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Abstract: In the central nervous system (CNS), the expression of molecules is strictly regulated during development. 
Control of the spatiotemporal expression of molecules is a mechanism not only to construct the functional neuronal net-
work but also to adjust the network in response to new information from outside of the individual, i.e., through learning 
and memory. Among the functional molecules in the CNS, one of the best-studied groups is the neurotrophins, which are 
nerve growth factor (NGF)-related gene family molecules. Neurotrophins include NGF, brain-derived neurotrophic factor 
(BDNF), neurotrophin 3 (NT-3), and NT-4/5 in the mammal. Among neurotrophins and their receptors, BDNF and tro-
pomyosin-related kinases B (TrkB) are enriched in the CNS. In the CNS, the BDNF-TrkB signaling pathway fulfills a 
wide variety of functions throughout life, such as cell survival, migration, outgrowth of axons and dendrites, synaptogene-
sis, synaptic transmission, and remodeling of synapses. Although the same ligand and receptor, BDNF and TrkB, act in 
these various developmental events, we do not yet understand what kind of mechanism provokes the functional multiplic-
ity of the BDNF-TrkB signaling pathway. In this review, we discuss the mechanism that elicits the variety of functions 
performed by the BDNF-TrkB signaling pathway in the CNS as a tool of pharmacological therapy. 
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INTRODUCTION 

 The neurotrophins are the nerve growth factor (NGF)-
related gene family molecules, including NGF, brain-derived 
neurotrophic factor (BDNF), neurotrophin-3 (NT-3), and 
NT-4/5. In the central nervous system (CNS), neurotrophins 
are expressed from the early embryonic stage to the adult 
stage and regulate a wide variety of functions, such as cell 
migration, outgrowth of neurites, synaptogenesis, cell sur-
vival and death, neuronal transmission, and synaptic plastic-
ity [24,59,66,83,106,115,125]. These physiological functions 
of neurotrophins are induced by their specific receptors ex-
pressed on target cells. The neurotrophin receptors are cate-
gorized into two groups based on their binding affinities for 
neurotrophins [10,18]. One is the high-affinity tropomyosin-
related kinase (Trk) receptor family, which includes TrkA, 
TrkB, and TrkC. NGF specifically recognizes TrkA, both 
BDNF and NT-4/5 are ligands for TrkB, and NT-3 binds to 
all Trks, although TrkC mediates the primary biological 
functions of NT-3. Another is low-affinity p75 neurotrophin 
receptor that is one of tumor necrosis factor (TNF) receptor 
family. This receptor can bind to all neurotrophins and en-
hance or suppress Trk signaling by the interaction between 
Trk and p75 [15], and transduce its own signals that regulate 
cell apoptosis or survive [28,110]. 

 How do neurotrophins elicit their various functions? One 
way is by combining signal transducers [115]. Trks and p75 
have many associated proteins that are the starting points of 
their signaling cascades [59,106,110,115]. These adaptors  
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uniformly exist from early stages to adulthood and can trans-
mit the signals of other growth factors, neurotransmitters, 
and hormones [31,80]. The associated proteins of all Trk 
receptors closely resemble each other [59,106,115], so the 
differences in adaptor protein combination can not explain 
not only the characteristic function of each neurotrophin but 
also developmental changes of neurotrophin functions. 

 Another possible mechanism by which neurotrophins 
elicit functions is the alternative splicing of the neurotrophin 
receptors. Generally, alternative splicing makes it possible to 
produce functionally distinct proteins that participate in di-
verse cellular processes, including differentiation and devel-
opment [45,120]. Among Trk and p75 receptors, there are 
some alternative spliced forms [10,110]. Recent studies have 
revealed that splice variants of Trk receptors function as 
dominant negative forms [32,42,47,70,92], or they have dis-
tinct functions via their original signaling pathway [11,93, 
96,98,109]. In this review, we focus on TrkB receptor, 
whose splice variants have been well studied, and discuss a 
new aspect of TrkB signaling for neural functions. 

STRUCTURES OF TRKB ISOFORMS 

 Among neurotrophins and their Trk receptors, BDNF and 
TrkB are enriched in the CNS [66], and they play a pivotal 
role in neural plasticity during development and in adulthood 
[19]. TrkB is a single-pass transmembrane molecule. Alter-
native splicing of the TrkB pre-mRNA from the locus on 
DNA yields at least two isoforms (Fig. 1) [86]. One is a full-
length form of TrkB, which has the tyrosine kinase domain 
in the cytosolic region and is designated as TK+. The ex-
tracellular domain of TK+ possesses three tandem leucine-
rich repeats flanked by two distinct cysteine-rich domains 
and two immunoglobulin-like domains, which are required 
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for ligand binding, from the N-terminal [10]. Another is the 
tyrosine kinase lacking isoforms, TK-, which consists of two 
isoforms, T1 and T2. These truncated isoforms contain the 
same extracellular domain, transmembrane domain, and ini-
tial 12 intracellular amino acid sequences as TK+, but they 
have the specific C-terminal sequences (11 and 9 amino acid 
residues, respectively) [10]. Interestingly, the C-terminal 
sequence of T1 is completely conserved in mammals, such 
as mice, rats, and humans [67,86,118], suggesting that this 
sequence is essential for this isoform’s function. On the other 
hand, it remains unclear if T2 is expressed in mice and hu-
man, since the T2 sequence has been detected only in rats 
[67,74,86,118]. 

EXPRESSION OF BDNF AND TRKB ISOFORMS IN 
THE CNS 

 BDNF is a secreted glycoprotein that is released from the 
pre- and postsynaptic terminals [3,36,37,51,71]. Importantly, 
the synthesis of BDNF is up-regulated in a neuronal activity-
dependent manner. BDNF mRNA and protein are both de-
tected in many CNS regions, such as the neocortex, amy-

gdala, thalamus, hypothalamus, pituitary gland, and substan-
tia nigra, suggesting an autocrine and paracrine mode of 
BDNF in those regions [57,132,133]. On the other hand, the 
synthetic and functional sites of BDNF are sometimes differ-
ent. For example, the striatum contains BDNF protein but 
does not express BDNF mRNA. A previous study showed 
the anterograde transport of BDNF from the cortex to the 
striatum [5]. Among the CNS regions, hippocampal forma-
tion has been studied the most. In the rat, the dense positive 
structures of BDNF mRNA were observed in all regions of 
the hippocampus [33,62], but no immunoreactivity was found 
in the granule cell bodies or CA1 regions [132]. However, 
the mossy fiber layer was densely immunopositive for BDNF. 
One hypothesis is that BDNF mRNA is antero-gradely trans-
ported to the axons and/or dendrites of granule cells and 
CA1 pyramidal neurons, and locally translated to BDNF pro-
tein [19,64]. In contrast, both mRNA and protein of BDNF 
are expressed in all subregions of the monkey hippocampus 
[55,102,133]. In addition, the expression pattern of BDNF 
mRNA in the human hippocampus shows good similarity to 
that in the monkey hippocampus [129]. These differences in 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. (1). Schematic representation of TrkB isoforms. 
(A) Structures of TrkB isoforms are shown. The extracellular domain (i.e., cysteine-rich, leucine-rich, cysteine-rich, and two immunoglobu-
lin-like domains), transmembrane domain, and initial 12 intracellular amino acid sequences are the same as those of T1 and T2. Truncated 
forms T1 and T2 possess 11 and 9 specific amino acid sequences, respectively. The dotted square indicates the specific sequences of trun-
cated forms of TrkB, shown in B. (B) Comparison of intracellular amino acid sequences of TrkB isoforms. The parts shown in the square are 
transmembrane domains of TrkB isoforms. Specific amino acid sequences of T1 and T2 are underlined. In A and B, the T2-specific intracel-
lular sequence is reported in the rat cerebellum. 
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BDNF expression between rodents and primates may sug-
gest different functions of BDNF in these species. 

 Previously, many studies of TrkB distribution focused on 
TK+ [6,20,131], because it is difficult to detect the im-
munoreactivity of T1. Since the T1 C-terminal is identical in 
mammals, as described above, the production of anti-T1 an-
tibody is quite difficult. Recently, our group established the 
immunohistochemistry for T1, by the treatment with gua-
nidine HCl (pH 11) that recovers the antigenicity of T1 [93-
95,98,101]. The antibody of T1 recognizes the C-terminal 12 
amino acid sequence that interacts with Rho GDI1, suggest-
ing that the associated protein of T1 Rho GDI1 inhibits the 
interaction between T1 and anti-T1 antibody. The treatment 
with guanidine may dissociate the binding between T1 and 
Rho GDI1 or denature Rho GDI1, and then the antigenicity 
of T1 would be recovered. 

 As a result of previous immunohistochemical and in situ 
hybridization studies of TK+ and T1, researchers now know 
that both TK+ and T1 are widely distributed in all regions of 
the adult CNS, including the neocortex, cerebellum, hippo-
campus, amygdala, basal ganglia, septal region, thalamus, 
hypothalamus, midbrain, brainstem, and spinal cord [9,12, 
20,41,53, 54,94,95,101,108,131]. On the other hand, western 
blot analysis with each antibody of TK+ and T1 has shown 
that the distributions of those molecules overlap considera-
bly in almost all regions of the CNS in adulthood [2,41, 
70,94,95,99,100,101]. 

CELLULAR EXPRESSION OF BDNF AND TRKB 
ISOFORMS 

 In light of the expressions of TK+ and T1 at the cellular 
level, experiments have clarified that each expression pattern 
is considerably different from the other. In the neocortex of 
the adult rat, TK+ is detected in pyramidal neurons and 
GABAergic interneurons, whereas the expression of T1 is 
observed in not only neurons but also astrocytes [97,101]. 
Similar results were obtained at the TK+ and T1 mRNA 
level [9,12,40]. Northern blot analysis demonstrated that TK- 
is expressed in neurons, astrocytes, and oligodendrocytes, 
whereas TK+ transcript is only detected in neurons [40]. 
These results suggest that the interaction of TK+ and T1 may 
occur in neurons. In glias, T1 is a major isoform among 
TrkB subtypes and is involved in the function of glias. 

EXPRESSION CHANGES OF BDNF AND TRKB ISO-
FORMS DURING DEVELOPMENT 

 The expression of BDNF is observed beginning in the 
mid-stage of development in the mammal [60,89,90,114]. 
For example, in the developing cerebral cortex of the ma-
caque monkey, which has an embryonic period of 165 days, 
BDNF mRNA was not detected before the 110th embryonic 
day (E110d), and the positive signals of BDNF were sparsely 
distributed in neocortical layers by E121d [60]. Also, at the 
protein level, BDNF content was at a low level at E120d, 
and then it gradually increased with the progress of devel-
opment [89]. The level of BDNF protein in the monkey neo-
cortex increased by 2-fold compared to the adult level at the 
early postnatal period, around postnatal 2 months (P2m), and 
decreased thereafter [89]. This increase in BDNF mRNA has 
also been reported in the human neonatal temporal cortex 

[129]. This developmental change of BDNF expression was 
also found in the rat occipital cortex, in which BDNF mRNA 
was at a low level by P10d, started to increase by 5-fold 
compared to the P10d value after the second postnatal week, 
and declined after P30d [114], indicating that this expression 
change of BDNF during development was conserved among 
mammals. 

 The developmental expression of TrkB isoforms exhibits 
a specific pattern [2,70,99]. TK+ is expressed in almost all 
regions of the CNS from the early developmental period, and 
its expression level is maintained into the adult stage. In con-
trast, the T1 expression in the forebrain, such as the neocor-
tex, hippocampus, amygdala, olfactory bulb, striatum, and 
septum, is at a very low level by the early and middle devel-
opmental stages and increases markedly at the late develop-
mental stage, with a high level of T1 expression maintained 
until the adult stage. Interestingly, the inflection points of 
both BDNF and T1 expression during development coincide 
well with the period of elimination of excessive axons and 
synaptogenesis [2,51,52,99]. 

DEVELOPMENTAL CHANGE OF TRKB DIMERI-
ZATION AND FUNCTIONS OF BDNF-TRKB SIG-
NALING 

 Neurotrophins exist in vivo as a non-covalently linked 
homodimeric protein, and the binding of neurotrophin to its 
receptor invokes the receptor dimer [10,18]. The dimeriza-
tion of receptors induces autophosphorylation in the kinase 
domain of the cytosolic region of Trk receptors, followed by 
the activation of various signaling pathways, such as the 
Ras/MAP kinase, phospholipase C (PLC), and PI3 kinase 
pathways [24,59,66,106,115]. Thus, the dimerization of Trk 
receptor is very important as a starting point of intracellular 
signaling. It is interesting to know that the pattern of TrkB 
dimerization changes during development of the monkey 
neocortex [100]. 

 In the early developmental stage of the monkey neocor-
tex, when T1 is not expressed, at embryonic day 120 (E120), 
TK+/TK+ homodimer is formed in a ligand-dependent man-
ner [100], suggesting that the signaling pathway of TK+ 
mainly works during this period. Then, the adaptor proteins 
that interacted with TK+ are activated by the TrkB ligands 
(BDNF, NT-3, and NT4/5). The main signaling pathways, 
including the PLC-γ1, Ras/MAP, and PI3K pathways, func-
tion in neuronal plasticity, neurite outgrowth and survival, 
and cell motility, respectively (Fig. 2) [59,106]. The forma-
tion of TK+ homodimer is consistent with the finding that 
these phenomena occur actively during the early develop-
mental period. In the early phase of development, the ex-
pression of BDNF is at a very low level, while the other 
TrkB ligand, NT-3, is expressed at a relatively higher level 
than its expression level at the adult stage [90]. Together 
with the fact that NT-3 can induce the dimerization of TrkB 
[100], the NT-3-TK+ signaling pathway might play an im-
portant role in the regulation of the cell cycle and migration 
[44,122]. 

 TK+/TK+ and T1/T1 homodimers are formed at the 
newborn stage (NB) of the monkey neocortex [100]. The 
number of axons in the corpus callosum and the anterior 
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commissure has been reported to reach a maximum in NB 
and to decrease to about 75% by P60 [51,52,75,76]. The in-
crease in T1 expression correlates well with the period when 
commissural axons are eliminated and synaptogenesis occurs 
[51,52,75,76,105]. This result suggests that T1 might be in-
volved in the elimination of axons. As possible mechanisms, 
the followings may be considered: 1) the expression of T1 
increases in neighbouring glial cells and T1 in glial cells 
absorbs the excess BDNF for axonal pruning, 2) in neurons, 
the increase of T1 induced the inhibition of the action of 
TK+ by the dominant effect of T1. 

 In the monkey neocortex, the density of synapses in-
creases after birth, reaches the highest level between postna-
tal 2–4 months in all cortical areas, and decreases to about 
half of the maximum level within several years after birth 
[51,52,105]. The expression of T1 increases remarkably after 
birth [2,70,99]. Interestingly, the dendritic filopodia, which 
are known precursors of synaptic spines, are induced by 
overexpression of T1 in hippocampal neurons from postnatal 
rats [49]. This outgrowth of dendritic filopodia is not ob-
served in TK+-overexpressing neurons. Thus, T1 by itself 

might be involved in synaptogenesis, although the mecha-
nism is unclear. 

 As described above, T1 participates in axon elimination, 
whereas it exhibits an increase in the number of dendritic 
filopodia. This is a contradiction, but it may be explained by 
the difference in intracellular localization of TK+ and T1, 
such as dendrites and axons. In fact, in adult brains, T1 is 
concentrated in the presynaptic site [7,103], whereas TK+ is 
localized in both pre- and postsynaptic regions [7,103,112]. 
In the developing brains, the distributions of TK+ and T1 
might be dynamically changed. 

 At the adult stage, TK-/TK- homodimer and the 
TK+/TK- heterodimer have been observed to form in the 
monkey cerebral cortex [100]. Furthermore, surprisingly, 
TK+ homodimer is not formed at adulthood. Although it 
would be very interesting to determine whether the TK+/TK- 
heterodimer can transduce the intracellular signals, T1 may 
function as a dominant negative receptor of TK+ in neurons. 
At the same time, T1 plays an important role in glial cells, 
which we discuss in the following section. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (2). TrkB signaling pathways. 
In the neuron, shown in a dotted square, BDNF induces three TrkB dimers: TK+ homodimer, TK+-T1 heterodimer, and T1 homodimer. The 
signaling cascade of TK+ homodimer has been well studied. Activation of PLCγ results in the activation of PKC, which promotes synaptic 
plasticity. Activation of Shc protein induces activation of the PI3K-Akt and Ras-MAP kinase signaling cascades, which regulate cell survival 
and differentiation, respectively. It is unclear whether TK+-T1 heterodimer can transduce the signals. Furthermore, T1 plays an important 
role in synaptic transmission, although the mechanism is not understood. Since T1 homodimer has not yet been observed in neurons, further 
investigation is needed. In the astrocyte, which is shown in a gray square, T1 is a major isoform of TrkB receptors. The binding of BDNF to 
T1 induces T1 homodimer, which results in the release of Rho GDI1 and the morphological changes of astrocytes. Moreover, T1 is involved 
in a Ca2+ influx in astrocytes. On the other hand, TTIP (truncated TrkB-interacting protein) is a binding protein of T1, but it is not clear 
whether it transduces the signals. 
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SIGNALING PATHWAY OF T1 

 T1 had been hypothesized to be a dominant-negative 
form of TK+ because of a lack of the tyrosine kinase domain 
and to be involved in negative functions against TK+, such 
as TK+ phosphorylation [70], calcium efflux [31], neurite 
outgrowth [42], cell survival activity [47], and gene expres-
sion by BDNF [92]. According to this hypothesis, T1 was 
postulated to form a homodimer or heterodimer with TK+, 
which prohibited TK+ signaling or limited the availability of 
BDNF to neurons by trapping excess BDNF [17]. In con-
trast, there were several reports that provided evidence 
against the hypothesis that T1 was a dominant-negative form 
of TK+. For example, several researchers showed that the 
expression of T1 increases markedly at various important 
periods in the developing mammalian CNS, such as axonal 
remodeling and synaptogenesis [2,41,99,100]. The specific 
alignment of the intracellular domain of T1 is completely 
identical among mice, rats, and humans [67,86,118], sug-
gesting that this alignment plays a unique role. In addition, 
T1 is capable of binding to BDNF at the same level as does 
TK+ [17]. Taken together with the fact that T1 has been re-
ported to mediate signal transduction (i.e., the acid metabo-
lite release from cells) [11], these findings raised the possi-
bility that T1 has its own signaling pathway.  

 Recently, T1 has been reported to possess a signaling 
pathway (Fig. 2) [96,98]. T1 is directly bound to Rho GDI1, 
a Rho guanine nucleotide dissociation inhibitor that can sta-
bilize the inactive, GDP-bound form of Rho GTPase [98]. 
The Rho signaling pathway controls the remodeling of mi-
crofilaments, intermediate filaments, and microtubules [35, 
121]. In the BDNF-T1 signaling pathway, Rho GDI1 is re-
leased from T1 in a BDNF-dependent manner, which causes 
decreases in the activities of Rho-signaling molecules such 
as RhoA, Rho-associated kinase (ROCK), p21-activated 
kinase (PAK), and extracellular-signal regulated kinase 
(ERK) 1/2 [96]. Consequently, T1 alters the cell morphology 
of astrocytes in primary cultures and acute slices [93,98]. 

 T1 has been involved in the intracellular Ca2+ influx in 
astrocytes, via PLC>IP3 production [109]. Since the PLC 
pathway plays an important role on neuronal plasticity [119], 
T1 in neurons might participate in this process. 

 Another binding protein of T1 is truncated TrkB-
interacting protein (TTIP), which is isolated from 15N neu-
roblastoma cells by coimmunoprecipitation with GST fusion 
protein containing the intracellular juxtamembrane of T1 
(Fig. 2) [73]. TTIP has a molecular weight of 61 kDa. How-
ever, BDNF stimulation cannot modulate the interaction be-
tween T1 and TTIP. It is also uncertain whether Rho GDI1 
and TTIP bind directly to the different motifs in the T1-
specific region or compete for the same binding site. Further 
studies on TTIP are needed in the future. 

REGULATION OF CELL MORPHOLOGY BY TRKB 
ISOFORMS 

 One function of the BDNF-TrkB signaling pathway is 
that it is heavily involved in the regulation of the cell mor-
phology. BDNF regulates the branching and extension of 
axons and dendrites during development both in vitro and in 
vivo [4,25-27,58,63,79,81,82,84,113]. In addition, treatment 

with BDNF increases in the number of synapses [1,4,23, 
113,116,117]. These experiments were performed using de-
veloping dissociated neurons, brain slices, and animals, sug-
gesting that TK+ mainly functioned in neurons in these stud-
ies. In the P14 ferret neocortex, where indeed the expression 
of TK+ is several times that of T1 [2], BDNF administration 
increases the length and complexity of dendrites [82,84]. 
Interestingly, the laminar specificity for neurotrophin re-
sponse is observed: neurons in layers 4 and 5 to BDNF and 
neurons in layers 5 and 6 to NT-4. In these layers that are 
responsible to TrkB ligands, TK+ like immunoreactivity is 
intensely detected at P10-24. Thus, TK+ promotes axonal 
and dendritic growth during development. 

 Studies of T1 with regard to cell morphology employed 
the strategy of T1 overexpression in cell line and slice cul-
tures. In the N2a cell line, the transient overexpression of T1 
led to a ligand-independent change of cell morphology, such 
as the growth of filopodia and processes [48]. The study 
demonstrated that deletion mutants lacking the T1 specific 
intracellular domain induce filopodia and processes, but the 
mutant lacking the extracellular domain failed to have this 
effect. In addition, p75 was not involved in this process. 
Thus, the authors suggested that the extracellular domain of 
T1 might function as a cell adhesion molecule. Another 
study in rat hippocampal primary cultures [49] showed that 
T1 induced the formation of dendritic filopodia, which oc-
curred independent of ligand formation. In contrast, the in-
teraction between T1 and p75 was essential for the induction 
of filopodia. This might have been due to material differ-
ences, such as the cell line [48] or primary cultured hippo-
campal neurons [49]. The study using P14 ferret neocortical 
slice culture showed that TK+ and T1 regulated distinct 
modes of dendritic growth [130]. The transfection of TK+ 
induced prominent outgrowth of short dendrites that ex-
tended from the cell body and the proximal region of the 
apical dendrites. In contrast, the transfection of T1 did not 
increase short dendrites near the soma, but it did elevate the 
arborization of distal dendrites. Providing exogenous ligands 
blocked the distal growth of dendrites in T1-transfected neu-
rons. Furthermore, in proximal dendrites, the treatment with 
ligands decreased dendritic complexity compared with the 
control level. Most recently, in T1-deficient mice, morpho-
logical abnormalities in the length and complexity of neu-
rons in the basolateral amygdala were described [21]. Con-
sidering that the expression of T1 increased at the stage of 
synaptogenesis, T1 might have fine-tuned the growth of 
dendrites, axons and synaptic structures, by the interaction 
with TK+. Further examination of the function of T1 in regu-
lating neuronal morphology will be interesting. 

 Most importantly, T1 plays a role on astrocyte functions. 
For example, T1 induced a rapid change of astrocytic mor-
phology via Rho GTPase in primary astrocyte cultures [98] 
and in the rat neocortex layer I [93]. Additionally, T1 con-
trolled calcium entry into astrocytes [109]. Since the release 
of BDNF is highly regulated by neuronal activity [50,71], 
these findings led us to the idea that BDNF release by neu-
ronal activities induces morphological changes of astrocytes 
in the CNS. Recent studies have shed light on the interac-
tions between neurons and glial cells [38,124,128]. In par-
ticular, researchers have demonstrated that calcium entry 



A New Aspect of the TrkB Signaling Pathway in Neural Plasticity Current Neuropharmacology, 2009, Vol. 7, No. 4    281 

into astrocytes modulated synaptic transmission [14,39]. In 
addition, astrocytic endfeet enwrap synapses [127], i.e., 
those synapses referred to as tripartite synapses [8]. Fur-
thermore, astrocytic processes surrounding active synapses 
have been described as altering their morphology in the 
brainstem [56], hypothalamus [77], cerebellum [61], hippo-
campus [13], and neocortex [93] of infant- to pubertal-stage 
rodents, suggesting that the tripartite synapse is a common 
structure in the CNS. In contrast, alterations of fine neuronal 
structures such as dendrites and spines in the neocortex of 
adult mice hardly occur under normal conditions [45,126]. 
These findings suggest that the morphological alteration of 
astrocytes may be essential for the maintenance and plastic-
ity of synaptic transmission, as well as for transmitter clear-
ance. Therefore, neuronal and glial structural modifications 
might be regulated by the interaction of TK+ and T1 in neu-
rons and the T1 in astrocytes, respectively. 

TRKB ISOFORMS IN THE SYNAPTIC PLASTICITY 

 BDNF-TrkB signaling has an effect on morphological 
changes of neurons and glias and plays an important role in 
synaptic plasticity [65,72,85,87]. In light of this, we wanted 
to explore two important issues, 1) activity-dependent ex-
pression and secretion of BDNF, and 2) subcellular localiza-
tion of TrkB subtypes, i.e., pre- or postsynaptic sites. 

 Not only in vitro stimulations such as the administration 
of drugs but also physiological stimulations, such as exercise 
[91], visual input [22], and whisker stimulation [107], 
showed the increase of BDNF expression and secretion. It is 
unclear whether dendritic production of BDNF (i.e., BDNF 
mRNA targeting to dendrites) and concentration of BDNF 
protein in the secretion vesicles occur in the active synapse 
[51,72]. Furthermore, it has not yet been clarified whether 
BDNF is released from the vesicles in the pre- or postsynap-
tic sites [3,36,37,50,71], like neuropeptide transmitters [111]. 

 TrkB subtypes are widely distributed throughout the 
brain, as described in the previous section. However, consid-
ering that the signaling pathway of TK+ is distinct from that 
of T1, it is important to clarify the subcellular localization of 
TK+ and T1 in neurons. Subcellular fractionation of the rat 
brain showed that 1) both TrkB subtypes were concentrated 
in synaptic membrane fraction [7,94,97,103], 2) TK+ and T1 
exhibited a differential subcellular distribution; TK+ was 
present in the presynaptic active zone and postsynaptic den-
sity, while T1 was mainly distributed in the presynaptic ac-
tive zone [7,103]. Interestingly, using cultured hippocampal 
neurons infected with the T1-expressing adenovirus vector, 
Schuman’s group demonstrated that presynaptic, but not 
postsynaptic, expression of T1 inhibited BDNF enhancement 
of synaptic transmission, whereas activation of TrkB-
associated signaling enhanced neurotransmitter release from 
presynaptic terminals [78]. Although pre- and postsynaptic 
modifications are involved in long-term potentiation, at least 
presynaptic T1 might play an important role in the regulation 
of initial synaptic potentiation between neurons. Since T1 
inhibits the phosphorylation of TK+, the activation of 
BDNF-TK+ signaling may be required for BDNF-induced 
potentiation. On the other hand, Rho GTPases are involved 
in Ca2+-dependent neurotransmitter exocytosis via the regu-
lation of actin filament [30,88]. Thus, the BDNF-T1-Rho 

GDI1 signaling cascade may regulate the neurotransmitter 
release, regulating Rho GTPases activity. 

PHARMACOLOGICAL USEFULNESS OF T1 AS A 
MOLECULAR SWITCH 

 The T1 signaling cascade challenges the conventional 
view that T1 acts as a dominant negative form of TK+. It is 
reasonable to assume that T1 could exert dual roles in an 
age-dependent manner and/or by subcellular and cellular 
localization. In neurons, T1 could act as a dominant negative 
form of TK+ through the formation of the TK+/TK- het-
erodimer in adulthood. In astrocytes, T1 could act as a nega-
tive regulator for the Rho signaling cascade. Thus, T1 may 
be a Janus-faced receptor of BDNF as a “molecular switch.” 
Also, the change of TrkB receptor dimerization may be one 
of the mechanisms generating the variety of biological func-
tions of BDNF during development. 

 If we can control each expression of TrkB subtypes in a 
certain cell type, i.e., in a neuron- or astrocyte-specific man-
ner, by drugs or gene-transferring treatment in the near fu-
ture, the results might be useful in the treatment for psychiat-
ric and neurological diseases, including depression and sui-
cide [34], schizophrenia [104], and neurodegenerative dis-
eases [29]. These studies suggest that it is essential for main-
taining neuronal functions to regulate adequately the expres-
sion of T1. For example, the decrease in expression of T1 is 
observed in the frontal cortex of suicide completers [34]. 
Interestingly, the methylation in the trkB promoter regions is 
significantly reduced, which results in only the decrease in 
T1 expression without the change of TK+ expression [34]. In 
the model mouse of schizophrenia, both mRNA and protein 
levels of T1 were significantly higher in the frontal cortex, 
but those of TK+ were not altered [104]. Furthermore, using 
a trisomic mouse model, the suitable expression level of T1 
is important for the survival of neocortical and hippocampal 
neurons. Taken together, pharmaceutical preparations to 
regulate the proper expression of T1, such as T1 siRNA and 
cDNA [93,98] and synthetic peptide of T1 specific C-
terminal sequence [98], will be valuable for the treatment of 
psychiatric and neurological disorders. In addition, the com-
bination use of T1 siRNA and cDNA and cell type-specific 
promoters can be more useful. 

 T1 has been shown to be expressed in the neurogenic 
regions [43,123]. Recent study suggests that overexpression 
of T1 increases the proliferation of neural progenitor cells 
[123]. Interestingly, BDNF has anti-proliferative activity on 
the self-renewal of neural stem cells; however, it also func-
tions as a differentiation factor for stem cells, which are af-
fected by the expression of TK+. Thus, the rate of TrkB sub-
type expression in stem cells is of importance in determining 
the balance between proliferation and differentiation. In vivo 
study also showed that dopaminergic periglomerular in-
terneurons in the olfactory bulb were decreased in TrkB KO 
mice. Moreover, calbindin-positive cells were slightly de-
creased, compared with the control, suggesting that TrkB 
may play a selective role in regulating the proliferation and 
differentiation of subtypes of specific interneurons [43]. Fur-
thermore, as described in the above sections, TrkB subtypes 
influence neural plasticity via regulation of the neuronal and 
glial morphology. Therefore, the control of BDNF-TrkB 
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signaling can regenerate neurons and repair neuronal net-
works as therapy following a brain injury such as trauma or 
ischemia. 
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