface patch to avoid

steric hindrance (surf_02). Lastly, after comparing the similarity of surf_02 and the native anti-

genic site, we identified a lysine residue at position 18 in our design with suboptimal mimicry.

Evaluating the sequence profile of the 20 best scoring decoys sorted by surface mimicry revealed

a strong preference for leucine at this position and the residue was incorporated into a new

design (Surf_03). Finally, we designed a version of RSV_helix that used Rosetta’s fixed-backbone

design (FixBB) to serve as comparison to our surface-optimized designs. We designed 1’000

decoys in the presence of D25 antibody, allowing mutations to occur at the same 19 residues as

was the case for RosettaSurf design. All designs converged to an identical sequence which was

selected as design RSV_FixBB. Based on Surf_03 we designed a knockout mutant (Surf_03_KO)

with a N74Y mutation in the epitope helix.

Protein expression and purification

Designs. Genes for all designs were purchased as DNA fragments from Twist Bioscience,

and cloned into pET11 vectors, containing a N-terminal MBP-tag and His-tag as well as a TEV

cleavage site, for bacterial expression. Plasmids were transformed into E. coli BL21 (DE3

pLysS) (Merck, #69451–3) and grown overnight in LB media at 37˚C. Pre-cultures were

diluted 1:50 and inoculated to an OD600 of 0.6 in terrific broth (Condalab, #PRO1246.05) at

37˚C and expression was induced by the addition of 1 mM isopropyl-β-D-thiogalactoside

(IPTG). Cultures were harvested after 18–20 hours at 20˚C. Pellets were resuspended in lysis

buffer (50 mM Tris, pH 7.5, 500 mM NaCl, 5% Glycerol, 1 mg/ml lysozyme, 1 mM PMSF, and

1 μg/ml DNase) and sonicated on ice for a total of 12 minutes, in intervals of 15 s sonication

followed by 45 s pause. The lysates were cleared by centrifugation (48’384 g, 20 min) and puri-

fied using a His-Trap FF column on an Äkta pure system (GE Healthcare), followed by size

exclusion on a HiLoad 16/600 Superdex 75 column (GE Healthcare) in phosphate-buffered

saline (PBS). Protein concentrations were determined by measuring the absorbance at 280 nm
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on a Nanodrop (Thermo Scientific). The designed proteins were concentrated by centrifuga-

tion (Millipore, #UFC900324) to 1 mg/ml, snap frozen in liquid nitrogen, and stored at −80˚C.

Antibody variable fragments (Fabs). For Fab expression, heavy and light chain DNA

sequences were purchased from Twist Biosciences and cloned separately into the pHLSec

mammalian expression vector (Addgene, #99845) using AgeI and XhoI restriction sites.

Expression plasmids were premixed in a 1:1 stoichiometric ratio, co-transfected into

HEK293-F cells, and cultured in FreeStyle medium (Gibco, #12338018). Supernatants were

harvested after 1 week by centrifugation and purified using a kappa-select column (GE Health-

care). Elution of bound proteins was conducted using 0.1 M glycine buffer (pH 2.7), and elu-

ates were immediately neutralized by the addition of 1 M Tris ethylamine (pH 9), followed by

buffer exchange to PBS (pH 7.4).

Binding affinity determination by surface plasmon resonance (SPR)

SPR measurements were performed on a Biacore 8K (GE Healthcare) with HBS-EP+ as run-

ning buffer (10 mM HEPES pH 7.4, 150 mM NaCl, 3 mM EDTA, 0.005% v/v Surfactant P20,

GE Healthcare) at room temperature. Approximately 700 response units (RU) of Fabs were

immobilized on a CM5 sensor chip (GE Healthcare) via amine coupling, and designed mono-

meric proteins were injected as analyte in two-fold serial dilutions. The flow rate was 30 μl/

min with 120 s of contact time followed by 400 s dissociation time. After each injection, surface

was regenerated using 0.1 M glycine at pH 3.5. Data were fitted using 1:1 Langmuir binding

model within the Biacore 8K analysis software (GE Healthcare #29310604).

Supporting information

S1 Fig. Schematic overview of the surface-centric design process. A surface patch is selected

on the target protein that will be subjected to mutations for improving surface features. A ref-

erence surface is specified and will be used during the design process to guide the introduced

mutations. During sequence design, rotamers are sampled in the selected interfaces of the tar-

get protein and for each substitution the surface is compared to the reference surface. If muta-

tions improve the surface score, the changes are accepted. During iterative sampling steps of

the selected surface patch, the overall surface can be improved.

(TIF)

S2 Fig. Recovery success of individual amino acid types. Case study of the recovery of argi-

nine in difficult and easily recoverable benchmark cases. A) Recovery of the exposed arginine

residue is unsuccessful in the unbound test case as a non-native rotamer is placed in the struc-

ture. The addition of the binding partner limits the accessible rotameric space and allows suc-

cessful recovery of the amino acid. B) Successful recovery of arginine independent of the

presence or absence of the binder as the native rotamer conformation is less exposed. Overall

side chain configurations placed in the bound benchmark cases are closer to the native rota-

mer (mean full-atom RMSD of ~0.4 Å) as compared to the unbound benchmark cases (mean

full-atom RMSD of ~2.3 Å).

(TIF)

S3 Fig. Impact of small changes in rotamers on the surface score. A small rotamer change

shown for lysine results in only a 0.8 Å all-atom RMSD change (left). When evaluating both

rotamers in terms of surface similarity, the SurfS score can discriminate the local changes. The

shape similarity score changes by 0.2 and the electrostatic similarity score by 0.5 units, result-

ing in an overall SurfS score of 0.989 when comparing both rotamers. The differences are spe-

cific for the altered region as shown for shape similarity (right) and outline the modified atom
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positions.

(TIF)

S4 Fig. Sequence recovery of protein interfaces grouped by different metrics. A) Sequence

recovery of interfaces from protein complexes grouped by the amount of flexible amino acid

side chains. The plot on the left site shows the overall sequence recovery for all complexes com-

bined under the three different design approaches, i.e. FixBB, RosettaSurf, and RosettaSurf-

site. The Flexible plot represents the sequence recovery rate of protein complexes whose inter-

faces consists at least of 40% amino acids with flexible side chains (PDB IDs: 1DFJ, 1EMV,

1PPE, 3MC0). The Static plot contains complexes with less than 40% flexible amino acids in

the interface (PDB IDs: 1RV6, 3IDX, 4JLR, 5JDS, 6B9J). Amino acids were considered flexible/

static based on Scouras and Daggett’s observations on rotamer dynamics. Accordingly, we

assigned R, N, Q, E, H, K, M, and W as flexible and D, I, L, F, P, S, T, Y, V, A, and G as static

amino acids. Spearman rank’s correlation analysis shows a weak correlation of sequence recov-

ery rate and rotamer flexibility (ρ = -0.12, p = 5.58e-163), indicating that rotamers with higher

conformational flexibility are more difficult to recover. B) Sequence recovery of protein inter-

faces grouped by the median distance of closest surface points into low (median distance

d< 0.5; PDB IDs: 1EMV, 5JDS, 6B9J), medium (median distance 0.5� d< 0.6; PDB IDs:

1PPE, 3IDX, 4JLR), and high (median distance 0.6� d; PDB IDs: 1DFJ, 1RV6, 3MC0) groups.

C) Sequence recovery of protein interfaces grouped by interface area into low (A< 800 Å2;

PDB IDs: 3IDX, 3MC0, 5JDS), medium (800 Å2� A < 1000 Å2; PDB IDs: 1EMV, 1RV6,

4JLR), and high (1000 Å2� A; PDB IDs: 1DFJ, 1PPE, 6B9J) groups. D) Sequence recovery of

protein interfaces grouped by hydrophobic interface area into low (A< 600 Å2; PDB IDs:

1DFJ, 3MC0, 6B9J), medium (600 Å2� A< 810 Å2; PDB IDs: 3IDX, 4JLR, 5JDS), and high

(810 Å2� A; PDB IDs: 1EMV, 1PPE, 1RV6) groups. For all benchmark cases, the sequence

recovery is reported in the absence (unbound) and presence (bound) of the binder.

(TIF)

S5 Fig. Surface plasmon resonance measurements of designed proteins against five site 0

targeting antibodies. The surface designed protein (Surf_03) demonstrates the broadest bind-

ing reactivity, showing measurable interactions with antibodies D25, ADI14496, ADI18900,

and ADI19009. In contrast, a design containing solely the helical motif (RSV_helix) of the site

0 epitope interacts only with D25 and ADI19009. Similar results are obtained for a Rosetta-

designed variant (RSV_FixBB), binding to D25 and ADI19009. Controls in the form of a KO

mutant of design Surf_03 (Surf_03 KO) and the wild type protein (WT) show no measurable

binding, indicating that the observed interactions are specific for the designed epitope sites.

(TIF)

Acknowledgments

We would like to thank Pablo Gainza, Fabian Sesterhenn, Che Yang, and Sarah Wehrle for

helpful discussions and support regarding in vitro experiments. We thank Sailan Shui, Freyr

Sverrisson, and Arne Schneuing for comments on the manuscript. We also thank Luki Gold-

schmidt and Brian Coventry for implementing the shape and electrostatic complementarity

evaluation within Rosetta, respectively. Additionally, we would like to acknowledge the high-

performance computing facility (SCITAS) for their technical support. We would also like to

acknowledge the Swiss National Supercomputing Centre (CSCS) for their support in comput-

ing time.

PLOS COMPUTATIONAL BIOLOGY RosettaSurf—A surface-centric computational design approach

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009178 March 16, 2022 19 / 23

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1009178.s004
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1009178.s005
https://doi.org/10.1371/journal.pcbi.1009178


Author Contributions

Conceptualization: Andreas Scheck, Bruno E. Correia.

Data curation: Andreas Scheck.

Formal analysis: Andreas Scheck, Stéphane Rosset, Michaël Defferrard, Andreas Loukas.

Funding acquisition: Pierre Vandergheynst, Bruno E. Correia.
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