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Abstract

Monitoring aboveground carbon stocks and fluxes from tropical deforestation and forest

degradation is important for mitigating climate change and improving forest management.

However, high temporal and spatial resolution analyses are rare. This study presents the

most detailed tracking of aboveground carbon over time, with yearly, quarterly and monthly

estimations of emissions using the stock-difference approach and masked by the forest loss

layer of Global Forest Watch. We generated high spatial resolution (1-ha) monitoring of

aboveground carbon density (ACD) and emissions (ACE) in Peru by incorporating hundreds

of thousands of Planet Dove satellite images, Sentinel-1 radar, topography and airborne

LiDAR, embedded into a deep learning regression workflow using high-performance com-

puting. Consistent ACD results were obtained for all quarters and months analyzed, with R2

values of 0.75–0.78, and root mean square errors (RMSE) between 20.6 and 22.0 Mg C ha-

1. A total of 7.138 Pg C was estimated for Peru with annual ACE of 20.08 Tg C between the

third quarters of 2017 and 2018, respectively, or 23.4% higher than estimates from the FAO

Global Forest Resources Assessment. Analyzed quarterly, the spatial evolution of ACE

revealed 11.5 Tg C, 6.6 Tg C, 8.6 Tg C, and 10.1 Tg C lost between the third quarters of

2017 and 2018. Moreover, our monthly analysis for the dry season reveals the evolution of

ACE at unprecedented temporal detail. We discuss environmental controls over ACE and

provide a spatially explicit tool for enhanced forest carbon management at scale.

Introduction

Tropical forests are an important asset in mitigating climate change by limiting carbon dioxide

concentrations in the atmosphere [1]. However, the tropics are a hotspot of global land-use

change resulting in deforestation and forest degradation [2], contributing up to 10% of the

world’s total annual emissions [3]. To incentivize tropical countries to better manage their for-

ests, the United Nations Framework Convention on Climate Change (UNFCCC) created a

mechanism to reduce emissions from deforestation and forest degradation (REDD+) [4].

Countries need to report on their forest carbon stocks and emissions, but the estimates vary

greatly between studies due to different data sources and methodologies [5, 6], and countries
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often under-report their forest losses [7]. There continues to be a need for operational moni-

toring of tropical forests with increased spatial and temporal detail [8, 9].

Remote sensing technologies are widely used to provide cost-effective solutions for map-

ping and monitoring aboveground carbon [10]. Using national forest plot networks in tropical

countries [11], aboveground carbon density (ACD) is estimated using allometric equations

based on field-measured tree characteristics [12]. Airborne Light Detection and Ranging

(LiDAR) data may also be used for scaling between field and satellite data [13]. While future

space missions will directly estimate the global distribution of forest aboveground biomass

[14], current machine learning techniques can utilize passive and active remote sensing prod-

ucts to extrapolate regional measurements over larger areas [10, 15]. Although the spatial reso-

lution usually improves when going from pan-tropical to national-scale estimates of

aboveground carbon density (ACD; units Mg C ha-1), the spatially explicit temporal evolutions

of aboveground carbon stocks and emissions are still poorly known [2, 16].

This study presents an objective and practical high-resolution approach for estimating

ACD and aboveground carbon emissions (ACE) at yearly, quarterly, and monthly timesteps

and with spatially explicit detail. The emissions are estimated using the stock-difference

approach [17], previously used to quantify the aboveground carbon loss and gains over larger

time periods [3, 16, 18]. We developed a deep learning framework for the country of Peru at

1-ha resolution by ingesting more than 6 million ha of airborne LiDAR-based estimates of

ACD and scaling-up using Planet Dove multi-spectral and Sentinel-1 synthetic aperture radar

data, as well as elevation data. Due to its daily revisit frequency, Planet Dove imagery provides

sufficient cloud-free spectral data, while Sentinel-1 radar data can penetrate clouds, thus pro-

viding up to monthly national-scale coverage of Peru. The final ACE were masked using the

Forest Loss layer from the Global Forest Watch datasets [19] to minimize possible artifacts on

input datasets over the final ACE estimates. Our mapped ACD and ACE were assessed in con-

junction with a series of environmental factors (topography, vegetation, climate). Peru was

chosen because it is one of the most biologically diverse regions of Amazonia [20], with high

forest cover, moderate deforestation rates, but with trends of increasing deforestation and for-

est degradation [21]. Our current approach represents a step towards a near-real time moni-

toring system for tropical aboveground carbon.

Methods

Remotely sensed estimators of ACD

Planet Dove satellites were used because of their ability to cover the Earth’s land area daily at a

spatial resolution of 3.7 m with four spectral channels: blue (455–515 nm), green (500–590

nm), red (590–670 nm), and near-infrared (780–860 nm) [22]. This high temporal revisit fre-

quency increased the opportunity of capturing cloud-free images and allowed us to generate

five quarterly mosaics and three monthly mosaics. These mosaics were created by combining

thousands of orthorectified scene products, normalized for sun angle correction and previ-

ously processed for top of atmosphere radiance and apparent surface reflectance using atmo-

spheric correction and orthorectification [23]. We used quarterly mosaics in the third and

fourth quarters of 2017 (Q3, Q4), and first, second and third quarters of 2018 (Q1, Q2, Q3).

The monthly mosaics were created for the months within Q3 2018, namely July, August, and

September. To do so, between 64,075 and 101,015 Planet Dove scenes were needed for the

quarterly mosaics and between 45,344 and 58,528 for the monthly mosaics (S1 Fig). After

mosaicking, residual cloud cover was calculated as the percentage of pixels with clouds after

applying Planet’s Unusable Data Mask for each scene considered in the mosaicking process
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[23]. The residual cloud cover was very low (<4%) except for the quarterly mosaic in the

cloudiest quarter, Q1 of 2018, at 15.3% (S1 Fig).

The eight resulting Planet Dove mosaics were generated by transforming the surface reflec-

tance of each Dove scene using a linear fit with co-registered Landsat data from a similar sea-

son. This normalization approach aims to minimize scene-to-scene variability, thus enhancing

the spatial consistency of the final product. Ultimately, a gradient reconstruction was applied

using a seamline removal algorithm to create a long-wavelength adjustment to intensity near

boundaries of adjacent scenes, thus obtaining cloud-free, nearly seamless mosaics at 2.34 m

spatial resolution (for technical details, see [24]). During the seamline removal, each scene is

“flexed” independently to match its neighbor, with values near a scene boundary changing

more than values away from a scene boundary [24]. We then derived the Normalized Differ-

ence Vegetation Index (NDVI) [25], sensitive to chlorophyll content and sufficiently stable for

comparing seasonal changes in vegetation growth [26], and Green Normalized Difference

Vegetation Index (GNDVI) [27], useful in separating stressed and senescent vegetation from

live green vegetation [28].

The Sentinel-1 mission from Copernicus involves two C-band Synthetic Aperture Radar

(SAR) satellites able to penetrate through clouds, thereby complementing optical-based satel-

lite mosaics [10] and revealing forest canopy structural characteristics. We selected the images

acquired in interferometric wide swath mode of VH and VV polarizations [29], previously

shown as good predictors in ACD estimation [30]. Google Earth Engine (GEE) [31] was used

to create two Sentinel-1 VH and VV mosaics (10 m spatial resolution) by taking the median

value for each time period of Dove mosaics. The scenes composing a mosaic are available in

the GEE, pre-processed for thermal noise removal, radiometric calibration and terrain correc-

tion [31, 32]. To account for the influence of topography in the distribution of aboveground

carbon, we included Peru-wide elevation information obtained from the Shuttle Radar Topog-

raphy Mission (SRTM), at 30 m spatial resolution [33]. Topography, among other factors, set

fundamental limits on the amount and distribution of aboveground carbon [34]. The blue

band from Dove mosaics was removed from the analysis due to its sensitivity to atmospheric

artifacts. The rest of biophysical variables (green, red, near-infrared bands, NDVI, GNDVI,

Sentinel-1 VH and VV, SRTM elevation) were resampled to 1 ha resolution, the official report-

ing unit for carbon stocks. From a modeling perspective, elevation and spatial information are

controlling the spatial distribution of aboveground carbon, while Planet Dove and Sentinel-1

features provide information related to vegetation condition and growth, canopy structure

and forest disturbances.

Airborne LiDAR canopy heights and ACD estimates

The airborne LiDAR data were acquired during two flight campaigns in 2011 and 2013 with

the Global Airborne Observatory (GAO; formerly Carnegie Airborne Observatory, CAO),

using the Airborne Taxonomic Mapping System (AToMS) instruments onboard the aircraft

[35]. Using a national stratification based on geologic substrate, soils, topography and shifts in

community composition, GAO acquired 278 trillion precisely georeferenced LiDAR points.

An elaborate workflow was deployed in order to extract highly accurate first and last returns

from the LiDAR points, which were further used to obtain a digital terrain model (DTM) and

a digital surface model (DSM) by taking the last and first returns, respectively [34]. By sub-

tracting the DTM from the DSM, they obtained top-of-canopy height (TCH) measurements at

1.1 m for 6,176,586 ha across Peru, which were resampled to 1 ha grid cells overlapping the

rest of remotely sensed data used in this study. TCH alone is highly correlated with ACD, so

LiDAR-based ACD estimates were derived using an equation proposed by Asner et al. [34],
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based on correlating 272 field-based estimates of ACD with TCH (Eq 1), which resulted in a

mean error of 11.6%.

ACD ¼ 0:8245� TCH1:573 ð1Þ

Deep learning estimation and validation of ACD

Deep learning neural networks have become popular tools to estimate aboveground forest bio-

mass [36, 37] or ACD [30, 38], having a powerful capacity to learn from large and complex

data using neurons to link input features to a response variable [39]. The model hyper-parame-

ters were iteratively tuned to create a wide and deep neural network architecture using five lay-

ers, with three hidden layers of 250 neurons each. A rectified linear unit activation function for

the hidden layers and a linear activation function for the output layer ensured the capabilities

of the model to learn non-linear complex relationships between the input features and

response variable. The mean absolute error was used as a loss function with an Adam opti-

mizer [40]. Except for the response variable (LiDAR-based ACD), all other environmental fea-

tures were normalized to a common range of values (0–1) because neural networks are

sensitive to this issue. Beyond the Dove, Sentinel-1 and SRTM elevation features, we also

included in the neural network model the spatial location (x, y positions) because this was

shown to outperform machine learning regression models without spatial contextual modeling

for ACD estimation [41].

The same architecture of the model was applied for each period analyzed, with Planet

Dove, Sentinel-1, elevation and spatial context as input features to upscale airborne LiDAR

ACD estimates. The LiDAR-based ACD estimates were split into 80% training samples and

20% validation samples. The training samples were split again into 80% training and 20%

validation samples to create five deep learning estimates that were ultimately averaged into

a wall-to-wall Peru map of ACD estimates for each period analyzed. The remaining 20% of

samples were not used for training the model and were solely used to validate the final ACD

estimates.

The uncertainty of our ACD estimates was evaluated by creating continuous nationwide

spatially explicit maps for each 1-ha mapping unit with absolute uncertainty (root mean square

error, RMSE) and relative uncertainty (RMSE percentage of estimated ACD). These maps

were obtained by binning the estimated ACD values in 10 bins, calculating the RMSE for each

bin and fitting polynomial and logarithmic functions for absolute and relative uncertainty,

respectively. These types of functions were those who gave the highest R2 with significant p

value. When applied for each 1-ha pixel, these fitted functions led to maps with continuous

variation of uncertainty throughout Peru. Besides this first type of uncertainty, we also consid-

ered the 11.6% error in correlating field-based estimates with airborne LiDAR TCH [34]

which was combined with our relative uncertainty by computing the square root of the two

squared errors.

ACE: Aboveground carbon emissions

From the quarterly and monthly deep learning estimates of ACD, we created estimates of ACE

by subtracting Q3s of 2017 and 2018 (yearly emissions), each consecutive quarter (quarterly

emissions) and each consecutive month (monthly emissions) (S2 Fig). To protect the final

ACE from artifacts propagated by the input datasets (spectral and radiometric artifacts, cloud

coverage), the emissions were masked using the Forest Loss layer, part of the Global Forest

Watch datasets [19]. Since the Forest Loss layer is aggregated yearly, the corresponding time

period for each ACE estimate was used (2017, 2018 or both aggregated).
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Results

ACD estimation and uncertainty

Nationwide, model-based ACD estimates for all quarters had R2 values of 0.75–0.78 relative to

airborne LiDAR-based ACD, with the lowest value for the cloudiest quarter (Q1 2018) and

higher values for drier quarters (Fig 1). The root mean square error (RMSE) for each quarter

followed the same pattern, with values ranging from 20.6 to 22.0 Mg C ha-1 (Table 1). All

monthly analyses had R2 of 0.78 and RMSE values around 20.7 Mg C ha-1. These statistics

were calculated after validating the results against the 20% (988,167 ha) of LiDAR-based ACD

estimates, held out from training the deep learning models.

Fig 1. Density scatter plots between our deep learning model-estimated ACD against 20% hold-out airborne LiDAR-based ACD (Mg C ha-1). Here are shown (a)

the highest accurate model, Q3 of 2017 and (b) the least accurate model, Q1 of 2018. The 1:1 line is shown with red and the trend line is shown with black. R2 and RMSE

(Mg C ha-1) values are shown in the upper left part. In (c) and (d) are shown the absolute RMSE (Mg C ha-1, black) and relative RMSE (%, blue) values from the

estimated ACD for the two models shown in (a) and (b), respectively. These uncertainties were obtained by grouping the RMSE values in 10 bins and fitting polynomial

and logarithmic functions for the absolute and relative RMSE, respectively. Applied on each 1-ha pixel, these fitted functions gave maps of continuous variation of ACD

estimation uncertainty. Each trend line depicted represents the fitted function with confidence intervals.

https://doi.org/10.1371/journal.pone.0241418.g001
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Generating spatially explicit errors for each 1-ha pixel of Peru resulted in a consistent pat-

tern for RMSE across all five quarters and three months analyzed (Fig 1). The absolute RMSE

values increased up to 23–25 Mg C ha-1 for estimated ACD values around 70 Mg C ha-1, with

higher RMSE for cloudier quarters. The RMSE values then decreased to 18 Mg C ha-1 for high

estimated ACD values (100–150 Mg C ha-1). For very high estimated ACD values (>150 Mg C

ha-1) the RMSE values increased due to the saturation of input variables to higher biomass val-

ues and reduced representativeness of the LiDAR samples for these extreme ACD values (Fig

1).

When the absolute RMSE value for each pixel was transformed into %RMSE of estimated

ACD, the logarithmic function fitted showed a decline in the relative RMSE with the increase

of estimated ACD values (Fig 1). Estimated ACD values higher than 100 Mg C ha-1 had declin-

ing relative RMSE from 20% down to 10% (Fig 1). These small relative RMSE for high ACD is

desirable when mapping ACD, since the majority of the carbon is stored in tall and large trees.

Large-scale ACD and ACE

The nationwide spatial distribution of ACD was highly influenced by environmental condi-

tions (Fig 2). Lowland Amazonian rainforest was the highest aboveground carbon storage eco-

system, with values exceeding 150 Mg C ha-1, while the high Andes and drier coastal regions

were relatively low in aboveground carbon storage (Fig 2). The combined uncertainties

resulted from our estimation of ACD and the calibration of field-estimated ACD with airborne

LiDAR TCH measurements followed the same environmental gradients, with uncertainties for

each 1-ha pixel lower than 20% for ACD values higher than 100 Mg C ha-1 (Fig 2).

The yearly ACE (Tg C) for Peru totaled 20.08 Tg C. Among the 10 legal regions harboring

most of the aboveground carbon in Peru, Loreto (3.95 Tg C), Ucayali (3.04 Tg C) and San

Martin (3.04 Tg C) were the leading regions for annual ACE, followed by Huanuco (2.47 Tg

C), Madre de Dios (1.86 Tg C) and Junin (1.66 Tg C) (Fig 3). However, when ACE were

weighted by the total amount of carbon stored for each region, then Huanuco (1.79%), Junin

(1.01%), San Martin (0.94%) and Pasco (0.71%) were the top emitters with alarming rates for a

single year. On the other side, Loreto (0.10%), Madre de Dios (0.22%), and Ucayali (0.29%)

had lower percentages of ACE in relation to the total amount of carbon stored, due to their

larger extent and mostly comprising the Amazonian rainforest.

The pattern of quarterly ACE between the dry seasons of 2017 and 2018 was influenced by

climatic conditions, with most ACE occurring in or around the dry season (from Q3 to Q4 in

2017 and from Q2 to Q3 in 2018) (Fig 4). Lowest quarterly ACE was in Q1 of 2018, the cloudi-

est quarter analyzed. The decline in ACE from Q4 of 2017 to Q1 of 2018 reached 73.1% for

Puno, 71.4% for Cusco, 52.0% for Junin and 50.0% for Amazonas (Fig 4). The quarterly ACE

Table 1. Model-based ACD validation for all periods analyzed, showing the mean absolute error (MAE, Mg C ha-

1), root mean square error (RMSE, Mg C ha-1) and R2.

Year Period MAE RMSE R2

2017 Q3 14.31 20.55 0.78

Q4 14.74 21.03 0.77

2018 Q1 15.49 21.98 0.75

Q2 14.48 20.76 0.78

Q3 14.56 20.82 0.78

Jul 14.40 20.66 0.78

Aug 14.51 20.79 0.78

Sep 14.52 20.77 0.78

https://doi.org/10.1371/journal.pone.0241418.t001
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trend increased back towards the Q3 of 2018, with Loreto (2.44 Tg C), San Martin (1.69 Tg C),

Ucayali (1.36 Tg C), and Madre de Dios (1.07 Tg C) emitting more than 1 Tg C. This regional

trend for quarterly ACE is maintained at the national level, with 11.54 Tg C (31.36% of yearly

ACE) emitted in Q4 of 2017, 6.62 Tg C (17.99%) in Q1, 8.55 Tg C (23.23%) in Q2, and 10.09

Tg C (27.42%) in Q3 of 2018.

Monthly ACE totaled 6.93 Tg C in August and 6.57 Tg C in September 2018, with Loreto,

San Martin, Ucayali, Juanuco, and Madre de Dios as leading regions. Transitioning from

yearly to quarterly and then to monthly ACE might have overestimated the total ACE due to

the masking of the final results using yearly forest loss masks.

Environmental controls on ACE distribution

The distribution of ACE was analyzed in conjunction with climatic and topographic condi-

tions throughout Peru. The yearly ACE patterns in relation to the four environmental factors

were similar to those of the ACD distribution. Therefore, the higher the mean annual tempera-

ture, the higher the ACE, with a maximum of 7.4 Tg C emitted for the interval of 26–27˚C.

Fig 2. The country-wide ACD estimation and associated uncertainty. Shown here are the (a) ACD (Mg C ha-1) for Q3 2018, the most recent period analyzed and its

(b) associated combined relative uncertainty (% RMSE).

https://doi.org/10.1371/journal.pone.0241418.g002
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Relative to annual precipitation, most of the ACE happened in regions with 1400–2400 mm.

At lower elevation and on shallow slopes, ACE was higher, with 9.6 Tg C emitted only for ele-

vation between 100–300 m.

When analyzing quarterly ACE, the pattern for all four environmental variables was similar,

with the highest emissions in Q4 of 2017 and Q3 of 2018. Lower ACE occurred in Q1 and Q2

of 2018 (Fig 5). Interestingly, the quarterly distribution of ACE between 0 and 100 m was not

following this trend, having Q1 emissions the highest (Fig 5C). This was attributable to the

meandering of the rivers (non-anthropogenic deforestation) in the lowland regions of Ucayali

and Loreto, which happened in the rainy season overlapping Q1 and Q2.

Aboveground carbon protection and threats

From 7.138 Pg C of Peru’s total aboveground forest carbon, 3.042 Pg C occurred in protected

areas. National parks (1.015 Pg C) and buffer areas (1.079 Pg C) stored most of this carbon in

lowland Amazonia and the Andean highlands. Other forms of protection, like national

reserves, regional conservation areas or communal reserves, stored 0.948 Pg C. Different levels

of protection and the wide range of enforcement levels were reflected in annual ACE, which

were low for national parks and reserves (0.23 and 0.15 Tg C respectively), but very high for

their buffer areas, with 4.77 Tg C. In general, the quarterly ACE were higher towards the dry

season and lower otherwise, but there was a high variability on the quarterly distribution of

ACE for protected areas.

Fig 3. Regional aboveground carbon stocks and emissions statistics. Aboveground carbon stocks for the most recent

period analyzed, Q3 of 2018 (Pg C, blue bars), in relation to the yearly ACE (Tg C, black diamonds).

https://doi.org/10.1371/journal.pone.0241418.g003
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Four protected areas had annual ACE higher than 50 Gg C, with diverse factors leading to

emissions (Fig 6). The National Park Pacaya-Samiria overlaps large portions of swamp forest

in the region of Loreto, but the triggering factor for the 117.5 Gg C emissions was the intense

meandering of the rivers during and after the rainy season (Fig 7A). This was visible on the

spatially explicit maps and statistics of quarterly analysis that had high values of ACE in Q1,

Q2, and Q3 of 2018 (Fig 6). Bahuaja-Sonene National Park (73.4 Gg C annual ACE) was

threatened by the expansion of gold mining activities in the Madre de Dios region, as well as

deforestation and forest degradation happened at the border with Bolivia (Fig 7B). The Com-

munal Reserve El Sira, at the intersection of Ucayali, Huanuco, and Pasco regions, was highly

exposed by the urban and agricultural expansions south of the city of Pucallpa (Fig 7C). Last

but not least, National Park Del Manu recorded 57.2 Gg C of annual ACE caused by spurious

forest degradation along the main rivers.

The buffer zones had multiple uses and lower levels of enforcement and were exposed to a

multitude of threats (Fig 8). The buffer zone for the National Park Cordillera Azul recorded

the highest annual ACE, 1715 Gg C, with high degradation areas, especially south of the city of

Tarapoto (Fig 7D). The buffer zone of Communal Reserve El Sira emitted 812 Gg C from

intense deforestation south of the city of Pucallpa (Fig 7C), while the buffer zone of National

Reserve Pacaya-Samiria (236 Gg C annual ACE) was affected by intense river meandering and

deforestation along the Iquitos-Nauta road (Fig 7A). The buffer zones of National Reserve

Tambopata (384 Gg C) and National Park Bahuaja-Sonene (0282 Gg C) in southeastern Peru

Fig 4. Quarterly ACE statistics at regional level. (a) Yearly distribution of quarterly ACE statistics for all legal regions in Peru and (b) the quarterly ACE values for these

regions (Tg C), between Q4 of 2017 and Q3 of 2018.

https://doi.org/10.1371/journal.pone.0241418.g004
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had large areas affected by illegal gold mining, deforestation along the Interoceanic Highway

or along the border with Bolivia (Figs 7E and 8).

Discussion

We generated and presented a high spatial and temporal resolution analysis of ACE for Peru

by using a combination of airborne LiDAR, Planet Dove images and Sentinel-1 radar data

within a deep learning model framework. To our knowledge, this is to-date the most detailed

large-scale aboveground carbon mapping analysis through time, and provides a new contribu-

tion to our understanding of forest carbon dynamics in the region. Previous studies have

developed modeling approaches of carbon emissions for the pantropical level using remote

sensing data [16] or in combination with a carbon bookkeeping model [3], but with lower

Fig 5. Environmental controls on ACE distribution. Quarterly ACE in relation to the (a) mean annual temperature, (b) annual precipitation, (c) elevation,

and (d) slope.

https://doi.org/10.1371/journal.pone.0241418.g005
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spatial and temporal resolution. Spatially explicit ACE were derived by using the stock-differ-

ence method in line with the IPCC guidelines [17] at a land management scale (1 ha), thereby

directly supporting mitigation and reporting by land managers and decision-makers.

The temporally detailed aspect of our study was achieved by using daily Planet Dove images

and incorporating them into monthly and quarterly mosaics. Planet Dove images have previ-

ously been used for different land cover applications [42, 43] and more recently for estimating

ACD [18]. Computational advances allowed us to use more than 100,000 high-resolution

Dove scenes for a single mosaic that ensured the least amount of cloud cover after cloud mask-

ing. Even so, creating monthly mosaics for the wettest periods of the year proved challenging

and only feasible for the drier months. This would have not been possible with other optical

sensors used in estimating biomass or carbon stocks, like Sentinel-2 [44], Landsat-8 [34, 45,

46] or MODIS. In addition, the Sentinel-1’s ability to penetrate the clouds was demonstrated

in the past for forest monitoring [47, 48] and was proven a good addition to the spectral infor-

mation of Planet Dove imagery. Our approach is flexible and Sentinel-2 or Landsat-8 are viable

alternatives to Planet imagery, with higher spectral resolution, but lower spatial and temporal

resolutions. Higher spectral resolution would further increase the accuracy of ACD estimates,

as was demonstrated using shortwave infrared spectral bands from Landsat, sensitive to char-

acteristics of closed canopy forests [46], or red-edge spectral bands from Sentinel-2 [49]. The

new generation of Planet Super Dove satellites now acquire images with eight spectral bands,

and will eventually offer daily high spatial and spectral resolution coverage.

Fig 6. National protected areas with (a) high annual ACE (in Gg C) and (b) the quarterly ACE results for these areas (in Gg C). Abbreviations: National Park (NP),

National Reserve (NR), Communal Reserve (CR), Protection Forest (PF), National Sanctuary (NS). Note that 1,000 Gg C = 1 Tg C.

https://doi.org/10.1371/journal.pone.0241418.g006

PLOS ONE Near-real time aboveground carbon emissions in Peru

PLOS ONE | https://doi.org/10.1371/journal.pone.0241418 November 2, 2020 11 / 20

https://doi.org/10.1371/journal.pone.0241418.g006
https://doi.org/10.1371/journal.pone.0241418


PLOS ONE Near-real time aboveground carbon emissions in Peru

PLOS ONE | https://doi.org/10.1371/journal.pone.0241418 November 2, 2020 12 / 20

https://doi.org/10.1371/journal.pone.0241418


Spatial context information (geographic coordinates) can describe broad-scale trends in the

pattern of the aboveground carbon distribution [41, 50]. A good ACD estimation model

should be able to predict small-scale forest changes and including the spatial context in a

regression can lead to incorrectly rejecting null hypotheses of no relationship [50]. In our case,

that would mean the lack of a model’s ability to identify small-scale changes, like deforestation

surrounded by intact forest. However, including predictors that depict these changes (spectral,

vegetation indices, and radar) overpass the importance of the spatial context and these small-

scale disturbances are captured by the ACD estimations and, furthermore, present in the ACE

estimations (Fig 9). An important reason for using spatial context in our modelling framework

was to minimize the influence of possible seamlines from the Planet Dove and Sentinel-1

Peru-wide mosaics in the final ACD estimations.

A total aboveground carbon stock of 7.138 Pg C was estimated for 2018, a value similar to

6.922 Pg C in 2012 [34] and to 6.928 Pg C in 2017 [18], which used the 1-ha resolution for esti-

mations. It is also similar to 6.903 Pg carbon in aboveground biomass reported in 2010 by the

FAO’s Global Forest Resources Assessment (GFRA) [51], but lower than 11.564 Pg C reported

Fig 7. Five examples of ACD distribution in 2018’s Q3 and annual ACE for protected areas and their buffer zones. The location of each

subset is depicted on the map of Peru (upper left), with (a) Pacaya-Samiria NP, (b) Bahuaja-Sonene NP, (c) El Sira CR, (d) Cordillera Azul

NP, and (e) Tambopata NR showing examples of forest disturbance entering the protected areas (high level of enforcement) and highly

affecting their buffer zones (low level of enforcement, multiple uses).

https://doi.org/10.1371/journal.pone.0241418.g007

Fig 8. Buffer zones of national protected areas with (a) high annual ACE (in Gg C) and (b) the quarterly ACE results for these areas (in Gg C). Abbreviations: National

Park (NP), National Reserve (NR), Communal Reserve (CR), Protection Forest (PF), National Sanctuary (NS). Note that 1,000 Gg C = 1 Tg C.

https://doi.org/10.1371/journal.pone.0241418.g008
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by Baccini et al. [3], ~9.3 Pg C found by Saatchi et al. [52], and 9.79 Pg C reported by Avitabile

et al. [53], which used lower resolution remotely sensed data. We obtained a low RMSE (20.82

Mg C ha-1) and high R2 value (0.78) for the dry season of 2018, with consistent results over all

the quarterly and monthly periods analyzed. The remaining 22–25% of unexplained variance

can be minimized by using additional remotely sensed predictors and image processing tech-

niques. For example, texture analysis on high resolution Planet data [18, 54], hyperspectral

data [55], or other multispectral imagery [56–58] have been successfully used for aboveground

biomass and carbon estimation purposes. However, using extra predictors will require a trade-

off between accuracy of the model, computational resources needed and the temporal fre-

quency of the analysis.

Annual ACE totaled 20.08 Tg C, which is 24.3% higher than the annual ACE reported by

FAO’s GFRA between 2005 and 2010 (15.2 Tg C) [51], but similar with the annual ACE rate

reported by Csillik et al. [18] between 2012 and 2017 (19.2 Tg C). Interestingly, the summed

quarterly ACE embedded into the annual timeline of 20.08 Tg C totaled 36.8 Tg C, an 83%

increase in ACE when the analysis was carried out quarterly instead of annually. Thus, track-

ing gross changes in carbon stocks more closely over time generates a more detailed account-

ing of losses (Fig 9). Moreover, using short time intervals in the mosaicking of Planet Dove

images increases the likelihood that subsequent analyses will depict the carbon-change events

between observation periods. Even more, the monthly mosaics detected what is happening in

a given quarter and what factors lead to an increase or decrease in the ACE (Fig 9). In our case,

the monthly analysis detected 13.5 Tg C inside Q3 of 2018. The quarterly and monthly overes-

timations can also be partially attributable to masking these ACE estimates using the yearly

Forest Loss layer from Global Forest Watch [19]. Thus, there is a need for frequent monitoring

of forest change [47, 59, 60] that can be coupled with the increased frequency of ACE estimates

for near-real time operational applications. Careful consideration needs to be given to estimat-

ing the uncertainties of ACE and how these propagate through the estimation process, espe-

cially over such small periods. Nevertheless, more accurate and updated canopy height

measurements can help to reduce the uncertainty in ACD estimates [61] by minimizing the

temporal mismatch between the input and target datasets [53].

Our high-resolution ACE monitoring approach identified biogeographically relevant tar-

gets for carbon storage management at the national scale [34], and showed the areas most

threatened by land conversion processes. With only 1.963 Pg C protected in different national,

regional or communal forms of protection and another 1.079 Pg C in their highly exposed

buffer zones, our results are helpful in order to increase protection, enhance the management

and minimize the effects of carbon emissions with near-real time analysis of ACE. With con-

sistent results over all periods analyzed, our approach can be readily updated over time and

used for monitoring purposes in Peru and other countries.

Deep learning workflows are increasingly used to uncover patterns and insights from geos-

patial data [62, 63]. We developed a deep learning model workflow capable of capturing com-

plex non-linear relationships between target and input variables in a high-performance

computing environment. Deep learning was previously used for aboveground biomass [36]

and ACD estimation [30, 38] over smaller regions, but our deep learning model was applied

on a larger area (>128.5 mil ha). An important advantage of our study is the creation of a sin-

gle, nationwide model that can ingest the enormous amount of data required for high-resolu-

tion reporting in space and time.

Fig 9. Examples of ACE tracked over time with yearly, quarterly, and monthly emissions. The first row depicts the ACD situation in Q3 of 2018,

followed by the yearly, quarterly and monthly ACE. Coordinates of each scene are shown above each column.

https://doi.org/10.1371/journal.pone.0241418.g009
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One limitation of our study relates to the time difference between the airborne LiDAR cam-

paigns and Planet Dove and Sentinel-1 datasets. We are aware that land cover changes

occurred between 2011–2013 and 2017–2018 so an initial screening of the 6,761,624 ha of

LiDAR sampling [34] was performed by removing possible inconsistencies between the time-

frame analyzed, resulting in 6,176,586 ha of LiDAR samples used in our analysis. The influence

of the small percentage of mismatch due to land cover changes is minimized by the vast

amount of data used in the analysis, as well as using a spatial resolution of 1 ha for ACD and

ACE mapping. Future studies can use current spaceborne LiDAR missions, like GEDI (Global

Ecosystems Dynamics Investigator) [64], for updated large-scale analysis of ACD and ACE.

Monitoring ACE in tropical forests is of major interest in the context of climate change mit-

igation [4]. International agreements such as the REDD+ initiative are committed to reducing

deforestation and forest degradation related to anthropogenic actions, but policy measures are

still difficult and hard to implement [2]. The proposed method detects both natural and

anthropogenic disturbances and further developments need to focus on better separating the

types and sources of deforestation and forest degradation. Our study aimed to advance the

aboveground carbon monitoring through an objective and spatially explicit methodology that

brings the monitoring capabilities towards near-real time, more effective and actionable.

Conclusions

We developed a high spatial and temporal resolution approach for estimating ACE in Peru

using a deep learning workflow combined with Planet Dove, Sentinel-1 data, and airborne

LiDAR. The ACE estimates were masked using the Forest Loss layer provided by the Global

Forest Watch [19], thus providing enhanced results that better overlap the land-use change for

each period analyzed. The provisioning of annual, quarterly and monthly estimates of ACE

represents an important step towards a near-real time monitoring system for tropical above-

ground carbon.
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