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Abstract

As a chemical transmitter in the mammalian central nervous system, nitric oxide (NO) is still thought a bit of an oddity, yet this role
extends back to the beginnings of the evolution of the nervous system, predating many of the more familiar neurotransmitters. During
the 20 years since it became known, evidence has accumulated for NO subserving an increasing number of functions in the
mammalian central nervous system, as anticipated from the wide distribution of its synthetic and signal transduction machinery within
it. This review attempts to probe beneath those functions and consider the cellular and molecular mechanisms through which NO
evokes short- and long-term modifications in neural performance. With any transmitter, understanding its receptors is vital for
decoding the language of communication. The receptor proteins specialised to detect NO are coupled to cGMP formation and provide
an astonishing degree of amplification of even brief, low amplitude NO signals. Emphasis is given to the diverse ways in which NO
receptor activation initiates changes in neuronal excitability and synaptic strength by acting at pre- and ⁄ or postsynaptic locations.
Signalling to non-neuronal cells and an unexpected line of communication between endothelial cells and brain cells are also covered.
Viewed from a mechanistic perspective, NO conforms to many of the rules governing more conventional neurotransmission,
particularly of the metabotropic type, but stands out as being more economical and versatile, attributes that presumably account for
its spectacular evolutionary success.

Introduction

Research into nitric oxide (NO) signalling in the nervous system
continues to be fascinating and challenging. It emerged as a signalling
molecule in the brain 20 years ago following the search for a missing
transmitter that was generated in response to neuronal NMDA receptor
activation and caused cGMP generation in other cells (Table 1). Since
that time, NO has been implicated in many different neural functions.
In peripheral organs, including those of the digestive, respiratory and
urogenital tracts, NO performs a neurotransmitter-like role, being
released from nitrergic nerves to mediate smooth muscle relaxation
(reviewed in Rand & Li, 1995; Toda & Okamura, 2003; Toda &
Herman, 2005). In the vertebrate central nervous system (CNS), NO is
associated with many different behaviours, including learning and
memory formation, feeding, sleeping and male and female reproduc-
tive behaviour, as well as in sensory and motor function. Some of
these broad roles have been conserved through millions of years of
evolution, in some cases dating back to animals with the most
primitive nervous systems. In a type of jellyfish, for example, NO
evokes the rhythmic swimming pattern associated with feeding,
apparently by binding to receptors coupled to cGMP formation, much
like the receptors operating in mammals (Moroz et al., 2004). From
some of these early cnidarians through to insects and molluscs, a
principal function of NO is to regulate olfaction and feeding and their
related learning behaviours (see reviews by Davies, 2000; Moroz,
2001; Trimmer et al., 2004; Palumbo, 2005). Following this trend

through into mammals, common phenotypes of mice deficient in either
neuronal NO formation (Huang et al., 1993), or NO receptors (Friebe
et al., 2007) or a downstream protein kinase enzyme (Pfeifer et al.,
1998), are disturbances in gastrointestinal function.
There have been a large number of reviews during the last few years

on the roles of NO in many aspects of vertebrate CNS function,
including neurogenesis, neuronal differentiation and development
(Mize & Lo, 2000; Contestabile & Ciani, 2004; Estrada & Murillo-
Carretero, 2005), memory and other behaviours (Golombek et al.,
2004; Susswein et al., 2004; Argiolas & Melis, 2005; Del Bel et al.,
2005; Nelson et al., 2006), and neuropathology and ⁄ or neuroprotec-
tion (Dawson & Dawson, 1998; Contestabile et al., 2003; Keynes &
Garthwaite, 2004; Duncan & Heales, 2005; Blokland et al., 2006;
Zhang et al., 2006a; Calabrese et al., 2007). The present article
attempts to step inside the broader physiological roles of NO and,
taking advantage of the substantial recent progress in understanding
the cellular and molecular mechanisms it engages, to start to build a
picture of how it operates as a signalling molecule.

NO synthesis

Much is known about the mechanism of NO synthesis from
biochemical studies of the purified NO synthase (NOS) enzymes.
They are complex proteins found constitutively in two isoforms,
neuronal (nNOS) and endothelial (eNOS). The third, inducible, type
(iNOS) is rarely present normally but can be expressed in numerous
cell types (prototypically in macrophages, mainly in microglia in the
CNS) when subjected to immunological challenge. All three isoforms
generate NO from l-arginine but have distinct functional and
structural features (reviewed by Alderton et al., 2001; Stuehr et al.,
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2004). iNOS is usually linked with pathological situations and will not
be considered here.

nNOS

The first NO synthase to be purified and cloned (Bredt & Snyder, 1990;
Bredt et al., 1991b) and the most abundant isoform generally found in the
central and peripheral nervous systems is nNOSa, which is activated by
Ca2+ complexed with calmodulin and has a wide but uneven distribution
in the mammalian brain, resembling in extent that of a major neuro-
transmitter (Bredt et al., 1991a; Vincent & Kimura, 1992). The physical
association of nNOSa and the NMDA receptor subunit NR2B with
postsynaptic density protein-95 (PSD-95) through their specialised PDZ
domains (Brenman et al., 1996) helps explain the preferential linkbetween
NMDA receptors and NO production (Garthwaite, 1985; Garthwaite
et al., 1988). Other splice variants also exist, namely nNOSb and nNOSc,
both of which lack the amino terminal PDZ domain (Brenman et al.,
1996). nNOSc has little or no enzymatic activity but nNOSb is active and
is upregulated in the striatum and cortex in mice lacking the nNOSa
isoform (Eliasson et al., 1997; Langnaese et al., 2007), which probably
accounts for the relatively mild phenotype of such animals compared to
ones lacking the b and c variants as well (Gyurko et al., 2002).
In addition to regulation by Ca2+ ⁄ calmodulin, nNOS possesses

several putative sites for phosphorylation. Phosphorylation by cAMP-
and cGMP-dependent protein kinases, by protein kinase C and by
Ca2+ ⁄ calmodulin-dependent protein kinase (CaMK)II were reported for
the purified enzyme early on, but the effects on activity were generally
quite modest and sometimes contradictory (Nakane et al., 1991; Bredt
et al., 1992; Dinerman et al., 1994b). A resurgence of interest in this type
of post-translational regulation has come from research carried out on
cells. CaMKII, a co-resident with NMDA receptors and nNOS at
synapses (Kennedy, 2000), was found to phosphorylate the enzyme on
serine-847 and inhibit NO formation by �50%, probably by affecting
Ca2+ ⁄ calmodulin binding (Hayashi et al., 1999; Komeima et al., 2000).
When studied in cultured hippocampal neurones, glutamate had a dual
effect on nNOS phosphorylation on serine-847, increasing it at low
concentrations (5 lm) and decreasing it at the high concentrations more
usually associated with excitotoxicity (100 lm or more). Both were
mediated by NMDA receptors, with the phosphorylation blocked by
CaMKII inhibition and dephosphorylation by concentrations of okadaic
acid active on protein phosphatase 1 (Rameau et al., 2004). nNOS
phosphorylated on serine-847 was found to exist in rat brain (Hayashi
et al., 1999), indicating it to be a physiologically relevant modification.
In the cultured neurones, phosphorylated nNOS was concentrated in
dendritic spines but the phosphorylation process was slow, taking
15 min to be detectable (Rameau et al., 2004), suggesting that CaMKII
is likely to be not a dynamic regulator of nNOS activity but more a
longer-term gain controller.

The protein kinase Akt (also known as protein kinase B) phos-
phorylated nNOS in cultured cortical neurones on serine-1412
(Rameau et al., 2007). This site is equivalent to a key one in eNOS
(see below) and its phosphorylation was evoked by 5 min exposure to
low glutamate concentrations (5–30 lm) or by briefer periods (1 min)
at higher concentrations, after which dephosphorylation became
overwhelming. Serine-1412 phosphorylation was NMDA receptor-
dependent and led to a rapid enhancement of NOS activity (by how
much remains unclear), with dephosphorylation being dependent on
AMPA receptors and L-type Ca2+channels. Blockers of either of these
activities also enhanced serine-1412 phosphorylation in the absence of
glutamate, suggesting that Ca2+influx through L-type channels in
response to AMPA receptor-mediated depolarization tonically stimu-
lates phosphatases that regulate NMDA receptor-associated nNOS
activity. The presence of serine-1412-phosphorylated nNOS in a rat
brain lysate (Rameau et al., 2007) indicates that the modification
occurs in vivo and it may produce a stimulatory effect (as with eNOS;
see below) by increasing the sensitivity of nNOS to Ca2+ ⁄ calmodulin
(Adak et al., 2001; Rameau et al., 2007).
Phosphorylation of nNOS in neuroblastoma cells incubated with a

phosphatase inhibitor occurred on threonine-1296 resulting in an�50%
reduction in activity although a mutation mimicking threonine-1296
phosphorylation showed a stronger effect (Song et al., 2005). CaMKI
may inhibit nNOS activity though serine-741 (Song et al., 2004). No
evidence yet exists for phosphorylation of either of these sites in vivo.
In addition to phosphorylation, nNOS activity or its location may be

influenced by interactions with a number of proteins (Rodriguez-
Crespo et al., 1998; Billecke et al., 2002; Jaffrey et al., 2002; Dreyer
et al., 2004) but additional work is needed to clarify their functional
significance. Recent evidence indicates that nNOS can bind to the
serotonin transporter in the plasma membrane such that serotonin
uptake then couples to NO formation (Chanrion et al., 2007), a
hitherto unique ‘metabotropic’ transporter activity (Garthwaite, 2007).
These new findings suggest that the regulation of nNOS activity in

neurones ismore complex thanpreviously thought and suggest intriguing
options for cross-talk with other signalling pathways. Phosphorylation
may transpire to be at least as important for nNOS as it is for eNOS.

eNOS

Based on immunocytochemical staining, this isoform was originally
claimed to be present in neurones of the hippocampus (Dinerman
et al., 1994a; O’Dell et al., 1994) but later studies inferred that the
staining was artifactual (Demas et al., 1999; Blackshaw et al., 2003).
Its presence or otherwise in astrocytes remains unsettled, some finding
by immunocytochemistry or in situ hybridisation that only endothelial
cells in the brain were labelled (Seidel et al., 1997; Stanarius et al.,
1997; Topel et al., 1998; Demas et al., 1999; Blackshaw et al., 2003)

Table 1. Key papers leading to the identification of NO as a brain transmitter

Reference Main findings

Ferrendelli et al. (1974, 1976) Glutamate elicits Ca2+-dependent elevation of cGMP in brain slices; speculated
on an intervening transmitter

Arnold et al. (1977) and Miki et al. (1977) NO activates soluble guanylyl cyclase in brain homogenates
Deguchi & Yoshioka (1982) l-arginine identified as the endogenous activator of soluble guanylyl cyclase in brain extracts;

activation similar to that induced by NO-releasing agents
Garthwaite (1985) cGMP response to glutamate in dispersed brain cells mediated exclusively through NMDA receptors
Garthwaite & Garthwaite (1987) cGMP response to NMDA involves cell-cell communication; missing transmitter

presumed unstable and could be substituted by exogenous NO (from sodium nitroprusside)
Palmer et al. (1987) and Ignarro et al. (1987) Endothelium-derived relaxing factor (EDRF) in blood vessels identified as NO
Garthwaite et al. (1988) Brain transmitter identified as EDRF ⁄ NO; released Ca2+-dependently on NMDA receptor stimulation
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whereas others reported immunocytochemical evidence for astrocytic
eNOS (see the recent review of the literature by Lin et al., 2007). Tests
with eNOS-knockout mice would help determine whether the
astrocyte staining is specific or not. In the meantime, endothelial
cells are probably the major, if not the sole, location of eNOS in brain
tissue. Endothelial eNOS is of emerging relevance in the regulation of
brain function independently of its role in the vasculature (see below)
and it continues to be the subject of much research, not least because
of its importance in cardiovascular function and malfunction.

The controls over eNOS activity are multifarious (reviewed in
Cirino et al., 2003; Dudzinski et al., 2006). Catalytically active eNOS
in endothelial cells is largely tied to the plasma membrane by a lipid
modification (palmitoylation) and resides in specialised invaginations
(caveoli) in association with other proteins, including caveolin-1 and
heat-shock protein (Hsp)-90. Dissociation from caveolin-1 is required
for activity and is promoted by Ca2+ ⁄ calmodulin binding. Despite this,
eNOS is often tonically active in blood vessels, perhaps the most
important mechanism for sustaining the activity being phosphorylation
on serine-1179, enabling the enzyme to function at resting cytosolic
Ca2+ concentrations. The prototype kinase mediating serine-1179
phosphorylation is Akt, which is activated by phosphoinositide-3
kinase in response to stimuli such as shear stress, oestrogens, insulin
and vascular endothelial growth factor, but the same site is also
targeted by AMP kinase (in response to metabolic stress), protein
kinase C, cAMP- and cGMP-dependent protein kinases, and CaMKII.

NO receptors

The activation by NO of ‘soluble’ guanylyl cyclase in homogenates of
various tissues was discovered well in advance of any inkling that NO
was of biological relevance (Arnold et al., 1977; Miki et al., 1977), and
proved vital to the hypothesis that the endothelium-derived relaxing
factor was NO (Furchgott, 1999; Ignarro, 1999). It remains the only
recognized physiological NO signal transduction mechanism and
much evidence has accrued during the last several years confirming its
pre-eminence in transducing the actions of endogenous NO (Krumen-
acker et al., 2004), the most striking example of which being the
complete loss of NO-mediated vascular relaxation following genetic
deletion of NO-activated guanylyl cyclases (Friebe et al., 2007). The
homogenate-based name (soluble guanylyl cyclase) is still widely used
but it has little meaning in a cellular context, and was never meant
to (Chrisman et al., 1975). In reality, the proteins are enzyme-linked
receptors that, in cells, are often associated indirectly with membranes
(see below) and here they are simply called ‘NO receptors’.

In common with all other receptors, NO receptors are equipped with
a ligand binding site and a transduction domain but in many ways they
are especially fascinating. The ligand binding site is an unremarkable
haem group of the type used in haemoglobin for binding O2 but, when
incorporated into the receptor protein, it exhibits amazing preference
for NO, allowing cellular NO signalling to occur in the presence of
> 10 000-fold excess of O2, despite the close chemical similarity of
the two ligands (Stone & Marletta, 1994; Martin et al., 2006). NO
detection by protein-associated haems appears to have evolved in
certain bacteria and to have been incorporated into eukaryotic animals
by horizontal gene transfer (Iyer et al., 2003; Fitzpatrick et al., 2006).
The protein component is an ab-heterodimer of which there are two
known isoforms, a1b1 and a2b1. They comprise a haem-binding
region, a dimerisation domain and a catalytic domain where GTP is
converted to cGMP. The catalytic domain is very similar to that of
adenylyl cyclase, to the extent that switching three amino acids
converts NO-activated guanylyl cyclase into NO-activated adenylyl

cyclase (Sunahara et al., 1998). In the inactive state, the ligand-
binding haem group is coordinated to the protein by a histidine bond
(Wedel et al., 1994; Zhao et al., 1998) and, by analogy with adenylyl
cyclase, the catalytic domain in the inactive state is in an open
configuration (Dessauer et al., 1999). Binding of NO to the haem is
almost diffusion-limited (Makino et al., 1999; Zhao et al., 1999) and,
from structural studies on a homologous cyanobacterial NO sensor
(Ma et al., 2007), this event causes the haem to pivot which, together
with a dislocation of the coordinating histidine group, results in a
conformational change in the protein that propagates to the catalytic
domain, resulting in domain closure and catalysis.
When studied in a cell-free environment, the a1b1 and a2b1 NO

receptor isoforms are similarly sensitive to NO, half-maximal activity
being evoked at a concentration of �1 nm (Wykes & Garthwaite,
2004). Other properties, such as the maximal guanylyl cyclase activity
and pharmacological properties, also appear very similar (Russwurm
et al., 1998; Gibb et al., 2003) but whether this pertains to the proteins
in their natural environment is not known. The potency of NO for its
receptors in cells (EC50 = 10 nm) is an order of magnitude lower than
that of the purified protein (Mo et al., 2004; Roy & Garthwaite, 2006),
which is partly explained by the presence in cells of ATP (which,
although inhibitory, accelerates the kinetics) and a lower GTP
concentration than is typically used in biochemical assays (B. Roy,
E.J. Halvey and J. Garthwaite, unpublished observations). In brain
cells, NO switches on the associated guanylyl cyclase activity with no
observable delay (with a 20-ms sampling time) and, on removal of
NO, the activity decays with a half-time of 200 ms (Bellamy &
Garthwaite, 2001b), kinetics not dissimilar to that of NMDA receptors
or of metabotropic GABA or glutamate receptors (Dale & Roberts,
1985; Dutar & Nicoll, 1988; Batchelor & Garthwaite, 1997).
Although widespread, the two NO receptor isoforms have a

differing cellular distribution in the brain (Budworth et al., 1999;
Gibb & Garthwaite, 2001; Mergia et al., 2003; Szabadits et al., 2007)
and, at the subcellular level, may also have different locations because
the a2b1 receptor binds through its PDZ domain to proteins that are
enriched in synapses, namely PSD-95 and putatively also to the related
proteins PSD-93, SAP-97 and SAP-102 (Russwurm et al., 2001). The
other isoform, a1b1, may be cytosolic in part but there is evidence that
it too may become plasma membrane-associated under conditions of
raised intracellular Ca2+ (Zabel et al., 2002) or exposure to canna-
binoids (Jones et al., 2008). Membrane association may depend on
binding to Hsp-90 (Venema et al., 2003; Papapetropoulos et al., 2005;
Nedvetsky et al., 2008), Hsp-70 (Balashova et al., 2005) or other
proteins (Meurer et al., 2004). In homogenates, varying proportions of
total NO-activated guanylyl cyclase activity are found in membrane
fractions (Arnold et al., 1977): for example, in rat platelets, this
component amounts to 60% of the activity in the cytosol whereas, in
the cerebellum, it is half this amount (Wykes & Garthwaite, 2004). In
homogenates of platelets and cerebellum, NO was equipotent (EC50

�1 nm) on the receptors in supernatant and membranes (Wykes &
Garthwaite, 2004). The biological significance of the shuttling of a1b1
NO receptors to the membrane (and, presumably, back again) is
unknown. The linkage between a2b1 receptors and membrane-
associated synaptic proteins may position them within close range of
the sites of NO release, which would be particularly important if NO
signalling operates in discrete spatial dimensions (see below).
Conceivably, by placing the receptor closer to an NO source,
attachment of the a1b1 isoform to the outer cell membrane could
perform a similar function. In subcellular dimensions, this positioning
could make the difference between the receptors being accessible to
NO generated in a nearby cellular compartment and being out of range
(see below).
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As judged by immunocytochemistry of NO receptor proteins (Ding
et al., 2004) and of cGMP following exposure to NO sources
(Southam & Garthwaite, 1993; de Vente et al., 1998), NO receptors
are present to a greater or lesser extent throughout the CNS and have a
distribution complementary to that of nNOS, consistent with the two
being functional partners. A growing number of good pharmacological
tools targeting different sites are now available for manipulating NO–
cGMP signalling at the receptor level (Table 2). NO receptors are
potential substrates for phosphorylation by several kinases but
physiological regulation through such modifications remains to be
clarified (reviewed in Pyriochou & Papapetropoulos, 2005). Recent
evidence indicates that phosphorylation by cAMP-dependent protein
kinase enhances the associated guanylyl cyclase activity at resting
levels of NO in pituitary cells (Kostic et al., 2004) whereas, in
gastrointestinal smooth muscle cells, activation of muscarinic M2
receptors reduces cGMP generation through Src kinase-dependent
tyrosine phosphorylation of the receptor (Murthy, 2008).

Transduction of cGMP signals

Direct actions of cGMP can be exerted by binding to agonist or regu-
latory sites on cyclic nucleotide-gated (CNG) ion channels (reviewed in
Kaupp & Seifert, 2002) or hyperpolarization-activated, cyclic nucleo-
tide-modulated (HCN) channels (reviewed in Craven & Zagotta, 2006).
cGMP also binds directly to the phosphodiesterase (PDE) enzymes
PDE2, PDE5 and, in retinal photoreceptor cells, PDE6, resulting in
heightened catalytic activity and cGMP breakdown. cGMP is a low-
efficacy substrate for another PDE, PDE3, so that cGMP binding to the
catalytic site leads to inhibition of cAMP hydrolysis, potentially raising
cAMP levels (reviewed by Bender & Beavo, 2006). Probably the most
widespread mechanism employed by cGMP is activation of PKG,
which exists in three forms, PKG1a and PKG1b (splice variants) and
PKGII, which is anchored to the plasma membrane by myristoylation.
PKG1a is concentrated in cerebellum and dorsal root ganglia
and PKG1b in the hippocampus and olfactory bulb, whereas PKGII
has a more widespread distribution in the brain but shows a particular
abundance in the thalamus (reviewed in Feil et al., 2005; Vaandrager
et al., 2005; Hofmann et al., 2006). Several substrates for PKG have
been identified (reviewed in Schlossmann&Hofmann, 2005) and many
of its actions are exerted at the level of phosphatases, leading indirectly
to increased or decreased levels of phosphorylation of effector proteins.
Whilst traditionally acting intracellularly, cGMP is also found

extracellularly in the brain, where its levels fluctuate according to

changes in endogenous NO formation (reviewed by Vincent et al.,
1998; Pepicelli et al., 2004). cGMP can be exported from cells
through members of the multidrug resistance protein family (reviewed
by Sager, 2004) and might serve an additional intercellular signalling
role, consistent with evidence that extracellularly applied cGMP has
biological effects (Touyz et al., 1997; Poulopoulou & Nowak, 1998;
Montoliu et al., 1999).

Hydrolysis of cGMP

Most of the 11 known PDE families can hydrolyse cGMP, those with
the highest affinity being PDE1, 2, 3, 5, 6, 9, 10 and 11 (see review by
Bender & Beavo, 2006). Little is known about the PDE isoforms
responsible for cGMP hydrolysis in individual cell types, and there
may be mixtures at work. For example, cerebellar Purkinje cells all
appear to contain PDE5 but a subset additionally expresses a PDE1
isoform (Shimizu-Albergine et al., 2003); in cerebellar astrocytes
PDE5 is also prominent but PDE4, which has low affinity (> 100 lm)
for cGMP (�1 lm for cAMP), also contributes when cGMP reaches
high levels (Bellamy & Garthwaite, 2001a); in ventrobasal thalamic
neurones, on the other hand, PDE2 and putatively PDE9 appear most
important (Hepp et al., 2007); PDE2 also plays a major role in
hydrolyzing NO-evoked increases in cGMP levels in hippocampus
and striatum (van Staveren et al., 2001; Wykes et al., 2002; Boess
et al., 2004) whereas, in pituitary nerve terminals, PDE5 is again
significant (Zhang et al., 2007b). Suitably selective inhibitors, now
available for a number of PDEs, give a complementary strategy for
investigating NO receptor signalling at various levels, including in
memory performance in vivo (reviewed by Blokland et al., 2006).

Other transduction pathways

There are some examples of physiological NO signals being
transduced in a cGMP-independent manner in the nervous system
(Jacoby et al., 2001; Lev-Ram et al., 2002), implying the existence of
other NO receptors yet to be identified.
One chemical process that has been hailed by some as a

physiological NO signal transducing mechanism is the nitrosation of
protein thiol groups (see Stamler et al., 2001), or S-nitrosation (often
confusingly called S-nitrosylation; see discussion by Koppenol, 2002),
but this idea remains highly controversial. It is facile to evoke protein
S-nitrosation by exposing cells to high concentrations of nitrosothiols
(e.g. S-nitroso-N-acetylpenicillamine) which can transfer their NO

Table 2. Pharmacology of NO receptors

Class of agent Selected compounds (original paper) Comments

Inhibitors of ligand binding ODQ (Garthwaite et al., 1995) and
NS 2028 (Olesen et al., 1998)

Act by oxidising the haem iron, thereby inhibiting NO binding
(Schrammel et al.,1996); oxidation may predispose the receptors to haem
loss and then protein degradation (Stasch et al., 2006).

Allosteric enhancers YC-1 (Ko et al., 1994) and BAY
41-2272 (Stasch et al., 2001)

Potentiate NO-evoked activity by slowing the rate of deactivation
(Friebe & Koesling, 1998). YC-1 also affects cGMP hydrolysing
phosphodiesterases at similar concentrations to those active on the
receptor (Galle et al., 1999), whereas BAY 41-2272 is more selective
(but see Bischoff & Stasch, 2004; Mullershausen et al., 2004).

Ligand binding site (haem) mimetics Protoporphyrin IX (Ignarro et al., 1982),
BAY 58-2667 (Stasch et al., 2002)
and HMR1766, S3448
(Schindler et al., 2006)

Activate the haem-free species (Schmidt et al., 2004; Roy et al., 2008)
which normally appears to be a very small proportion of the total but
which can nevertheless evoke functional responses when engaged
pharmacologically. Protoporphyrin IX is a partial agonist and zinc
protoporphyrin IX an antagonist for this site; the haem-free receptor
targeted by the compounds may become more abundant in disease states
(Stasch et al., 2006).
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moiety onto other thiols, or to concentrations of exogenous NO that
produce nitrosating species on reaction with oxygen (e.g. N2O3), or by
unphysiologically exposing cells to a Ca2+ ionophore (reviewed by
Hogg, 2002), but there are no unambiguous instances of neural
function being regulated physiologically through this modification.
S-nitrosation of synaptic NMDA receptors was once advertised as a
negative feedback mechanism (Lipton et al., 2002) but, on experi-
mental testing, was found to be an artifact (Hopper et al., 2004).
Working with NO is undoubtedly difficult and experiments are
susceptible to various artifacts arising from unintended chemical and
biological reactions (reviewed in Keynes & Garthwaite, 2004). Even
seemingly innocuous ingredients, such as Hepes buffer, and conduct-
ing experiments using tissue culture media under normal laboratory
lighting conditions, can cause problems (Beckman & Koppenol, 1996;
Keynes et al., 2003). In vivo, S-nitrosation may occur mainly in
pathological states where the changed redox environment may
facilitate the appearance of species capable of converting thiols to
nitrosothiols (see review by Zhang & Hogg, 2005).

Another speculative physiological target for NO is mitochondrial
cytochrome c oxidase (Erusalimsky & Moncada, 2007), which reduces
O2 to water. NO can compete with O2 for binding to this complex and
thereby inhibit respiration but higher concentrations are needed than to
activate receptors, the EC50 value at physiological O2 concentrations
(20–30 lm) being 120 nm (Bellamy et al., 2002). In an in vivo
investigation, cytochrome c oxidase in brain was unaffected by
inhibition of NO production either before or after a period of ischaemia
(De Visscher et al., 2002) and, in in vitro studies on brain slices, the
prevailing NO concentrations appeared to remain in the low nanomolar
range or below (too low to affect mitochondrial respiration) despite
intense NMDA receptor activation (Bellamy et al., 2002; Keynes et al.,
2004), transient simulated ischaemia (Griffiths et al., 2002), or the
expression of active iNOS in microglia (Duport & Garthwaite, 2005).
Only by artificially increasing the numbers of activated microglia in
hippocampal slice cultures could NO receptors be seen to be saturated,
suggesting ambient concentrations in excess of 10 nm (Duport &
Garthwaite, 2005). Hence, mitochondrial inhibition by NO in the brain
may only become relevant under certain pathological conditions, for
example when iNOS is expressed in active inflammatory plaques in
multiple sclerosis (reviewed in Smith & Lassmann, 2002).

NO inactivation

It is often stated that NO does not need a specialised inactivation
mechanism because it is disposed of by virtue of its natural reactivity.
However, at the low nanomolar concentrations and below that are
likely to be physiological, NO is remarkably unreactive. Reaction with
O2, for example, is obvious at micromolar NO concentrations but
negligible at low nanomolar concentrations (Ford et al., 1993).
Reaction with superoxide ions, giving peroxynitrite, is extremely rapid
(Nauser & Koppenol, 2002) but, over the presumed physiological NO
concentration range, superoxide dismutase is greatly in excess of NO
so that superoxide ions are removed too quickly to allow reaction with
NO (Beckman & Koppenol, 1996). Low NO concentrations will,
however, react avidly with lipid peroxyl radicals in a beneficial
process that stops lipid peroxidation (O’Donnell et al., 1997; Keynes
et al., 2005). In physiological conditions, one pathway for NO
degradation will be through reaction with haemoglobin in circulating
erythrocytes, forming nitrate and methaemoglobin (Liu et al., 1998).
Calculations based on the geometry of the microcirculation suggest
that this pathway would impose on NO a tissue half-life of �1 s
(J. Wood and J. Garthwaite, unpublished result).

A much more active mechanism for NO consumption exists in brain
tissue itself. Reminiscent of the effect of transporters on the potency of
exogenous glutamate (Garthwaite, 1985), it was found that almost
1000-fold higher NO concentrations were required to saturate NO
receptors in incubated slices of cerebellum than in dispersed cells
(where diffusional barriers are lacking), implying rapid consumption
of NO as it diffuses into the slices (Hall & Garthwaite, 2006). At a
gross level, consumption appeared to be uniform across the slice,
suggesting that the mechanism is present in all cerebellar cell layers.
Moreover, NO consumption could not be detected in blood platelets
and leukocytes (Keynes et al., 2005), and appears to be very weak in
the intact aorta (Liu et al., 2008), pointing to a specialised mechanism
and, parenthetically, also explaining why exogenous NO is so much
less potent at activating receptors in cerebellar tissue than in blood
vessels (Southam & Garthwaite, 1991). From a diffusion-inactivation
model, the mechanism in the cerebellar slices conformed to
a Michaelis–Menten-type reaction having a maximum velocity of
1–2 lm ⁄ s and a Michaelis constant of �10 nm. From these values, it
is predicted that inactivation would impose a very short half-life
(< 10 ms) on NO in concentrations up to 10 nm (Hall & Garthwaite,
2006). This process would have little effect on single sources of NO,
where diffusional dispersion would dominate, but would impinge
strongly where there are multiple sources within a tissue volume, such
as when a plexus of nerve fibres are active (Philippides et al., 2005) or
when NO is generated in the microvascular network. The mechanism
could not be explained by any known method of NO consumption and
it remains to be identified. It is worth noting, however, that its activity
may vary from one brain region to another: in slices containing the
nucleus of the solitary tract (Wang et al., 2007), exogenous NO
affected neurotransmission at concentrations (�1 nm) that would be
expected to be active without any tissue NO consumption. Because of
the steep NO concentration gradients across the slice thickness
imposed by NO consumption (Hall & Garthwaite, 2006), the location
of the cell under study relative to the slice surface would also dictate
its sensitivity to externally applied NO.

Neurotransmission by NO: general features

Depending on the circuit, NO may be produced pre- or postsynap-
tically. In many brain areas, the prototypic coupling with postsynaptic
NMDA receptors appears to apply. In others, NO may derive from
presynaptic axon terminals, much as it does in peripheral nitrergic
nerves. In these nerves, the stimulus for NO synthesis is usually the
action potential-dependent opening of presynaptic N-type and ⁄ or
other Ca2+ channels, with the resulting NO effecting smooth muscle
relaxation (see review by Toda & Herman, 2005). Clues to the shapes
of the synaptic NO signals come from experiments where it has been
possible to record downstream electrophysiological responses at the
single-cell level.
The first example (Fig. 1A) shows recordings from neurones in the

pond snail (Lymnaea stagnalis), specifically at synapses between a
nitrergic neuron and its partner (Park et al., 1998). Bursts of
presynaptic activity resulted in slow NO-mediated excitatory post-
synaptic potentials (EPSPs) that could cause postsynaptic spiking
whereas single presynaptic action potentials normally had no
observable effect. When amplified by increasing the Ca2+ and Mg2+

concentrations in the bathing medium, however, unitary NO-mediated
EPSPs could be visualised. They consisted of slow depolarizations
taking off after a fixed delay of �200 ms, peaking after �0.5 s and
decaying back to baseline after �1 s. When viewed in this way NO
neurotransmission appears quite familiar, being evocative of the
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slower synaptic transmission occurring through metabotropic GABA
or glutamate receptors (Dutar & Nicoll, 1988; Batchelor & Garthwa-
ite, 1997). Moreover, the much more sustained response of the
neurones seen after exogenous NO application (Park et al., 1998)
suggests that the falling phase of the EPSP is not caused by
tachyphylaxis (loss of responsiveness) but probably reflects the earlier
dissipation of the NO signal. Hence, the unitary synaptic NO signal is
likely to be quite brief.
The second example (Fig. 1B) shows synaptic NO having the

opposite effect (hyperpolarization) when released from nitrergic
nerves innervating the colon (Hwang et al., 2008). In this case, a
single shock to the nerves elicited a biphasic inhibitory potential, an
initial rapid phase caused by release of a purine and then a second
phase that is the result of NO release. The time-course of the nitrergic
potential is a little slower than that of the snail neurone EPSP, peaking
after �3 s and then falling to baseline after �8 s.
Although there are no equivalent data dealing with postsynaptically-

generated NO, we can begin to envisage what happens. A typical
excitatory synapse in the brain would have �50 NMDA receptors
dispersed over a 400-nm-diameter postsynaptic density (Kennedy,
2000). Taking the extreme situation of each being associated with an
nNOS molecule and the nNOS molecules all being maximally active,
generating 20 NO molecules each per second, we can see the resulting
NO concentration profile that would be set up purely as a result of
diffusion of the molecule away from the sources (Fig. 2A). At steady
state (with continuous NMDA receptor activation) we expect to find
only 1 nm NO just the other side of the synaptic cleft, reducing to
0.25 nm at the periphery of the nerve terminal. A high degree of
synapse specificity is implied, although closely neighbouring struc-
tures would also be penetrated by low NO concentrations.
When synaptic NMDA receptors are activated by a pulse of

glutamate, the resulting local rise in intracellular Ca2+ follows a time-
course resembling that of the current passing through the membrane,
rising to peak in �50 ms and then declining to baseline within
�500 ms (Sabatini et al., 2002). The active Ca2+ ⁄ calmodulin required
for nNOS activity has four bound Ca2+. On removal of Ca2+,
unbinding of the first two Ca2+ is rapid, causing arrest of NOS activity
with a half-time of < 70 ms. Unbinding of the remaining two Ca2+ is
at least 10-fold slower and dissociation of calmodulin from nNOS
slower still, with an estimated half-time of 7 s (Persechini et al.,
1996). A scenario for efficacious NO generation, therefore, would be

in a recently activated synapse where calmodulin with two Ca2+ bound
is already associated with nNOS. Synaptic NMDA receptor activation
should then result in almost contemporaneous binding of the final two
Ca2+ and subsequent NO production. The resulting NO pulses
predicted at different distances from the source are illustrated in
Fig. 2B. There would be no perceptible delay in the peak of the pulse
arriving at different parts of the synapse although, of course, the
amplitude falls with distance and does not quite achieve that seen with
a continuous NO output.
By placing NO receptors at different distances we can gauge how

effective they would be at transducing the signals (Fig. 2C, upper
panel). Assuming the empirical kinetic scheme drawn up previously
(Garthwaite, 2005) and a receptor density the same as is found in
platelets (Mo et al., 2004), an NO pulse arriving mid-way through the
nerve terminal, peaking at 0.3 nm, would evoke �0.4 lm cGMP, an
impressive 1000-fold amplification taking place within �1 s. Hence,
the receptors are beautifully tuned to capture and translate even brief,
low-amplitude NO pulses. The simulation ignores hydrolysis of cGMP
by phosphodiesterases but, at these concentrations, much of the cGMP
would probably bind to signalling proteins in the vicinity which would
protect it from degradation (Kotera et al., 2003). The submicromolar
affinity of cGMP-dependent protein kinases for cGMP (Wall et al.,
2003) provides a mechanism for such an NO pulse being biologically
significant and it is notable that the time-courses of the simulated
responses fall reasonably well in line with those of the potential
changes recorded electrophysiologically (Fig. 1), bearing in mind the
steps downstream from cGMP that will help shape the physiological
response.
It is probably unrealistic to imagine all synaptic NMDA receptors

being momentarily active together but the simulation in Fig. 2C (lower
panel) shows that if there were repeated stimuli leading to a 2-s period
of continuous NOS activity, cGMP may accumulate into the low
micromolar range (a 10 000-fold amplification over the NO concen-
tration), meaning that many fewer NMDA receptors would need to be
active to generate a biological response. The temporal summation of
the cGMP concentration in this scenario helps explain why NO-
mediated transmission is generally seen to operate most effectively
following short periods of higher frequency activity.
That endogenous NO should be acting at synapses in concentrations

of only �1 nm, which is a tenth of the concentration needed to
activate cellular receptors by 50% (see above), may seem strange.

Fig. 1. NO-mediated synaptic transmission. (A) In a synaptically coupled pair of Lymnea stagnalis neurones, single presynaptic action potentials produce constant-
latency, one-to-one unitary EPSPs mediated through NO; five sweeps are superimposed. Modified from Park et al. (1998) with permission. (B) Slow inhibitory post-
junction potentials in mouse colonic circular muscles induced by afferent nerve stimulation (electrical field stimulation, single pulses, 0.3 ms duration) in the absence
and presence of a NOS inhibitor (100 lm l-nitroarginine), showing the slow hyperpolarizing component to be NO-mediated. Note that inhibition of NOS also
depolarizes the muscle by �14 mV as a result of the removal of a tonic hyperpolarizing NO source. Modified from Hwang et al. (2008) with permission.
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However, we do not have to rely merely on these theoretical
calculations for the evidence. The value is consistent with vascular
relaxation being maximal at NO concentrations near the base of the
concentration–response curve for cGMP generation (Mullershausen
et al., 2006), with cGMP-dependent phosphorylation being triggered
by subnanomolar NO concentrations (Mo et al., 2004), and with data
from NO receptor-knockout mice showing that NO can still relax
blood vessels when 94% of the associated guanylyl cyclase activity
has been eliminated (Mergia et al., 2006). All these experimental
findings suggest that cells have a large receptor reserve, ensuring that
low-amplitude NO signals are captured and transduced.

As well as mediating point-to-point transmission at synapses, there
may be situations in which neuronally derived NO performs as a
‘volume’ transmitter. There are two anatomical scenarios where
volume transmission is most likely. One is where there is a plexus of
NO-releasing nerve fibres that have a density and degree of
synchronous activity that will allow a regional ‘cloud’ of NO to be
formed (Philippides et al., 2005). The other is when there is an
anatomically appropriate segregation of NO sources and targets, as
exemplified in the insect brain by the so-called mushroom body, which
is involved in associative learning. In the ‘stalk’ of the mushroom
body, the NO sources were located in a sheath of nerve fibres
(�30 lm thick) which enwrapped a �30-lm-diameter core of NOS-
negative axons expressing the NO receptors; the design features,
together with a theoretical analysis, suggested that the outer sleeve
could act like a heating jacket, radiating NO to the inner core to

generate a relatively uniform concentration within it (Ott et al., 2007).
Volume transmission by NO has attractions for certain theories of
learning in which alterations in synaptic strength are governed by the
combination of the ambient NO concentration in the region and the
coincident synaptic activity (Montague & Sejnowski, 1994). An
alternative to neurones as the source of ambient NO in this setting
might be the capillary endothelial cells (see below).

Acute synaptic actions of NO

A special property of NO compared with conventional neurotrans-
mitters is its free diffusion through aqueous and lipid environments, so
it is not possible to predict where it will act after being synthesised in
either pre- or postsynaptic sites from the standpoint of diffusion alone
(Fig. 2A). Indeed, a special advantage of a messenger such as NO
would be that it provides a simultaneous signal to both pre- and
postsynaptic elements, of probable importance in coordinating
responses on the two sides of the synapse. A common assumption
in the literature is that if an NO-mediated response is inhibited by a
scavenger that remains extracellular, such as haemoglobin, NO must
be acting intercellularly. This assumption is quite wrong. NO travels
randomly and surprisingly quickly. With a tissue diffusion coefficient
of 848 lm2 ⁄ s (Liu et al., 2008) the average NO molecule travels
�0.8 lm (twice the diameter of the postsynaptic density) in 100 ls
(Lancaster, 1997) which means that, on biological time-scales, it will

Fig. 2. Dynamics of synaptic NO. (A) Superimposed on an electron micrograph of an excitatory synapse (from Kennedy, 2000, with permission) are contours of NO
concentrations (inner red ring, 1 nm; outer wine-coloured ring, 0.25 nm) predicted to be formed at steady-state by a 7 · 7 array of active NOS molecules located
(approximately) in the postsynaptic density. Each NOS molecule was assumed to generate 20 NO molecules per second, based on the initial rates of NO formation by
nNOS reported by Santolini et al. (2001) after correcting for temperature. Seven of the source molecules are in the plane of vision at the centre of the contours, the
yellow colour signifying 2 nm NO. (B) NO profiles resulting from transient NOS activation at different distances from the sources, colour-coded to the positions of
the contours in A. The waveform of the input NOS activity was chosen to resemble the time-course of a unitary NMDA receptor-mediated rise in postsynaptic Ca2+,
and is superimposable on the output (NO concentration) curves, when scaled. (C) Transduction of an NO transient. The empirical kinetic scheme for NO receptor
activation (Garthwaite, 2005) is shown at the top and the resulting activity of receptor-associated guanylyl cyclase activity (GC) and the increase in cGMP are
depicted for NO arriving near the middle of the presynaptic terminal (purple contour in A) as a single pulse (upper panel) or during a sustained 2-s period of NOS
activity (lower panel). Data are from C.N. Hall and J. Garthwaite (unpublished results).
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constantly diffuse in and out of the NO-generating compartment.
Consequently, an efficient extracellular scavenger will inevitably
deplete both intracellular and extracellular NO.
Generally speaking, however, NO does appear to signal to the

opposite synaptic partner, as in the examples illustrated (Fig. 1), but
both pre- and postsynaptic actions are feasible (irrespective of the site
of generation), depending on location of the receptors. The actions of
NO on either structure, despite employing the same transduction
mechanism (cGMP), obey no general rules and, even when a similar
effect is observed, the underlying mechanisms may be different. In one
of the sample synapses (Fig. 1B), the hyperpolarizing postsynaptic
potential observed on stimulation of nitrergic nerves was ascribed to
the activation of background K+ channels, a major contributor being a
member of the two-pore-domain K+ channel family, TREK-1, with the
effect of NO being transduced through serine phosphorylation by PKG
(reviewed in Sanders & Koh, 2006). TREK-1 channels are widely
expressed in the brain, often in association with GABAergic neurones
(Fink et al., 1996; Hervieu et al., 2001) and it will be interesting to
know whether NO–cGMP operates through these channels elsewhere.
The EPSP in the snail neurones (Fig. 1A) appears to be caused by
closure of K+ channels, although this was not explicitly examined
(Park et al., 1998). A similar NO-mediated EPSP has been recorded in
an Aplysia neurone modulating the feeding circuit where it was shown
that, through cGMP, synaptically released NO inhibited background
K+ channels (Jacklet & Tieman, 2004).
Together, the two examples encapsulate observations made at many

different CNS synapses. A large literature describes various reversible
effects of NO and ⁄ or cGMP on neuronal excitability and ⁄ or synaptic
transmission, the effects being generally classifiable as excitatory or
inhibitory. It is useful to give a few examples, selected on the basis of
evidence that endogenous NO engages the same mechanism. This is a
particularly important criterion here, bearing in mind that exogenous
NO (or its method of delivery) may produce unphysiological effects
and that too much cGMP may also be unphysiological, leading, for
example, to inadvertent activation of cAMP-dependent protein kinases
(Sausbier et al., 2000). In some cases, endogenous activity is
promoted by administration of the NOS substrate l-arginine, and it
is relevant that the l-arginine concentration in the cerebrospinal fluid
is �20 lm (Martens-Lobenhoffer et al., 2007) but is normally omitted
from solutions used to incubate in vitro preparations, possibly
resulting in a suppression of NO-mediated transmission in some
experiments. It should be cautioned, however, that l-arginine may
have effects unrelated to NOS activity (Hentall, 1995; Rivadulla et al.,
1997). Frequently missing are measurements of NO itself but,
unfortunately, there are no reliable methods yet for directly measuring
endogenously generated NO in tissues with the necessary sensitivity
or spatial and temporal precision (reviewed in Keynes & Garthwaite,
2004; Wang et al., 2006a). Nevertheless, useful data at a more gross
level have been obtained from certain electrode designs (e.g. Shibuki &
Kimura, 1997) but many of those that have been used suffer from
suspect specificity and inadequate sensitivity.

Postsynaptic actions

Earlier in vivo experiments on the lateral geniculate and ventrobasal
nuclei of the thalamus showed that NO had a marked facilitatory effect
on neuronal responses to natural stimuli (light and whisker stimula-
tion, respectively), as well as on the excitatory effect of locally
administered glutamatergic agonists (Do et al., 1994; Cudeiro et al.,
1996; Shaw et al., 1999). A major source of the NO in these nuclei is
in afferent cholinergic fibres, suggesting that presynaptically derived

NO is at work whereas the downstream enhancement of excitation was
probably postsynaptic, putatively through direct engagement by
cGMP of HCN channels that are prominent in the thalamus (Shaw
et al., 1999). A similar general enhancing effect of NO was seen in the
visual cortex, where inhibition of NO synthesis depressed responses to
exogenous agonists and to visual stimuli (Cudeiro et al., 1997; Kara &
Friedlander, 1999) and in the somatosensory cortex, where NO
participated in the ‘wake-up’ electrical activity observed following
stimulation of the basal forebrain cholinergic afferents (Marino &
Cudeiro, 2003). In the striatum in vivo too, NO (probably derived from
local interneurones that are rich in nNOS) modulated excitation of
medium spiny neurones in such a way as to enhance EPSPs (West &
Grace, 2004). Its effect here was associated with membrane
depolarization, perhaps brought about by cGMP suppressing K+

conductances.
Beyond these pioneering in vivo studies, NO–cGMP has also been

found to have depolarizing actions on several different types of central
neurone in vitro, including a population of paraventricular neurones
(Bains & Ferguson, 1997), striatal cholinergic neurones (Centonze
et al., 2001), trigeminal motoneurones (Abudara et al., 2002) and
optic nerve axons (Garthwaite et al., 2006). HCN channels were
implicated as the transducers in the latter two instances. In a pituitary
cell line, endogenous NO elicited a cGMP-dependent inhibition of
K+ channels, an effect of which would also be membrane depolar-
ization, although cytosolic Ca2+ oscillations were actually measured in
the experiments (Secondo et al., 2006). Alternatively, CNG channel
activation following NO-evoked cGMP accumulation may produce
excitatory postsynaptic responses in central neurones, as was shown
first in a population of retinal ganglion cells (Ahmad et al., 1994;
Kawa & Sterling, 2002) and, more recently, in medial vestibular
nucleus neurones (Podda et al., 2008), but the engagement of this
pathway by endogenous NO has not yet been demonstrated.
Postsynaptic inhibitory effects of NO–cGMP on neuronal firing, or

hyperpolarisations, have also been reported (Schmid & Pehl, 1996;
Rauch et al., 1997; Xu et al., 1998; Riediger et al., 2006; Sardo et al.,
2006). Potential mechanisms include the activation of various classes
of K+ channel (Han et al., 2006; Kang et al., 2007; Mironov &
Langohr, 2007; Chai & Lin, 2008) but, again, there is little evidence
yet for endogenous NO acting in this way (but see Cudeiro et al.,
1997, for an in vivo example).

Presynaptic actions

An altogether different response to NO is exemplified by results from
the paraventricular nucleus, which is important in autonomic and
endocrine homeostasis. NMDA or angiotensin was found to cause a
barrage of GABAergic inhibitory postsynaptic potentials (IPSPs) in
the magnocellular neurones of this region that was mediated, at least in
part, by endogenous NO exciting GABAergic neurones (Bains &
Ferguson, 1997; Latchford & Ferguson, 2003). These results were
extended to spinally projecting neurones within this nucleus, whose
firing was regulated by NO modulating the GABAergic tone (Li et al.,
2002, 2003). In such neurones, studies of miniature GABAergic IPSPs
(recorded in the presence of tetrodotoxin to prevent circuit-based
activity) strongly suggested that NO was acting on presynaptic
terminals to increase the probability of vesicular GABA release (Li
et al., 2002), a mechanism that has been attributed to NO acting
through cGMP and PKG (Li et al., 2004). Presynaptic voltage-gated
K+ channels, specifically subtypes Kv1.1 and 1.2 but perhaps others as
well, have recently been implicated (Yang et al., 2007). Where studied
in the accessible calyx of Held nerve terminals in the brainstem, Kv1
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channels appear to be located in the transition zone just before the
terminal itself and to regulate terminal excitability in such a way as to
suppress aberrant action potential firing and associated neurotrans-
mitter release (Dodson et al., 2003; Ishikawa et al., 2003). Possibly,
therefore, cGMP-dependent phosphorylation directly or indirectly
inhibits the channels, resulting in enhanced GABA release. Interest-
ingly, Kv3 channels, which affect transmitter release by shaping the
presynaptic action potential, have been found, when expressed in
CHO cells, to be suppressed by the NO–cGMP pathway, not through
direct phosphorylation by PKG but through the intermediary of a
phosphatase, which probably removes a phosphate group from the
channel protein that normally promotes activity (Moreno et al., 2001).
Should this mechanism occur in nerve terminals, spike broadening,
leading to increased transmitter release, would be anticipated (Ishik-
awa et al., 2003).

While these investigations focus on K+ channel inhibition as a
mechanism of increasing presynaptic transmitter release, K+ channel
activation may paradoxically improve transmitter release as well.
Specifically, stimulation of Ca2+-activated K+ channels by cGMP-
dependent phosphorylation enhanced presynaptic spiking by increas-
ing the spike afterhyperpolarization, allowing more Na+ channels to
recover from inactivation which, by facilitating spike conduction,
increased Ca2+influx in response to trains of stimuli (Klyachko et al.,
2001).

One shortcoming in many studies of synaptic NO signalling is
ignorance of exactly where the NO comes from and where it acts.
Considerations based on individual synapses (Fig. 2) would predict
that the sources and targets would need to be close together for the
signalling pathway to work, although summation of signals extrasy-
naptically would be plausible if groups of synapses were simulta-
neously active (Philippides et al., 2005; Hall & Garthwaite, 2006).
According with this idea, high resolution studies of hippocampal CA1
pyramidal neurones showed that, in a population of synapses, NO
receptors were located in the active zone in excitatory nerve terminals
whereas nNOS was concentrated in juxtaposed dendritic spines just
below the plasma membrane, an arrangement well suited to a
retrograde messenger role for NO at these synapses (Burette et al.,
2002). Unexpectedly, in the same neurones an additional line of
communication has materialised from nNOS also being found in the
postsynaptic densities of GABAergic terminals (on somata, dendrites
and axon initial segments) with the NO receptors being presynaptic
(Szabadits et al., 2007). The NO receptor at GABAergic synapses
was, interestingly, the a1b1 isoform whereas the a2b1 receptor, which
associates with pre- and ⁄ or postsynaptic scaffold proteins (see above),
appeared to service the excitatory synapses. This arrangement
immediately suggests a new type of retrograde NO signalling wherein
local rises in cytosolic Ca2+ as a result of back-propagating action
potentials or of local synaptic input activates postsynaptic nNOS and
the NO then signals to abutting inhibitory nerve terminals to influence
GABA release (Szabadits et al., 2007). Supporting this line of
communication being functional, when studied in the presence of a
cholinergic agonist, depolarization (for 1 s) of the postsynaptic
neurone caused a transient (�20 s) suppression of GABAergic
inhibitory postsynaptic currents (IPSCs), an effect mediated through
NO receptors and cGMP (Makara et al., 2007), with endocannabi-
noids also being intimately involved (see below).

In these experiments, spontaneous quantal GABAergic IPSCs
(recorded in the presence of tetrodotoxin) were unaffected by NOS or
NO receptor blockade (Makara et al., 2007), indicating that cGMP
suppressed action potential-dependent GABA release ultimately,
perhaps, by inhibiting presynaptic voltage-gated Ca2+ channels. In
this respect there is a large literature dealing with NO–cGMP and Ca2+

homeostasis in cells of relevance to both its pre- and postsynaptic
actions (reviewed in Garthwaite & Boulton, 1995; Clementi, 1998;
Ahern et al., 2002; Grassi et al., 2004) but no general rules: in some
cells Ca2+ currents are inhibited, in others they are enhanced;
sometimes Ca2+ release from internal stores is reduced, elsewhere it
is increased. Regarding the latter, recordings in the nucleus of the
solitary tract found that, via cGMP, low concentrations of exogenous
NO reversibly potentiated both glutamatergic EPSPs and GABAergic
IPSPs, apparently through a presynaptic mechanism (Wang et al.,
2007). In the case of the IPSPs, NO–cGMP seemed to act by evoking
Ca2+ release from presynaptic ryanodine-sensitive stores through the
intervention of cyclic ADP ribose (Wang et al., 2006b), whose
generation can be stimulated by PKG phosphorylating the synthes-
ising enzyme (Willmott et al., 1996). Elsewhere, NO may enhance
spontaneous neurotransmitter release by the action of cGMP on
presynaptic CNG channels, leading to a raised intraterminal Ca2+

concentration (Savchenko et al., 1997; Murphy & Isaacson, 2003).
A major NO–PKG transduction pathway in smooth muscle and
platelets is through the IP3 receptor-associated protein IRAG which,
when phosphorylated by PKG1b, inhibits Ca2+ release from
IP3-sensitive stores (reviewed in Hofmann et al., 2006). However,
IRAG appears to have a minor presence in the brain, the mRNA being
prominent only in thalamic relay nuclei (Geiselhoringer et al., 2004)
where, perhaps significantly, PKGII is also concentrated (El-Husseini
et al., 1999; de Vente et al., 2001).

Interaction with other signalling pathways

Apart from these serial signalling cascades influencing primary
synaptic neurotransmission, the interplay between NO–cGMP and
other neuromodulators introduces another layer of regulation. This is
presaged by findings in the peripheral nervous system at junctions
between nitrergic nerves and effector organs, where a multitude of
interactions with cholinergic, adrenergic, purinergic and peptidergic
nerves, often presynaptic, has been described (reviewed in Toda &
Okamura, 2003; Toda & Herman, 2005). Similarly, based on in vivo
sampling of the extracellular fluid, myriad interactions with other
transmitters in the brain are to be expected (reviewed in Prast &
Philippu, 2001), although details of what may be happening at the
level of the synapse are sparse. In the pond snail, serotonin
transmission was markedly (up to 80%) dependent on endogenous
NO acting postsynaptically through cGMP and PKG, perhaps bringing
about phosphorylation of the serotonin receptor (Straub et al., 2007).
There is also long-standing evidence for an interaction between NO,
cGMP and acetylcholine in the brain that remains poorly understood
(reviewed by de Vente, 2004). One intriguing link with acetylcholine
may involve the endocannabinoids. These are fatty acid derivatives
that act in synapses somewhat like NO, in that they are generated
enzymatically in response to a rise in Ca2+, usually postsynaptically,
and then act retrogradely on presynaptic CB1 receptors, typically to
depress neurotransmitter release (reviewed in Hashimotodani et al.,
2007). In the vertebrate (lizard) neuromuscular junction, endocanna-
binoid release underlay the transient suppression of acetylcholine
release produced by activation of muscarinic (M3) receptors but, in
order for the pathway to be effective, NO–cGMP and associated PKG
were needed (Newman et al., 2007). NO on its own did not affect
acetylcholine release (Graves et al., 2004), so there seems to be a step
occurring in the presynaptic nerve terminal where endocannabinoid
and NO signalling cascades meet. Somewhat similarly, the depression
of GABAergic IPSCs brought about by depolarizing hippocampal
neurones in the presence of a cholinergic agonist depended on both
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NO and endocannabinoids, the two of them apparently being produced
postsynaptically and acting presynaptically (Makara et al., 2007).
Unlike in the lizard neuromuscular junction, cannabinoids could
depress transmission on their own but, in the presence of the
cholinergic agonist, the NO–cGMP and cannabinoid pathways
converged, apparently at the presynaptic location (where CB1
receptors and NO-evoked cGMP accumulation were located) to elicit
the transient depression of GABAergic transmission. Further interplay
between endocannabinoids and NO can be found in relation to long-
lasting alterations in synaptic efficacy (see below and Sergeeva et al.,
2007; Kyriakatos & El Manira, 2007).

NO and neuroplasticity

There has been much interest in an involvement of NO in long-term
changes in synaptic strength, initially because its diffusible nature and
link with NMDA receptors made it an appealing candidate for a
retrograde trans-synaptic messenger, relaying information about
NMDA receptor activity to the presynaptic terminal to coordinate
alterations in transmitter release (Garthwaite et al., 1988). Despite
some confusing results early on, it is now established that the NO–
cGMP pathway plays a role in long-term potentiation (LTP) or long-
term depression (LTD) at many synapses throughout the CNS, and
even at the neuromuscular junction. As the topic has been reviewed
many times before, both generally (Garthwaite & Boulton, 1995;
Holscher, 1997; Prast & Philippu, 2001; Susswein et al., 2004) and
with respect to specific brain regions (Daniel et al., 1998; Hawkins
et al., 1998; Centonze et al., 1999; Grassi & Pettorossi, 2001; Hartell,
2002), the emphasis here will be on mechanisms and, as with the acute
synaptic actions of NO (above), these can be pre- and ⁄ or postsyn-
aptically located, or they can involve more general alterations in
neuronal excitability.

Postsynaptic plasticity

One of the most developed instances of NO participating in plasticity is
with LTD in the cerebellum, which has long been considered part of
motor learning behaviour and which occurs when a powerful excitatory
input to Purkinje cells from the climbing fibres is repeatedly active just
after another, from parallel fibres. The climbing fibre input is viewed as
an error signal which dampens input from parallel fibres that are
inappropriately active just beforehand (reviewed by Ito, 2001).
According to the current model, NO is produced either in parallel
fibres themselves (Shibuki & Kimura, 1997) or via NMDA receptor
activity in interneurones simultaneously receiving parallel fibre
excitation (Shin & Linden, 2005) and acts postsynaptically at parallel
fibre synapses to raise cGMP and thence activate PKG. Purkinje cells
are enriched in the PKG substrate, known as G-substrate, that, on
phosphorylation, functions as a phosphatase inhibitor (Endo et al.,
1999). This, together with ongoing protein kinase C activity, leads to
persistent phosphorylation of AMPA receptors at a particular serine
residue, which disrupts AMPA receptor clusters and favours receptor
endocytosis (Launey et al., 2004; Steinberg et al., 2006). Consistent
with the mechanism being behaviourally significant, knocking down
PKG1a specifically in Purkinje cells impaired LTD and introduced a
deficit in a motor learning behaviour (adaptation of the vestibulo-ocular
reflex) although their general motor performance was normal (Feil
et al., 2003). Endocannabinoids figure in cerebellar LTD as well and it
appears that NO functions downstream of this pathway because
endocannabinoid-induced LTD could be blocked by NOS inhibition,
suggesting that endocannabinoids may somehow promote the NO

synthesis needed for LTD (Safo & Regehr, 2005). A long-term
potentiation of NO release from the parallel fibres following tetanic
stimulation has been described (Kimura et al., 1998) but this depended
on cAMP, whose levels are usually reduced by endocannabinoids
(reviewed in Hashimotodani et al., 2007). Even so, there are precedents
for endocannabinoid CB1 receptors being coupled to increased NO
synthesis (Poblete et al., 2005; Romano & Lograno, 2006).
Long-term potentiation in the hippocampus also involves changes

in postsynaptic AMPA receptor density, but in the opposite direction
(reviewed in Collingridge et al., 2004) and NO–cGMP may play a part
in this process. A key AMPA receptor subunit required for NMDA
receptor-dependent LTP is the GluR1 subunit, whose insertion into the
synapse depends on complex interactions with synaptic scaffold
proteins and protein phosphorylation. In dissociated hippocampal
cultures brief application of glutamate elicited an enduring potentia-
tion of spontaneous glutamatergic excitatory postsynaptic currents
(EPSCs) comprising a rapid enhancement in frequency, originating
presynaptically, and an increase in amplitude, associated with
increased numbers of postsynaptic protein clusters containing GluR1
(Antonova et al., 2001). A surprising finding was that the increase in
GluR1 clusters required PKG and could be replicated by exposure to
8-Br-cGMP (Wang et al., 2005). In a comprehensive series of
experiments, Serulle et al. (2007) have now discovered a key
participant to be PKGII. Binding of cGMP led to the formation of a
complex between PKGII and GluR1 and the phosphorylation of
GluR1 on a serine residue (serine-845) that facilitates its delivery to
extrasynaptic sites, priming insertion into the synapse. Previously,
serine-845 phosphorylation had been linked with cAMP but Serulle
et al. (2007) showed in cultured hippocampal neurones that it also
happens in response to exogenous NO, and to NMDA receptor activity
in a NOS- and PKG-dependent manner. Increased cell surface GluR1
expression correlated with changes in synaptic transmission that
shared the same NO–cGMP–PKG-dependent properties.
The receptor clustering seen in these experiments is reminiscent of

that occurring in the developing neuromuscular junction, where agrin
secreted from active motor nerve terminals induces, through the NO–
cGMP–PKG pathway, the formation of postsynaptic acetylcholine
receptor clusters (reviewed in Godfrey & Schwarte, 2003). However,
Serulle et al. (2007) were able show that blocking PKGII selectively
using a dominant negative fragment also reduced LTP in adult mouse
hippocampal slices, indicating that the mechanism may not be confined
to the relatively immature circuitry of the tissue culture model.
These two examples of NO–cGMP effecting opposite changes in

postsynaptic AMPA receptor density at two different synapses may help
explain the participation of NO in LTP and LTD elsewhere. However,
other mechanisms must also at be work. For hippocampal LTP to persist
beyond the first hour or so, RNA and protein synthesis are needed. In
slice preparations, it has been shown that NO–cGMP–PKG resulted in
the phosphorylation of the transcription factor CREB (cAMP response
element binding protein) in the cell bodies of postsynaptic neurones by a
mechanism involving Ca2+ release from ryanodine-sensitive stores (Lu
et al., 1999; Lu & Hawkins, 2002), implicating cyclic ADP ribose as an
intermediary. CREB regulates the expression of many different genes.
There are also several other ways by which cGMP can directly and
indirectly regulate gene expression in cells. In all, > 60 RNA species
have so far been shown to be increased or decreased by cGMP in various
cell types (reviewed in Pilz & Broderick, 2005).

Presynaptic plasticity

The first direct evidence for NO persistently augmenting neurotrans-
mitter release came from recordings showing that exogenous NO,
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added at 5–10 nm, elicited an enduring increase in the frequency of
spontaneous miniature EPSPs in cultured hippocampal neurones
(O’Dell et al., 1991). Subsequent work extended this observation to
provide a convincing case for NO serving as a retrograde messenger at
these synapses in response to brief tetanic stimulation of the
presynaptic neurone, and that it acts through cGMP and PKG
(Arancio et al., 1995, 2001), leading to the rapid (within a minute)
formation of new clusters of presynaptic proteins, coordinating with
the slightly later appearance of new postsynaptic GluR1 clusters
(Wang et al., 2005). A protein well known in the cardiovascular field
as a PKG substrate, vasodilator-stimulated phosphoprotein (VASP),
together with RhoA, a member of the Rho GTPase family, apparently
contributed to the clustering on both sides of the synapse, suggesting a
cytoskeletal involvement, with the conversion of the clusters into
functional units, perhaps under the control of CaMKII activity (Ninan
& Arancio, 2004; Wang et al., 2005). The results are consistent with
the functioning of VASP in filopodial dynamics (Dwivedy et al., 2007)
and with evidence that NO mediates NMDA receptor-dependent
growth of presynaptic protrusions and the remodelling of presynaptic
varicosities in hippocampal slice cultures (Nikonenko et al., 2003).

Good evidence from other synapses also implicates a presynaptic
site of action of NO although, in most cases, the mechanisms remain
to be explored (Wu et al., 1997; Grassi & Pettorossi, 2000; Volgushev
et al., 2000; Hardingham & Fox, 2006; Sjostrom et al., 2007). In rat
rostral ventral medulla neurones, endogenous NO was found to
operate though cGMP, PKG and presynaptic N-type Ca2+ channels to
potentiate glutamate release for 10–20 min (Huang et al., 2003). In the
cerebellar parallel fibre–Purkinje cell synapse, NO was required for a
presynaptic form of LTP which, curiously, depended on cAMP but not
cGMP (Jacoby et al., 2001) and which reflected an augmentation of
action potential-evoked presynaptic Ca2+currents (Qiu & Knopfel,
2007). LTP at the cerebellar mossy fibre–granule cell synapse,
however, engaged the NO–cGMP pathway to increase the presynaptic
terminal excitability (Maffei et al., 2003). NO–cGMP-dependent
potentiation of inhibitory, presumed glycinergic (Wu & Dun, 1996)
and GABAergic (Nugent et al., 2007), synapses through the
presynaptic route have also been reported. Finally, NO may also
contribute to LTD by suppressing presynaptic excitatory transmitter
release cGMP-dependently, as has been observed in the hippocampus
(Zhang et al., 2006b) and the neuromuscular junction (Wang et al.,
1995; Etherington & Everett, 2004).

A role for NO in plastic changes of other neurotransmitter systems
is also likely. For example, it has been found that PKG-dependent
phosphorylation of a threonine residue on the serotonin transporter
enhanced serotonin uptake (Ramamoorthy et al., 2007), an effect that
may contribute to the lowering of extracellular serotonin brought
about by the NO–cGMP pathway observed in the hypothalamus
(Kaehler et al., 1999), and to obsessive–compulsive disorder in
humans (Zhang et al., 2007a). Alternatively, nNOS may physically
interact with the serotonin transporter in such a way as to reduce its
cell surface expression, which should increase extracellular serotonin
levels (Chanrion et al., 2007).

Plasticity of intrinsic excitability

Plasticity can also be expressed outside the synapse, through
alterations in intrinsic neuronal excitability (reviewed in Daoudal &
Debanne, 2003) and here too NO may be involved. In the cerebellum,
Purkinje cell firing became moderately higher, but in a sustained
manner, in response to NO–cGMP (Smith & Otis, 2003). A more
pronounced effect was observed in Aplysia sensory neurones which,

much like in mammals, become hyperexcitable (decreased threshold
for action potential generation, and increased depolarization-induced
and spontaneous firing) following injury to their axons (Sung et al.,
2004). Underlying the hyperexcitability was an upregulation of nNOS,
stimulation of which, apparently at the level of the axon, led to local
activation of PKG which then was transported to the neuronal cell
body. Here it phosphorylated mitogen-activated protein kinase which
then entered the nucleus to initiate transcriptional activity. As well as
providing a mechanism for enduring hyperexcitability, the results give
an example of how NO acting remotely on neuronal processes can
engage the gene expression machinery in the cell body. Extending the
results to mammals, it was found that compression injury to rat dorsal
root ganglion neurones, or simply dissociating the neurones, resulted
in them adopting a hyperexcitable state that was maintained by cAMP
and cGMP acting through their respective kinases (Song et al., 2006;
Zheng et al., 2007). Furthermore, in hypoglossal motoneurones, while
brief NO exposure normally generated only a small cGMP-dependent
depolarization, upregulation of nNOS as a result of nerve injury, or
prolonged (4 h) exposure to exogenous NO, led to sustained
hyperexcitability through PKG-mediated inhibition of resting
K+ currents, particularly those produced by the pH-sensitive, two-
pore-domain TASK-like channels (Gonzalez-Forero et al., 2007),
channels that are widely distributed in the CNS (reviewed by Bayliss
et al., 2003). The gradual onset of the NO-mediated suppression of the
channels suggests a mechanism operating through trafficking or
gene ⁄ protein expression (Gonzalez-Forero et al., 2007).
Although these last two examples are of specific relevance to the

development of heightened pain sensitivity and other responses to
injury, they may also exemplify changes enacted under normal
conditions to contribute, along with synaptic changes, to the
development of activity-dependent alterations in excitability that link
cellular plasticity to learning and memory formation (Daoudal &
Debanne, 2003).

Roles of individual NO receptors

The development of mice lacking specific NO receptor subunits
(Friebe et al., 2007) offers new opportunities for understanding the
roles of each receptor isoform in neuroplasticity and other phenomena.
Fascinatingly, it has so far been shown that knocking out either the
a1b1 or a2b1 virtually abolished NMDA receptor-dependent LTP in
the visual cortex, with rescue being effected by an exogenous cGMP
derivative in both cases (Haghikia et al., 2007). Why both isoforms
are essential remains a mystery. Perhaps one (a2b1) transduces the
NO signal associated with NMDA receptor activity at synapses and
the other (a1b1) transduces the signal from endothelial cells (see
below). The precise distribution of the isoforms in the cortex remains
to be determined but, in the hippocampus, they were found in different
cells, a1b1protein appearing to be exclusive to a population of
GABAergic interneurones, whereas the mRNA for a2b1 was confined
to pyramidal neurones (Szabadits et al., 2007).

Other lines of communication involving NO

Glia as NO targets

The highest concentration of cGMP in the cerebellum is in astrocytes
(de Vente et al., 1990; Southam et al., 1992; Southam & Garthwaite,
1993), because these cells have an extremely low phosphodiesterase
activity, some 6000- to 9000-fold less than in platelets (Garthwaite,
2005), which allows cGMP to accumulate to near millimolar
concentrations on persistent activation of NO receptors (Bellamy &
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Garthwaite, 2001a). Immunocytochemical studies have also detected
astrocytic cGMP staining in response to NO in other brain regions (de
Vente et al., 1998). Astrocyte processes frequently enwrap synapses
and so could be within range of synaptically generated NO. The
correlation of cerebellar cGMP levels in vivo (largely reflecting glial
cGMP) with motor activity (Wood, 1991) also suggests a link with
synaptic function. The slow kinetics of cGMP degradation in
cerebellar astrocytes could mean that cGMP provides a time-averaged
readout of ongoing synaptic activity. Alternatively, it could allow
cGMP to diffuse intracellularly to targets distant from the site of
synthesis. One report found that, in the cerebellum, parallel fibre
stimulation led to a NO-mediated increase in Ca2+ in the Bergmann
glia (Matyash et al., 2001) but this was not replicated in other
laboratories (Beierlein & Regehr, 2006; Piet & Jahr, 2007). Never-
theless, in forebrain cultures, brief (100 ms) puffs of NO elicited a rise
in glial Ca2+ and the propagation of intercellular Ca2+ waves, due to
cGMP–PKG promoting release from ryanodine-sensitive stores
(Willmott et al., 2000). In cultured astrocyte-like cells (tanycytes)
from the median eminence of the hypothalamus, where neurosecretory
terminals are normally found close to blood vessels, co-culture with
endothelial cells from the same region caused remodelling of the actin
cytoskeleton through NO–cGMP and evidence was obtained in the
intact tissue that endogenous NO helped position the nerve terminals
next to the capillaries to facilitate delivery of secreted hormone, and
hence regulate reproductive function (De Seranno et al., 2004). In
other astrocytes also, NO–cGMP (through PKG) regulated the
expression of glial fibrillary acidic protein, the principal intermediate
filament of astrocytes (Brahmachari et al., 2006), and altered
cytoskeletal dynamics (Boran & Garcia, 2007).

Neurovascular communication

Cerebral blood flow is closely linked with neuronal activity. Larger
blood vessels are supplied with nitrergic nerves derived mainly from
the pterygopalatine ganglion, activity in which results in NO release,
vasodilatation and increased blood flow (reviewed by Toda &
Okamura, 2003). The first evidence linking local synaptic activity to
NO-mediated vascular relaxation came with the demonstration that the
NMDA-induced dilatation of cerebral pial arterioles in vivo can be
blocked by NOS inhibitors (Faraci & Breese, 1993; Faraci & Brian,
1995). NMDA application in hippocampal slices also resulted in NO-
dependent vasodilatation of microvessels, adding support to the
existence of a local mechanism (Lovick et al., 1999). However, this
response to NMDA, and that occurring in vivo (Faraci & Breese,
1993), was nullified by tetrodotoxin, implying that the NO causing the
vasodilatation is not produced directly by NMDA receptor stimulation
but through a secondary, action potential-dependent mechanism. In the
cerebellum and cortex, this may involve firing in specific classes of
nNOS-containing GABAergic interneurone that innervate the micro-
vasculature (Yang et al., 2000; Cauli et al., 2004; Rancillac et al.,
2006), with NO working alongside several other local constrictor and
dilator molecules, including peptides and prostanoids (reviewed by
Iadecola, 2004).

Vasculoneuronal communication

The role of endothelial eNOS in relaxing vascular smooth muscle is
firmly established, but most of the eNOS in the brain lies in the capillary
circulation which, by definition, is devoid of smooth muscle layers
(although some modified smooth muscle cells, or pericytes, are present)
raising the possibility that capillary eNOS serves another function.

Blood vessels are usually far from themind of the synaptically orientated
neuroscientist, yet any region of the brain parenchyma is, at most, only a
typical cell diameter (25 lm) away from a capillary endothelial cell

Fig. 3. Signalling from capillaries to axons in optic nerve. (A) Whole-mount
preparation of 10-day old rat optic nerve immunostained for eNOS. The dotted
line depicts the shape of the nerve, including its cut end (ellipse). The image is
taken fromGarthwaite et al. (2006) with permission. (B) Confocal micrograph of
optic nerve co-stained for neurofilament-68 (green, identifying axons) and eNOS
(red) in the optic nerve (also whole-mount preparation). The picture was kindly
provided by Dr G. Garthwaite. (C) Cartoon of the proposed mechanism whereby
NO generation from eNOS in the capillary circulation persistently depolarizes
axons by raising the levels of cGMP which then acts on HCN channels (from
Bartus et al., 2007 with permission). Scale bar (in A), 200 lm (A), 100 lm (B).
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(Pawlik et al., 1981). Furthermore, the three-dimensional geometry of
the capillary circulation would be just as well suited for delivering NO
globally to the tissue as it is for delivering O2 (Fig. 3A and B).

The first evidence for endothelial NO influencing parenchymal cells
was from the liver where it potentiated Ca2+ signalling in hepatocytes
(Patel et al., 1999). In theCNS, electrophysiological recordings from the
isolated optic nerve showed that there was an endogenous source of NO
that persistently depolarized the axons by activating HCN channels; the
sourcewas tracked down to being eNOS in the capillary endothelial cells
(Garthwaite et al., 2006) (Fig. 3C). In hippocampal slices also, eNOS
was the isoform responsible for the tonic, low level of NO (estimated to
be �0.1 nm) that, along with the burst of NO associated with synaptic
NMDA receptor activation, contributed to LTP (Bon & Garthwaite,
2003; Hopper & Garthwaite, 2006). The concerted roles of nNOS and
eNOS helps understand the earlier observations on hippocampal LTP in
mice lacking nNOSa and eNOS (Son et al., 1996) although the data on
nNOSa knockouts may be complicated by activity from residual nNOS
splice variants (see above).

As eNOS is mostly, if not exclusively, found in endothelial cells,
effects of knocking out eNOSon brain functionmay be interpreted as the
consequence of eliminating a signal from endothelial cells to neuronal or
glial cells. eNOS-knockout mice suffer disrupted synaptic plasticity not
only in the hippocampus (Wilson et al., 1999; see also Kantor et al.,
1996) but also in the cerebral cortex and striatum (Haul et al., 1999;
Doreulee et al., 2003). In the solitary tract nucleus, eNOS regulates
autonomic function and angiotensin II may influence the baroreceptor
reflex here by releasing NO from endothelial cells (reviewed by Paton
et al., 2007). Mice lacking eNOS exhibit greatly reduced NMDA-
evokedGABA release in the cerebral cortex, hippocampus and striatum,
as measured using microdialysis in vivo (Kano et al., 1998), reduced
aggression (Demas et al., 1999), accelerated turnover of serotonin in the
frontal cortex and of dopamine in the ventral striatum (Frisch et al.,
2000), and decreased neurogenesis (Reif et al., 2004; Chen et al., 2005).

Endothelial eNOS offers a pathway for many different blood-borne
agents, including hormones, to influence brain function. In some
specific regions, such as the hypothalamic median eminence, eNOS
may regulate the output of hormones by effecting structural adapta-
tions (De Seranno et al., 2004). Bringing eNOS into the picture also
has repercussions for experimental design and interpretation because
endothelial cells could be an active source of NO following
application of many different experimental agents, bearing, as they
can do, a long list of receptors (for acetylcholine, ADP, bradykinin,
serotonin, histamine, etc) that are coupled to eNOS activation.

Concluding remarks

This review has attempted to encapsulate the substantial progress
made in recent years towards understanding the cellular and molecular
mechanisms through which NO acts in the mammalian CNS,
mechanisms that must ultimately explain the multifarious behavioural
effects of NO evident at the whole-animal level. The broad conclusion
to be drawn is that NO functions in the mammalian CNS more or less
like a conventional neurotransmitter, in much the way it does in
animals that evolved hundreds of millions of years ago. The main
distinguishing features are the ways that it is produced and its ability
to spread extremely rapidly through cell membranes away from its
point of synthesis, properties that allow it to operate economically
(dispensing with the need for complex storage and release devices)
and in a much more versatile fashion than can be achieved with a
transmitter acting only extracellularly while, at the same time,
achieving a similar degree of synapse specificity. Adding to the
economy is the need for so few NO molecules to do the job because

the sensitivity of the NO detectors is so high: were our hypothetical
NO-generating synapse (Fig. 2) going at full blast for a second, it
would use up only 1000 l-arginine molecules, or roughly a quarter of
the number of amino acid neurotransmitter molecules released from a
single synaptic vesicle.
Most often, NO is seen to operate in concert with other transmitters

rather than in a stand-alone mode; yet, by eliciting subtle alterations in
the functioning of ion channels or other proteins, it can elicit effects
whose consequences can be profound and sometimes very long-
lasting. One of the next steps must be to establish an anatomically
coherent picture of the workings of the signalling pathway at
individual synapses because, unlike with conventional transmitters,
there are no rules to follow and so each synapse must be treated on its
own merit. A distinct shortcoming has been the lack of methods
capable of measuring physiologically meaningful NO signals in real
time and in subcellular dimensions. The recent development of
genetically encoded fluorescent sensors for monitoring NO and cGMP
with the necessary specificity, sensitivity and dynamics (Sato et al.,
2005; Russwurm et al., 2007; Nausch et al., 2008) are likely to herald
progress on this issue, as well as on the subcellular regulation of
nNOS and NO receptors. Further downstream, untangling the
molecular mechanisms of short-term and long-term alterations occur-
ring as a result of cGMP elevation, particularly when PKG activation
is involved, will be challenging. Finally, there appears to be another,
hitherto unsuspected, source of NO that may impinge importantly on
CNS function, namely the capillary endothelial cells. The meaning of
this line of communication is speculative but it is likely to convey a
different type of message from that generated at synapses because of
its global and more persistent (but low-level) nature, one that may
translate peripheral signals, such as from hormones, into alterations in
CNS function, or ‘prime’ neuronal responsiveness to synaptically
released NO or other transmitters.
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