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Background: 16S sequencing results are often used for Machine Learning (ML) tasks. 16S
gene sequences are represented as feature counts, which are associated with taxonomic
representation. Raw feature counts may not be the optimal representation for ML.

Methods:We checked multiple preprocessing steps and tested the optimal combination
for 16S sequencing-based classification tasks. We computed the contribution of each
step to the accuracy as measured by the Area Under Curve (AUC) of the classification.

Results: We show that the log of the feature counts is much more informative than the
relative counts. We further show that merging features associated with the same
taxonomy at a given level, through a dimension reduction step for each group of
bacteria improves the AUC. Finally, we show that z-scoring has a very limited effect on
the results.

Conclusions: The prepossessing of microbiome 16S data is crucial for optimal
microbiome based Machine Learning. These preprocessing steps are integrated into
the MIPMLP - Microbiome Preprocessing Machine Learning Pipeline, which is available as
a stand-alone version at: https://github.com/louzounlab/microbiome/tree/master/
Preprocess or as a service at http://mip-mlp.math.biu.ac.il/Home Both contain the
code, and standard test sets.
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BACKGROUND

Recent studies of 16S rRNA gene-sequences through next-generation sequencing have
revolutionized our understanding of the microbial community composition and structure. 16S
rRNA gene sequences are often clustered into Operational Taxonomic Units (OTUs) in QIIME I or
features/ASV (Amplicon Sequence Variants) in QIIME II, based on sequence similarities. An OTU/
ASV is an operational definition used to classify groups of closely related sequences. However, the
term OTU/ASV is also used in a different context and refers to clusters of (uncultivated or
unknown) organisms, grouped by DNA sequence similarity of a specific taxonomic marker gene (1).
In other words, OTU/ASVs are pragmatic proxies for “species” (microbial or metazoan) at different
taxonomic levels, in the absence of traditional systems of biological classification as are available for
macroscopic organisms. Although OTU/ASVs (further denoted features) can be calculated
differently when using different algorithms or thresholds, Schmidt et al. recently demonstrated
org June 2021 | Volume 12 | Article 6778701
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that microbial features were generally ecologically consistent
across habitats and several feature clustering approaches (2).
OTU/ASV picking is the assignment of observed gene sequences
to operational taxonomic units, based on the similarity between
them and the reference gene sequences. The similarity
percentage is user-defined (97% in QIIME I (3) and 99% in
QIIME II (4)). This process has been an important step in the
common pipeline for microbiome analysis. However, it may
cluster components with different behaviors into the same unit,
hiding component-specific patterns. There are many algorithms
for OTU clustering such as: SortMeRNA (5), SUMACLUST (6),
and swarm (7). In this paper, both QIIME I and QIMME II were
tested for feature picking and the creation of an appropriate
taxonomy. The results were similar for both methods.

An important use of Microbiome samples is the development of
Microbiome based Biomarkers (Mic-Markers), using Machine
Learning (ML) tools. An important limitation of using bacterial
features in machine learning is the feature hierarchy. The feature
hierarchy is difficult to process and analyze due to the sparsity of the
feature table (i.e. high number of the bacteria with 0 values in any
typical samples). Moreover, even the limited number of observed
features may be inflated due to errors in DNA sequencing (8).

Many applications of supervised learning methods, in
particular Random Forests (RF), Support Vector Machines
(SVM), Neural networks, and Boosting, and have been applied
successfully to a large set of microbiota classification problems
(9–16). However, little attention has been devoted to the proper
way to integrate information from different hierarchical levels.

In different domains, Feature selection can be done by
filtering methods, wrapper methods, or embedding methods
(12). Recent work on microbiota/metagenome classification,
such as Fizzy (17) and MetAML (18), utilize standard feature
selection algorithms, not capitalizing on the evolutionary
relationship and the resulting hierarchical structure of features.

Fizzy implements multiple standard Information-theoretic
subset selection methods (e.g. JMI, MIM, and mRMR from the
FEAST C library), NPFS, and Lasso. MetAML performsmicrobiota
or full metagenomic classification, which incorporates embedded
feature selection methods, including Lasso and ENet, with RF and
SVM classifiers.

These more generic approaches can be improved using
methods explicitly incorporating the details of the taxonomy,
such as Hierarchy Features Engineer (HFE) (19). HFE uses all the
taxonomy level and discards redundant features based on
correlation and Information Gain (IG).

The goal of HFE was to formalize feature selection by
systematically and reproducibly searching a suitable hypothesis
space. Given a hierarchy of taxonomies, represented as a network
where lower taxonomic (less detailed taxonomy) levels point to
all the higher-level features belonging to the same lower
taxonomic level, HFE is composed of 4 phases. 1) Consider the
relative abundances of higher-order taxonomic units ik as
potential features by summing up the relative abundances of
their features they point to in a bottom-up tree traversal. 2) For
each parent-child (low to high taxonomy) pair in the hierarchy,
the Pearson correlation coefficient r is calculated between the
Frontiers in Immunology | www.frontiersin.org 2
parent and child feature frequencies over all samples. If r is
greater than a predefined threshold of q, the child node is
discarded. Otherwise, the child node is kept as part of the
hierarchy, 3) Based on the nodes retained from the previous
phase, all paths are constructed from the leaves to the root (i.e.,
each feature’s lineage). For each path, the IG of each node on the
path is calculated with respect to the labels/classes L. Then the
average IG is calculated and used as a threshold to discard any
node with a lower IG score or an IG score of zero. 4) The fourth
phase deals with incomplete paths. In this phase, any leaf
with an IG score less than the global average IG score of the
remaining nodes from the third phase or an IG score of zero is
removed. HFE is currently the algorithms incorporating the
most information on the hierarchy, but it is a complex and
computationally expensive approach.

Beyond the hierarchy, the ratio of sample number to feature
number is of importance. In ML classification problems in general
and in feature-based classifications that involve learning a “state-of-
nature” from a finite number of data samples in a high-dimensional
feature space, with each feature having a range of possible values,
typically a large number of training samples is required to ensure
that there are several samples with each combination of non-zero
values (20). This is typically not the case in feature-based ML.

A related, yet different issue is the input distribution. Many
ML methods prefer a Gaussian distribution of input features.
However, in features, a significant number of features have 0
values in many samples.

To address all these issues, We propose a general pre-processing
algorithm for 16S rRNA gene sequencing-based machine learning,
named MIPMLP (Microbiome Preprocessing Machine Learning
Pipeline). The design principles of MIPMLP are:

• Optimization of machine learning precision, as measured
here by Area under Curve (AUC) of binary classifiers.

• Ease of implementation.
• Explicit incorporation of detailed taxonomy in the analysis.
• Minimization of the number of tunable free parameters to

avoid over-fitting to a specific dataset/task.

MIPMLP deals with the curse of dimensionality, skewed
distribution, and feature frequency normalization. Different
ML methods may obtain better accuracy with other feature
selection pipeline. The advantage of this pipeline is that it can
be used easily and it is not relying on labels like the HFE method
(19). Another advantage is that this pipeline can be used for
every hierarchical feature representation task.

MIPMLP is available through an open GIT at
https://github.com/louzounlab/microbiome/tree/master/

Preprocess, and through a server at http://mip-mlp.math.biu.ac.
il/Home
METHODS

MIPMLP proposes a pre-processing method based on three steps.
Each step consists a choice from multiple options (Figure 1).
The first step is the taxonomy level used for the representation and
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the taxonomy grouping method for the grouping step. The second
step is a standardization step where one first decides if a log scale is
performed or a relative normalization. The last step is a dimensions
reduction step that specifies if a dimension reduction is performed,
and if so which of PCA and ICA is performed.

Data Sets
IL1a
We investigated the connection between IL1a expression,
microbiota composition, and clinical outcomes of induced
colitis by using wild type and IL1a deficient (14).
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Mucositis
In a collaboration with Sheba Medical Center, we serially
collected 625 saliva samples from 184 adult allogeneic
hematopoietic stem cell transplantation recipients and found
microbial and metabolic signature associated with oral mucositis
at different time points before and after the transplantation (21).

Progesterone
We demonstrated the dramatic shift in the gut microbial
composition of women and mice during late pregnancy, including
an increase in the relative abundance of Bifidobacterium.
FIGURE 1 | Pipeline process diagram. The input is an OTU/ASV table and the appropriate taxonomy. The features are merged to a given taxonomic level. We
tested three possible merging methods: Sum, Average and a PCA on each sub-group of features. Following the merging, we performed either a log scaling or a
relative scaling. Following scaling, we performed z scoring on either bacteria or samples or both, and finally, we tested whether performing a dimension reduction on
the resulting merged and normalized features improves the accuracy of predictions.
June 2021 | Volume 12 | Article 677870
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We showed the direct effect of progesterone elevation during late
pregnancy on increased levels of Bifidobacteria (15).

Taxonomy Grouping
MIPMLP uses a taxonomy sensitive dimension reduction by
grouping the bacteria at a given taxonomy level. All features with
a given representation at a given taxonomy level were grouped
and merged using different methods. We used three different
taxonomy levels to group by (Order, Family, Genus). Three
methods were used for the grouping stage:

1. Average of all the grouped features.
2. Sum of all the grouped features.
3. Merged using PCA following normalization, with a PCA on

each group. Basically, all samples belonging to the same
group are projected independently. We then use the
projection on the PCs with the highest variance, explaining
at least half the variance as the representation of the group,
using the following algorithm:
Normalization and Standardization
Following grouping by any of the algorithms above, we tested
two different distribution normalization methods. The first
approach was to log (10 base) scale the features element-wise

xi,j ! log10(xi,j + ϵ) (1)

where ϵ is a minimal value to prevent log of zero values. The
second one was to normalize each bacteria through its relative
frequency:

xi,j =
xij

on
k=1xkj

, (2)

where n is the number of samples, i is the feature I.D. and j the
sample I.D.

Following the log-normalization, we have tested four
standardization possibilities: 1) No standardization, 2) Z-score
each sample, 3) Z-score each bacteria, 4) Z-score each sample,
and Z-score each bacteria (in this order).

When performing relative normalization, we either did not
standardize the results or performed only a standardization on
the bacteria (i.e. options 1 and 3 above).

A Z-score is defined as:

xi =
xi − m
s

, (3)

where m is for the mean and s is the standard deviation. (i.e.
when applying a Z-score sample wise the mean is the mean of all
the bacteria for one given sample. When applying Z-score
bacteria wise the mean is the mean of all the samples for a
given bacteria).

Dimension Reduction
PCA (22) and ICA (23) are dimensions reduction methods. While
PCA is based on variance, ICA is based on Independence. After
taxonomy grouping, normalization and standardization, we applied
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PCA, ICA, or none of them. The cut-off used for the accumulated
variance was 0.7, and the same number of components were used
for the ICA algorithm. In this paper Scikit-Learn.PCA and Scikit-
Learn.FastICA were used as a coding framework (24).

Machine Learning
To evaluate the different configuration, we used three different
classifiers: 1) An SVM (25), linear classifier (with Scikit-
Learn.svm.SVC) with a box-constraint of 0.1. 2) XGBOOST
(26) with binary decision trees as the weak classifier with
nestimators = 100, g = 0.5 and MinimumChildweight = 3, and 3) An
Artificial Neural Network (ANN) (27) a feed forward network
with two hidden layers. The first hidden layer of size 100. The
second hidden layer had 100 neuron. The first activation
function was ReLU (28) and the second activation function
was a Sigmoid (29). We used an Adam optimizer (30), with
Learningrate = 0.005 and BCE (Binary Cross Entropy) loss
function with Batchsize = 16.

The accuracy of all results was measured through the test set
Area Under Curve (AUC) with ten-fold cross-validation. Note
that the goal here is not to tune the hyperparameters of the
learning, but rather to propose a pre-processing approach.

Regression Model
To measure the contribution of each parameter of every step of
the pipeline. For each classification method (SVM, XGBOOST,
Neural Network), we regressed the test AUC on a one-hot
representation of each specific pipeline configuration
(unification level, method, normalization….) and calculated the
AUC for the configuration. All the options were converted to a
One-Hot vector representation so that each choice has a distinct
coefficient. We then trained a multivariate linear regression on
the train data set to predict the AUC for every configuration (i.e.
each row in the table stand for a different pre-process). The
coefficients of the linear regression model were used to measure
the contribution of each parameter to the pipeline. The linear
regression can be described as:

ŷ = b0 + btaxonomylevel · xtaxonomylevel +… + bPCA · xPCA

+ Noise, (4)

where xi is a binary input (0 if the parameter i was not used, 1 if
the parameter i was used), bi is the coefficient of parameter xi
(e.g. xtaxonomy level five = 1 means that the union taxonomy level
was the family level) and ŷ for predicted AUC.

Finally we subtracted the mean of the coefficients of every
pre-processing step from each coefficient in the same step e.g.

btaxonomy level four = btaxonomy level four

−ok∈ four,five,sixf gbtaxonomy level k

four, five, sixf gj j ,

and used the btaxonomy level k as the contribution coefficient to the
predicted AUC.

Algorithm 1sub-PCA
Set a level of taxonomy (e.g. genus).
June 2021 | Volume 12 | Article 677870
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For each taxonomy at the current level:
Group all features consistent with this taxonomy.
Perform PCA on this group.
Add the first components from the PCA to the new bacteria

table. The first components are the ones explaining at least half
the variance.
RESULTS

MIPMLP is a pipeline for 16S feature values pre-processing before
machine learning can be used for classification tasks. To estimate
the effect of different pre-processing steps coherently, we have
studiedmultiple classification tasks. For each classification task, we
used multiple machine learning algorithms. The algorithms’
hyper-parameters were not tuned, since the goal was not to
optimize the ML, but the pre-processing. As described in the
method section, MIMLP contains four stages (Figure 1):

• Merging of similar features based on the taxonomy.
• Scaling the distribution.
• Standardization to z scores.
• Dimension reduction.

Following all these stages, a binary classification task was
performed (see method section). We then computed for each
data-set and each classification method the accuracy of the
classification, through the AUC (Area Under ROC curve) the
ROC curve is created by plotting the TPR (true positive rate -
sensitivity) against the FPR (false positive rate - 1-specificity) at
various threshold settings (Figure 2). The average AUC for each
task was computed using 5-fold cross-validation (i.e. split the
data with test size of 20% and average 5 splits). The training/test
division was fixed among classification tasks for each data-set.

the first step of MIPMLP involves two choices, the first one is
the taxonomy level and the second is taxonomy grouping type
(Figure 1 third row):

1. The taxonomy levels used for merging are Order, Family, and
Genus. We did not analyze at the species level, since this
consistently gave worse results than lower levels (less detailed
taxonomy).

2. The methods of merging. Three different methods were tested:

a. Sum of all features associated with a given bacteria (at the level
chosen above).

b. Average of all features associated with a given bacteria, as
above.

c. A more complex approach was to reproduce the variability in
each level, by performing a dimension reduction on all
samples and all features associated with a bacteria, and
representing the bacteria by the projections reproducing
almost half the variance. Note that this method was
performed after scaling (to have a normal input distribution
for the PCA).

The second step involves two choices of scaling. The first one
being relative scaling, which is currently the standard in most
Frontiers in Immunology | www.frontiersin.org 5
studies - the division of each feature frequency by the sum over all
feature frequencies in the same sample. An alternative approach is
scaling all feature frequencies to a logarithmic scale. Since a large
number of features have 0 frequency in many samples. A minimal
value (ϵ = 0.1) was added to each frequency.

The third step involves normalization. There are two main
arguments for normalization. To ensure that all features entering
the machine learning have equal average and variance. This
could be obtained by z-scoring each feature to zero average and
unity variance. An alternative normalization would be to ensure
that differences in the amount of genetic material would not
affect the results. This would require a z-scoring over the
samples. Finally one could propose doing both types of z-
scoring. We have tested all three possibilities.

The last step of the analysis was to perform dimension
reduction over the resulting projections. We tested three
options: 1) No dimension reduction, 2) PCA, 3) ICA.

To exemplify how we test the combination of pre-processing
steps, we follow an example in one dataset and one learning method.
Example on Mucositis Prediction
Prognosis From Pre-Transplant
Microbiome Samples
Let us follow the analysis for an Artificial Neural Network
(ANN) based prediction of the emergence of Mucositis
following bone marrow transplant in leukemic patients (21).
We present the differences between the configuration in every
pre-processing steps through their influence on the prediction
precision. We focus in this section on the Mucositis prediction
and ANN. Similar results were achieved using other data sets and
classifiers, as further detailed below.

To test that the pre-processing indeed affects the test-set AUC
value, we tested all possible combinations of all pre-processing
steps. For each combination, we averaged the AUC over all
training/test divisions (Figure 2 upper plots). We then evaluated
the AUC obtained using a specific value in a given step, and all
options in all other steps (Figure 2middle plots). For example, to
estimate the expected accuracy when using a genus-level
representation, we averaged the AUC Of all evaluations using a
genus-level representation, and all possibilities on all other
choices. One can see that for the ANN and the Mucositis
prediction that making a taxonomy grouping of sub-PCA (the
novel method presented here) and a genus based representation
gives the optimal AUC. Using family or Order taxonomy levels
decreases the AUC by 0.03-0.08, and using other methods than
sub-PCA decrease the AUC by0.05. Similarly, using a
logarithmic normalization and z scoring both columns and
rows is the optimal approach for this dataset on average.
However, the effect of Z-scoring is minimal. One can further
see that any dimension reduction reduces the test set accuracy,
but there is no clear difference between ICA and PCA. These
results are similar to the results obtained using more rigorous
methods as follows.

To address the effect of combinations of pre-processing steps
and their inter-dependence, we used a regression-based approach,
where the contribution of each step to the test set accuracy is
June 2021 | Volume 12 | Article 677870
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represented by its coefficient in the regression. This is performed by
representing the set of options via a one-hot representation, and
performing a linear regression of the test set average AUC (averaged
over cross-validations) over the one-hot vectors. The resulting
coefficients are not unique (since the one-hot representation
matrix is not full rank). Thus, to compute the relative effect, we
normalized the average effect of the interchangeable coefficient to 0
Frontiers in Immunology | www.frontiersin.org 6
(for example the representation level, or the dimension reduction).
To test that such a correlation can give meaningful results, we
computed the expected and observed test AUC in the ANN
Mucositis prediction (Figure 3). Indeed the real AUCs are tightly
correlated. The resulting coefficients can be used to assess the effect
of a pre-processing step. We then applied the same method to all
data-sets and all learning methods.
FIGURE 2 | Upper plot typical ROC and the effect of preprocessing. The right plot is using the sub-PCA merging method, while the left plot us using the average
merging method. The right upper plot has a higher AUC than the left one. Middle plots - average AUC defined as average AUC using one feature (e.g. one taxonomy
level) and all other combinations (e.g. merging methods, normalization etc). Lower plot - Predicted AUC in linear regression vs real linear regression.
June 2021 | Volume 12 | Article 677870
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Comparison of Different Data-Sets and
Learning Methods
To test the effect of the pre-processing in general and with
different ML frameworks, We computed the regression
coefficients for each data set and each ML methods. We
present the distribution of coefficients of every data set in a
box-plot, for each classifier separately (Figures 4–6).

The results are highly consistent among the different learning
methods, with the following conclusions:
• The main effect is the effect of normalization. Relative
normalization reduces the AUC on average by more than
0.05 compared with log scaling the data.

• AGenus taxonomy level representation is typically the best, and
reducing to lower orders can further reduce AUC by 0.02-0.03.

• All dimension reduction algorithms reduce the AUC by
around 0.02.

• The sub-PCAmethod to merge features increases the AUC by
0.01-0.02 compared with the sum or the average.
Frontiers in Immunology | www.frontiersin.org 7
• Z-Scoring has a minimal effect, and the precise Z-scoring
performed is of limited importance.

We thus suggest that feature data should be pre-processed at
the Genus taxonomy level with log scaling, using the sub-PCA
algorithm (presented in the method section), and no further
dimension reduction. Note that the cumulative addition of
approximately 0.1 by this combination may be crucial for
many ML applications.

Another much more complex algorithm for microbiome ML
pre-processing is the HFE algorithm that was suggested in (19).
To compare MIPMLP and HFE, we used an SVM classifier with
a box constraint of 0.01 and a linear kernel, we tested the results
on 5 different data sets each of them was split with 7-fold cross-
validation. As can be seen in Figure 6, HFE tends to over-fit
very easily. we can assume that the reason for that is that HFE is
based on train labels for computing thresholds and correlation
at the pre-processing step, before the learning methods. Also,
in general, for MIPMLP and HFE the AUC values are relatively
close, but MIMLP is much simpler and computationally effective.
FIGURE 3 | Linear regression coefficient for SVM classifier. Coefficients are the contribution of a choice to the total AUC. Each group of coefficients is marked by a
different color and normalized to 0. The following two figures follow this figure, but for different classifiers. The regression is over all parameter combinations, including
the choice of taxonomy level (red), the grouping method (blue), the dimension reduction method (purple) and the normalization method (green). Since not all
normalization and standardization methods are possible, we opened all tested combinations.
June 2021 | Volume 12 | Article 677870

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Jasner et al. Comparison of 16S-Sequencing Preprocessing Methods
CONCLUSION

We have presented here MIPMLP a computationally efficient
framework to pre-process 16S feature values for ML based
classification tasks. While MIPMLP allows for multiple choices
at each stage of the pre-processing, a consensus method emerges
which typically gives the optimal AUC, which is:

1. Use a Genus level representation.
2. Perform a log-transform of the samples.
3. Merge all features belonging to the same genus through a

PCA on these specific features.
4. Do not perform other dimension reductions.
5. Z-scoring has a minimal effect if any on the results.

The importance of the log-transform suggests that the
information of the most abundant species is limited. Instead,
the relative change in the frequency of all species, even rare ones
should be used. The genus-level presentation suggests that the
prediction is not based on any specific bacteria, but rather on
some more general aspects, such as the metabolite usage and
production, or the association with inflammation (21). Finally,
the need for PCA instead of average/sum when merging a genus,
suggests that treating all features are equal is sub-optimal.
Instead, features contributing to the variance between samples
should receive more importance.
Frontiers in Immunology | www.frontiersin.org 8
DISCUSSION

The microbiome is now widely used as a biomarker (mic-marker)
in the context of ML-based classification tasks. However, very
limited attention was given to the optimal representation of 16S
based features for such classification tasks. While features are used
as a representation of species, in reality, a feature is an abstract
representation of bacteria clustered based on the similarity of one
protein. As such, we propose that a higher level of representation
would give a higher accuracy in ML tasks. We then propose a
formalism to integrate feature expression levels for such
a representation.

Similarly, the expression level in sequencing experiments is
not a direct measure of the number of bacteria, but instead the
result of multiple experimental and computational stages,
including the extraction of the genetic material, primer specific
PCR amplification (31), and computational sequence quality
control. Our results suggest that comparing the absolute
feature frequencies (or relative frequencies) in different
experiments leads to lower accuracy than measuring the fold
change, as expressed by differences in the logged frequencies.
Indeed, in most of our recent results (14, 16, 21, 32), we found
that such a log normalization is essential.

As many non-computational scientists are now entering the field
of ML in microbiome studies, we believe that MIPMLP will help
FIGURE 4 | Linear regression coefficient for XGBosot classifier.
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FIGURE 5 | Linear regression coefficient for MLP classifier.
FIGURE 6 | HFE and MIPMLP mean AUC with standard errors bar. Shaded bars are training set and full bars are test set. Error bars are standard errors. The y axis
is AUC. Different groups of bars are different datasets.
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standardize the use of ML in microbiome studies. We feel that the
processing steps described throughout the manuscript will allow for
better prognosis and diagnosis as they focus on the common features
in the microbiome at different taxonomic levels. Employing such an
approach as we described here will allow moving microbiome-based
prediction of disease states from bench to bedside.
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