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Cyclometalated iridium (III) complexes are indispensable in the field of phosphorescent
organic light-emitting diodes (PhOLEDs), while the improvement of blue iridium (III)
complexes is as yet limited and challenging. More diversified blue emitters are needed
to break through the bottleneck of the industry. Hence, a novel [3+2+1] coordinated iridium
(III) complex (noted as Ir-dfpMepy-CN) bearing tridentate bis-N-heterocyclic carbene
(NHC) chelate (2,6-bisimidazolylidene benzene), bidentate chelates 2-(2,4-difluorophenyl)-
4-methylpyridine (dfpMepy), and monodentate ligand (-CN) has been designed and
synthesized. The tridentate bis-NHC ligand enhances molecular stability by forming
strong bonds with the center iridium atom. The electron-withdrawing groups in the
bidentate ligand (dfpMepy) and monodentate ligand (-CN) ameliorate the stability of the
HOMO levels. Ir-dfpMepy-CN shows photoluminescence peaks of 440 and 466 nm with
a high quantum efficiency of 84 ± 5%. Additionally, the HATCN (10 nm)/TAPC (40 nm)/
TcTa (10 nm)/10 wt% Ir-dfpMepy-CN in DPEPO (10 nm)/TmPyPB (40 nm)/Liq (2.5 nm)/
Al (100 nm) OLED device employing the complex shows a CIE coordinate of (0.16, 0.17),
reaching a deeper blue emission. The high quantum efficiency is attributed to rapid singlet
to triplet charge transfer transition of 0.9–1.2 ps. The successful synthesis of Ir-dfpMepy-
CN has opened a new window to develop advanced blue emitters and dopant alternatives
for future efficient blue PhOLEDs.
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INTRODUCTION

Cyclometalated iridium (III) complexes have attracted enormous attention in the field of
phosphorescent organic light-emitting diodes (PhOLEDs) due to their relatively short triplet
lifetime and high phosphorescence quantum yields (Geffroy et al., 2006). However, the stability
of organic luminescence materials at high temperature are worse than inorganic materials, especially
the inorganic upconversion materials (Wang et al., 2021a; Wang et al., 2021b). Besides, compared
with red and green iridium (III) complexes, the development of blue iridium (III) complexes for
PhOLEDs is still limited and challenging (Brown et al., 2004). Several proven strategies benefit the
achievement of blue emitters: (Ma et al., 2020). 1), stabilizing the highest occupied molecular orbital
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(HOMO) by introducing electron-withdrawing groups on the
phenyl ring, like perfluoro carbonyl (Lee et al., 2013),
pentafluorophenyl (Tsuzuki et al., 2003), carborane (Furue
et al., 2016), sulfonyl (Lim et al., 2017; Lin et al., 2014),
dimesitylboron (Lorente et al., 2017), or formyl (Bin Mohd
Yusoff et al., 2017). 2), elevating the lowest unoccupied
molecular orbital (LUMO) by grafting electron-donating
groups onto pyridine moieties, like methoxy group on the
pyridyl ring (Yam and Lo, 2006). These two strategies
positively influence the energy gap of the iridium (III)
emitters, which promote the hypsochromic photoluminescence
spectrum. For achieving high phosphorescence quantum yields, a
few essential factors should be taken into account, among which
the most significant one is to enhance the contribution of the
metal to ligand charge transfer (MLCT) in the triplet manifold.
The metal dπ orbital’s involvement increases the coupling of the
orbital angular momentum to the electron spin, which enhances
the spin-orbit coupling term and drastically decreases the
radiative lifetime, and hence realizes the possibility of
achieving high quantum yield (Li et al., 2005; Wilkinson et al.,
2006).

The blue iridium (III) complexes generally feature an
octahedral conformation with three bidentate or two tridentate
ligands (labeled as [2+2+2] and [3+3], respectively) due to the d6

electron configuration of iridium ion (Bin Mohd Yusoff et al.,
2017). [2+2+2] Coordinated iridium (III) complexes’ inherent
superior performance benefits from the diversity of bidentate
chelates (Adachi et al., 2001; Holmes et al., 2003), and one of the
most typical representatives is greenish-blue bis (4’,6’-
difluorophenylpyridinato) iridium (III) picolinate (FIrpic)
(Adachi et al., 2001). As shown in Scheme 1A, incorporating
the two strong electron-withdrawing groups (dfppy) facilitates
the enlargement of the bandgap of iridium (III) complexes by
stabilizing the HOMO levels (Holmes et al., 2003) [3+3].
Coordinated iridium (III) complexes show excellence in
rigidity and durability due to the stronger metal-ligand
bonding interaction, making the d–d excited states or other
unspecified quenching states destabilized to enhance the
stability of the complexes (Kuo et al., 2017; Kuo et al., 2018;
Gnanasekaran et al., 2019; Hsu et al., 2019). Scheme 1B

demonstrates a typical [3+3] counterpart, and the interrupted
conjugation changes the nature of the frontier orbitals, achieving
a blue emission of CIE (0.15, 0.17) (Kuo et al., 2017). Multi-
strategies should be utilized together to acquire high-efficiency
blue light emitters. Even though some iridium (III) complexes
present plausible molecular properties, blue emission severely
restricts material selection for PhOLEDs. Consequently, it is
imperative to extend the existing iridium (III) complexes
system to obtain blue PhOLEDs with high color purity and
efficiency.

In this work, a novel [3+2+1] coordinated iridium (III)
complex, bearing tridentate bis-N-heterocyclic carbene (NHC)
chelate (2,6-bisimidazolylidene benzene), bidentate chelates 2-
(2,4-difluorophenyl)-4-methylpyridine (dfpMepy), and
monodentate ligand (-CN), has been designed and
synthesized. The tridentate ligand improves the molecular
stability with the similar function of the [3+3] conformation
and sufficient bidentate ligands are available to tune the
emission wavelength. Additionally, monodentate ligand
(-CN) is a strong electron-withdrawing group, facilitating the
stability of the HOMO levels. The designed [3+2+1] iridium
(III) complex shows emission peaks of 440 and 466 nm with a
high quantum efficiency of 84 ± 5%. Furthermore, the
femtosecond transient absorption spectrum further reveals
the singlet transition to triplet state with a time constant of
0.9–1.2 ps. This work exhibits a novel cyclometalated iridium
(III) complex configuration that will help develop more dopant
options for blue PHOLEDs.

MATERIALS AND METHODS

Synthesis of 2-(2,4-Difluorophenyl)-4-
Methylpyridine (dfpMepy)
2-bromo-4-methylpyridine (6.84 g, 40 mmol), potassium
carbonate (8.29 g, 60 mmol) and tetrakis (triphenylphosphine)
palladium (1.49 g, 1.2 mmol) were added into a 250 ml round-
bottomed flask. (2,4-Difluorophenyl) boronic acid (4.67 ml,
40 mmol), ethanol (20 ml) and tetrahydrofuran (20 ml) were

SCHEME 1 | The typic blue emitters of iridium (III) complexes with (A) [2+2+2] (FIrpic) (Adachi et al., 2001), (B) [3+3] (Ir(minb)(pzpyBuOphF)) (Kuo et al., 2017) and
(C) [3+2+1] (Ir-dfpMepy-CN in this work) conformation.
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slowly added into the flask under stirring conditions. The mixture
was then heated to reflux for 20 h under a nitrogen atmosphere.
After cooled to room temperature, the resulting solution was
firstly washed by water for three times and then filtered, extracted
with dichloromethane, and dried with MgSO4, yielding an oily
organic layer. The crude product was concentrated and purified
by column chromatography (with eluent hexane/DCM, v/v � 5/1)
to obtain light yellow powder (6.39 g, 78%). 1H NMR (400 MHz,
Chloroform-d): δ � 8.58 (d, J � 5.0 Hz, 1H), 7.98 (td, J � 8.9,
6.7 Hz, 1H), 7.58 (s, 1H), 7.13–7.07 (m, 1H), 7.01 (td, J � 8.3,
2.6 Hz, 1H), 6.93 (ddd, J � 11.3, 8.8, 2.6 Hz, 1H), 2.43 (s, 3H) ppm.

Synthesis of 1,3-Bis(imidazolyl)Benzene (1)
1,3-Dibromobenzene (5 ml, 42 mmol), imidazole (7 g,
104 mmol), potassium carbonate (14.4 g, 104 mmol), cupric
oxide (0.83 g, 10.4 mmol) and DMSO (60 ml) were added into
a 250 ml flask. The mixture was heated to 150°C for 48 h. After
cooling to room temperature, the resulting solution was filtered
under reduced pressure and washed by water for three times.
DMSO was then removed from the solution by vacuum
distillation. The crude product was concentrated and purified
by column chromatography to obtain a white powder (5.8 g,
66%). 1H NMR (400 MHz, Chloroform-d): δ � 7.93 (s, 2H), 7.63
(t, J � 8.0 Hz, 1H), 7.45 (s, 2H), 7.42 (d, J � 1.9 Hz, 1H), 7.35 (s,
2H), 7.27 (s, 2H) ppm.

Synthesis of 1,1’-(1,3-Phenylene)
bis(3-Butyl-1H-Imidazolium) Bromide (2)
1,3-Bis(imidazolyl)benzene (2.9 g, 13.8 mmol), n-butyl bromide
(9.5 g, 69 mmol) and acetonitrile (30 ml) were added to a 100 ml
round-bottomed flask. The mixture was heated to 85°C for 3 h.
After cooled to room temperature, the solution was concentrated
and purified by vacuum distillation to obtain a white powder
(9.5 g, 81%). 1H NMR (400 MHz, DMSO-d6): δ � 10.29 (s, 2H),
8.59 (t, J � 1.7 Hz, 2H), 8.53 (t, J � 1.9 Hz, 1H), 8.19–8.13 (m, 2H),
8.07 (dd, J � 8.2, 1.7 Hz, 2H), 7.96 (dd, J � 8.9, 7.8 Hz, 1H), 4.33 (t,
J � 7.2 Hz, 4H), 1.93 (p, J � 7.4 Hz, 4H), 1.36 (h, J � 7.8, 7.3 Hz,
4H), 0.95 (t, J � 7.4 Hz, 6H) ppm.

Synthesis of Ir-dfpMepy-Br
[Ir(COD)Cl]2 (500 mg, 0.745 mmol) and compound 2 (475 mg,
1.118 mmol) were added into a 25 ml Schlenk tube.
Triethylamine (2 ml) and acetonitrile (10 ml) were slowly
added into the Schlenk tube under the protection of N2. The
mixture was heated to 90°C for 12 h. After cooled to room
temperature, the resulting solution was concentrated by
vacuum distillation to get a yellow sticky solid. Then dfpMepy
(230 mg, 1.118 mmol) and propionic acid (10 ml) were added for
next step reaction with the residual. The mixture was heated to
150°C under N2 atmosphere for 24 h. After cooled to room
temperature, the resulting solution was purified by vacuum
distillation, column chromatography to get crude product Ir-
dfpMepy-Br (320 mg, 58%). 1H NMR (400 MHz, DMSO-d6): δ �
10.13 (d, J � 5.8 Hz, 1H), 8.16 (s, 1H), 8.04 (d, J � 2.0 Hz, 2H), 7.47
(d, J � 5.9 Hz, 1H), 7.40 (d, J � 7.8 Hz, 2H), 7.23 (d, J � 2.0 Hz, 2H),
7.18 (t, J � 7.7 Hz, 1H), 6.50 (t, J � 11.4 Hz, 1H), 5.27 (dd, J � 9.0,

2.5 Hz, 1H), 2.59 (s, 2H), 1.36–1.27 (m, 2H), 0.95 (s, 2H), 0.81 (td,
J � 11.8, 10.5, 6.9 Hz, 2H), 0.65 (d, J � 3.7 Hz, 6H) ppm.

Synthesis of Ir-dfpMepy-CN
Ir-dfpMepy-Br (250 mg, 0.337 mmol) and Silver cyanide (67.68
mg, 0.506 mmol) were dissolved in N. N-dimethylformamide
(10 ml) in Schlenk tube. The mixture was then heated to 120°C
under N2 atmosphere. After cooled to room temperature, the
resulting solution was further filtered through kieselguhr,
evaporated under reduced pressure and purified by silica gel
column to get a white powder (206.71mg, 89%). 1H NMR
(400MHz, Chloroform-d): δ � 9.98 (s, 1H), 8.24 (s, 1H), 7.50 (s,
2H), 7.26 (s, 1H), 7.16 (d, J � 7.5 Hz, 3H), 6.80 (s, 2H), 6.32–6.22 (m,
1H), 5.49 (s, 1H), 3.27 (d, J � 14.5 Hz, 4H), 2.61 (s, 3H), 1.40 (s, 2H),
1.15 (d, J � 3.7 Hz, 2H), 0.94 (s, 2H), 0.80 (s, 2H), 0.77 (s, 6H) ppm.

Materials Characterization
All the reagents were purchased from Leyan, General Reagent and
Aldrich and all the reactants and solvents were used without further
purification unless otherwise specified. The key reaction products are
characterized by a 400MHz 1H-NMR spectrometer (Bruker AV400)
and referenced to tetramethylsilane (TMS) as a standard benchmark
at 0.00 ppm. The ultra-violate absorption spectra was performed by
Cary 5000 UV-vis-NIR spectrophotometer in degassed
dichloromethane at a diluted concentration (2 × 10−5M) of the
iridium (III) complex. The photoluminescence (PL) spectra was
obtained by spectrofluorometer of Edinburgh Instruments Ltd FS5.
The femtosecond transient absorption (fs-TA) measurements were
obtained on a Helios pump-probe system (Ultrafast Systems LLC)
with an amplified femtosecond laser system (Coherent 35 fs, 1 kHz,
800 nm). The 320 nm pump pulses were achieved by the optical
parametric amplifier (TOPAS-800-fs). The 380–680 nm probe pulses
were gained by focusing the tiny portion of the 800 nm laser beams
onto a sapphire plate. The fs-TA curves were collected and further
analyzed by Surface Xplorer software. Thermogravimetric analysis
(TGA) of Ir-dfpMepy-CN was recorded by the Mettler TGA2
thermogravimeter. The weight loss of the iridium complex was
initially measured from 25 to 100°C at a speed of 10°C/min under
a nitrogen atmosphere. Before continuing to heat to 500°C, the sample
was kept for 15min at 100°C. Electrochemical characterization of the
iridium complex was measured by PalmSens4 electrochemical
workstation, using platinum wire as the counter electrode,
platinum-carbon as a working electrode and a saturated calomel
electrode (SCE) in a saturated KCl aqueous solution as the reference
electrode. The cyclic voltammogram of Ir-dfpMepy-CN was
referenced to the ferrocene/ferrocenium couple at the scanning rate
of 100mV s−1.

Device Fabrication
The indium-tin-oxide (ITO) coated glass substrates were initially
cleaned sequentially by deionized water, ethanol,
dichloromethane for 5 min separately and then treated with
plasma for 1 min. The dopant material Ir-dfpMepy-CN and
DPEPO were thermally deposited together at the speed of
0.1 Å s−1 and 0.9 Å s−1 separately, while the other organic
functional layers were evaporated at the same rate of 1.0 Å s−1

at a pressure of ca. 3.5 × 10–7 Torr. A 2.5 nm Liq layer was
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deposited on Al cathode and the two materials are deposited at
the rate of 0.1 and 1 Å s−1. The organic diode was assembled on an
active area of 3 × 3 mm2 on the substrates. The device
performance, including electroluminescence (EL) spectra,
Commission Internationale de L’Eclairage (CIE) and current
density-voltage-luminance (J-V-L) curves, were measured by a
Keithley 2400 semiconductor characterization system with PR-
788 photometer and BM-7A luminance colorimeter.

Theoretical Calculation
The structures were optimized with dispersion density functional
theory at the PBE0-D3/def2-SVP level by Gaussian 09. In order to
investigate the photophysical properties, the excited electronic
structures of these molecules were calculated at the PBE0-D3/
def2-TZVP level with the time-dependent density functional
theory (TDDFT) method. The electron transition
characterization was obtained by electron excitation analysis
performed using Multiwfn program from the transition
density matrix of TDDFT calculation.

RESULTS AND DISCUSSION

The synthetic route of the Ir-dfpMepy-CN with [3+2+1]
conformation was depicted in Figure 1, and the detailed steps
can be obtained in the supporting information (SI). In brief, the

tridentate bis-N-heterocyclic carbene (NHC) chelate was
synthesized by a two-step reaction of 1,3-dibromobenzene
with imidazole and n-butyl bromide, yielding 66 and 81%,
respectively. The bidentate ligand dfpMepy was directly
synthesized by one step of the Suzuki coupling reaction in an
alkaline condition. Controlling the equivalence ratio (1:1) of (2,4-
difluorophenyl) boronic acid and 2-bromo-4-methylpyridine, the
product was obtained in a relatively high yield of 78%. The -Br
was substituted by the stronger electron-withdrawing group of
cyanide (-CN), which could significantly influence the metal-
centered molecular orbital due to its strong σ-donating p orbital
and a low-lying π orbital (Hanusa, 2011). All the compounds
were purified by vacuum distillation and column
chromatography and subsequently characterized by 1H NMR
spectrometry for further study, as shown in Supplementary
Figures S1–S5. The tridentate bis-NHC chelate serves as
electron-donating group in the molecule. Both the bidentate
(dfpMepy) and monodentate (-CN) ligand are strong electron-
withdrawing groups, expecting to enlarge the complex’s bandgap
by destabilizing the LUMO and stabilizing the HOMO levels.

The photophysical properties of the [3+2+1] iridium (III)
complex were investigated. As shown in Figures 2A,B, the
absorption and phosphorescent emission (PL) for the Ir-
dfpMepy-CN were recorded in degassed CH2Cl2 (DCM)
solution at a concentration of 2 × 10−5 M. The strong
absorption at 250–280 nm in the ultraviolet region (ε > 2.5 ×

FIGURE 1 | Synthetic route and chemical structure of the Ir-dfpMepy-CN with [3+2+1] conformation.
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104 M−1 cm−1) was assigned to the ligand-centered (1π→π*)
transitions (Ashizawa et al., 2009). The absorption bands with
small vibrational shoulders at 300–330 nm were ascribed to spin-
allowed intra-ligand (1π→π*) transition and metal to ligand
charge transfer (1MLCT) transitions. The weak absorptions
bands (ε ≈ 0.3 × 104M−1 cm−1) lying in the visible light region
at 350–400 nm were related to the spin-orbit coupling enhanced
3π→π* states and spin-forbidden metal to ligand charge transfer
(3MLCT) transitions (Chen et al., 2015). The PL spectra of Ir-
dfpMepy-CN exhibited strong phosphorescent emission at around
430–470 nm with maximum peaks at 440 and 466 nm, which
should be attributed to the 3MLCT 3LLCT, 3LC induced by
spin-orbit coupling. The PL spectra of the designed Ir-dfpMepy-
CN with [3+2+1] confirmation is even bluer than that of the classic
blue-emitter FIrpic. More gratifyingly, the Ir-dfpMepy-CN showed
a high absolute quantum efficiency of 84 ± 5%.

The corresponding lifetime decay curve of phosphorescence
was presented in Figure 2C, revealing a lifetime of 4.6 μs. The
electrochemical properties of the [3+2+1] iridium (III) complex
in degassed DCM were assessed by cyclic voltammogram (CV).
The curve showed positive oxidative peaks (E_ox) of 0.80–1.16 V
(vs. Fc+/0) due to the electron-deficient property of the pyridine
group and reduction peak (E_red) around −2.50 V. The HOMO
and LUMO energy of Ir-dfpMepy-CNwere calculated by Eqs 1, 2
below, where the E_ox and E_red were obtained from the onset
potential of the first oxidation and reduction peaks and the
ferrocene redox value is −4.4 eV (Hack et al., 2005; Leonat
et al., 2013). Calculated HOMO and LUMO of Ir-dfpMepy-

CN is −5.2 and −2.0 eV. Thermogravimetric analysis (TGA)
experiments revealed the thermal stability of Ir-dfpMepy-CN
(Supplementary Figure S6). The complex shows good thermal
stability, 2 wt% loss >270°C.

EHOMO � −(eEox + 4.4)[eV] (1)

ELUMO � (1240
λ UV

+ EHOMO)[eV] (2)

The density functional theory (DFT) and time-dependent
density functional theory (TDDFT) calculation were
implemented to gain a deeper insight into the ground and
excited electronic states of the Ir-dfpMepy-CN. The two
highest occupied and lowest unoccupied molecular orbitals
(HOMO, HOMO-1, LUMO, LUMO+1) surfaces and their
corresponding energy levels were given in Figure 2E. The
LUMO is mainly located on the bidentate ligand (dfpMepy),
and the HOMO is a mixed metal-ligand character with
contributions from Ir 5d orbitals, tridentate bis- NHC chelate,
and monodentate cyanide ligand. Specifically, the participation of
Ir 5d orbitals in HOMO and HOMO-1 are 36.6 and 48.2%, and
their energy levels are close (−5.70 and −5.78 eV). The large
proportion of metals involved is the main reason for the high
quantum efficiency of the Ir-dfpMepy-CN. The phenyl unit of
bis-NHC pincer moiety is suggested to dominate the HOMO,
while the difluoro-phenyl unit of dfppy dominates a major
contribution in its HOMO-1. The participation of the bis-
NHC carbene pincer moiety and monodentate ancillaries in

FIGURE 2 | The photophysical properties of the [3+2+1] iridium (III) complex Ir-dfpMepy-CN. (A) the absorption spectra and (B) normalized PL spectra of diluted
in CH2Cl2 solution. (C) Lifetime decay curves at 440 nm and (D) cyclic voltammograms (CV) in DCMwith nBu4NPF6 (0.1 M) as supporting electrolytes. (E) The computed
frontier molecular orbitals energy surfaces at the ground state (S0) optimized geometry.
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HOMOs keep synergistically. The N-heterocyclic phenyl unit in
dfpMepy almost dominates LUMO and LUMO+1. The T1 optical
transition state were calculated by TD-DFT. As shown in

Supplementary Table S1, the T1 transition state is contributed
by HOMO-3, HOMO-2, HOMO-1 and LUMO. Supplementary
Figure S8 shows the frontier molecular orbitals calculated at T1

FIGURE 3 | (A) Color plot of femtosecond transient absorption spectra of Ir-dfpMepy-CN in DCM at room temperature, (B) transient absorption kinetics of 350
and 370 nm, (C) schematic illustration of excited-state dynamics occurring in Ir-dfpMepy-CN. (The decay data in Figure 3B were fitted by a single-term exponential
decay model: y(t) � A0pexp(− t

τ), where τ is the decay time and A0 is a constant).

FIGURE 4 | (A) The device structure and (B) electroluminescence (EL) spectra at 5 V of OLED fabricated with Ir-dfpMepy-CN as dopant (insert: CIE coordinate of
FIrpic and Ir-dfpMepy-CN) (C) materials used for device fabrication.
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geometries, indicating the T1 transition state is mixing MLCT,
ligand centered (LC) or intra-ligand charge transfer (ILCT)
excited state.

The excited-state dynamics of Ir-dfpMepy-CN are studied by
the femtosecond transient absorption spectroscopy. The iridium
complex in DCM solution was pumped by a flash laser at 320 nm,
resulting a broad absorption ranging from 340 to 480 nm.
Monitoring the kinetics of two absorption peaks at 350 and
370 nm gives two growth lifetimes of 0.9 and 1.2 picoseconds
(ps), respectively, and this species has a long lifetime beyond
1,000 ps from fs-TA analysis, revealing the generation of triplet
from singlet occurs in 1.2 ps. The non-decaying signal of the
absorption spectra indicates the overlap of excited singlet and
triplet states of the iridium complex, which adversely influences
the relaxation between two energy states and leads to an almost
constant transient absorbance (Hedley et al., 2008; Hedley et al.,
2010). The schematic illustration of excited-state dynamics
occurring in Ir-dfpMepy-CN is shown in Figure 3C. The
relaxation process is proposed as a successive pathway from
singlet to triplet and to S0 state with the relaxation time
constant τ1 and τ2 (Tang et al., 2004). τ1 is obtained by
transient absorption spectroscopy and τ2 is the phosphorescent
decay time, which can be detected through previous kinetic study of
PLmeasurement. Ir-dfpMepy-CN, as a novel [3+2+1] coordinated
iridium complex, can achieve the transition lifetime of 0.9–1.2 ps
and a phosphorescence lifetime of around 4.6 μs. The
comprehensive understanding of the relaxation process of
different energy states sheds light on the structural design of
high-efficiency blue phosphors in future applications.

The effectiveness of Ir-dfpMepy-CN is supported by the
OLEDs device made from the novel [3+2+1] iridium complex
as the dopant with physical vapor deposition technology. The
detailed device structure is schematically shown in Figure 4A,
including ITO as anode and aluminum as cathode. Matching the
HOMO and LUMO energy levels of different functional
materials, the active layers combined between the electrodes
are HATCN (10 nm)/TAPC (40 nm)/TcTa (10 nm)/10 wt% Ir-
dfpMepy-CN in DPEPO (10 nm)/TmpypB (40 nm)/Liq
(2.5 nm)/Al (100 nm). The electroluminescence spectrum is
depicted in Figure 4B. The molecular structure of the
materials used in the device is shown in Figure 4C. Under
applied voltage of 5 V, the device shows a stable luminescence
with the two maximums at the peak wavelength of 450 and
470 nm separately, slightly different from the PL spectrum in
Figure 2B. The electroluminescence shows a CIE chromaticity
coordinate of (0.16, 0.17), reaching much deeper blue compared
with that of the traditional FIrpic (CIE of (0.16, 0.29)). The
current density, voltage, and Luminance (J-V-L) curve is depicted
in Supplementary Figure S7. The device utilizing Ir-dfpMepy-
CN as a blue dopant exhibits a turn-on voltage (Von) of 3.3 V and
highest EQE of 4.2%, but a quick roll-off as the current density
increases. The preliminary OLED device demonstrates that the
newly designed and synthesized [3+2+1] conformation
compound is amenable to thermally evaporated OLEDs.
However, the performance of the device is far from
satisfactory which needs further device optimization.
Nevertheless, there is a possibility that the [3+2+1]

phosphorescent materials may open a new window to explore
for deep blue display applications.

CONCLUSION

A novel [3+2+1] coordinated iridium (III) complex was designed
and synthesized. The complex shows good stability due to the
strong bonds formed by the center iridium atom and tridentate
bis-NHC ligand. The designed [3+2+1] iridium (III) complex
shows high photoluminescence peaks of 440 and 466 nm as both
the bidentate (dfpMepy) and monodentate cyanide (-CN) ligand
are strong electron-withdrawing groups, facilitating the stability
of the HOMO levels. Notably, the complex shows a high PLQY of
84 ± 5% due to the rapid transition between singlet and triplet
state with a time constant of 0.9–1.2 ps. The thermally evaporated
device employed the [3+2+1] complex shows a CIE coordinate
(0.16, 0.17), reaching deeper blue emission. This work provides a
highly efficient blue cyclometalated iridium (III) complex
configuration that will help develop more blue emitters and
provide more dopant options for blue PhOLEDs.
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