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ABSTRACT
Background. Oxidative stress (OS) is key to various diseases and is implicated in cancer
progression and oncogenesis. However, the potential diagnostic value of OS-related
genes in skin cutaneous melanoma (SKCM) remains unclear.
Methods. We used data of RNA sequencing from 471 tumor tissues and one healthy
tissue acquired from The Cancer Genome Atlas (TCGA)-SKCM cohort. The Genome
Tissue Expression database was used to acquire transcriptome data from 812 healthy
samples. OS-related genes that were differentially expressed between SKCMand healthy
samples were investigated and 16 prognosis-associated OS genes were identified. The
prognostic risk model was built using univariate and Cox multivariate regressions. The
prognostic value of the hub geneswas validated in theGSE65904 cohort, which included
214 SKCM patients.
Results. The overall survival rate of SKCM patients in the high-risk group was
decreased compared to the low-risk group. In both TCGA and GSE65904 cohorts,
the ROC curves suggested that our prognostic risk model was more accurate than
other clinicopathological characteristics to diagnose SKCM. Moreover, risk score
and nomograms associated with the expression of hub genes were developed. These
presented reiterated our prognostic risk model. Altogether, this study provides novel
insights with regards to the pathogenesis of SKCM. The 16 hub genes identified may
help in SKCM prognosis and individualized clinical treatment.

Subjects Bioinformatics, Genetics, Dermatology, Oncology, Medical Genetics
Keywords Skin cutaneous melanoma, Oxidative stress, Prognostic signature, Risk model,
Bioinformatics analysis

INTRODUCTION
Skin cutaneous melanoma (SKCM) is an aggressive cancer that has been recognized as a
relevant cause of death (Ekwueme et al., 2011). Indeed, SKCM is the most frequent cause
of death in patients with skin tumors (Holmes, 2014; Liu-Smith, Jia & Zheng, 2017). Early
diagnosis and treatment of SKCM are crucial for a favorable prognosis (Hamm et al.,
2008); however its pathogenesis remains unclear. Previous studies showed that the degree

How to cite this article Yang Y, Long X, Li K, Li G, Yu X, Wen P, Luo J, Tian X, Zhao J. 2021. Development and validation of an oxida-
tive stress—associated prognostic risk model for melanoma. PeerJ 9:e11258 http://doi.org/10.7717/peerj.11258

https://peerj.com
mailto:GXZJ1962@163.com
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj.11258
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE65904
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE65904
http://doi.org/10.7717/peerj.11258


of skin pigmentation is associated with the progression and occurrence of SKCM (PDQATE
Board, 2002; Kanavy & Gerstenblith, 2011). Genetic susceptibility, acquired melanocytic
nevi, and family history also play key roles in disease pathogenesis (Gilchrest et al., 1999;
Hawkes, Truong & Meyer, 2016). However, it is often difficult to use the above factors to
facilitate early diagnosis, making the development of better tools to diagnose early SKCM
an important objective in the field (Eisenstein et al., 2018). Therefore, understanding the
molecular mechanisms of SKCM and exploiting effective early diagnosis indicators may
have a great impact on the survival rate and long-term quality of life of SKCM patients.

The occurrence of oxidative stress (OS) is due to the unbalance between cellular oxidant
and antioxidant systems due to various internal and external factors that ultimately lead to
the generation of reactive oxygen species (ROS). These are comprised of reactive nonradical
species and free radicals, e.g., singlet oxygen, superoxide anion, and hydrogen peroxide
(Lü et al., 2010). Excessive ROS can lead to double-stranded DNA breaks and genotoxicity,
eventually leading to genomic mutations and tumorigenesis (Moloney & Cotter, 2018;
Wang et al., 2017; Zhou, Shen & Claret, 2013). The expression of OS genes plays a crucial
role in physiological homeostasis and is associated with the development and progression of
several human diseases, such as osteoporosis (Almeida & Porter, 2019), neurodegenerative
(Buendia et al., 2016), and inflammatory diseases (Thomson, Hemphill & Jeejeebhoy, 1998).
However, both the molecular association between OS genes and SKCM, and their impact
on early prognosis, are poorly understood.

Previous studies have described the relationship between OS and its effects on
tumorigenesis and disease progression of different tumors (Gill, Piskounova & Morrison,
2016; Klaunig, 2018). For example, in oral squamous cell carcinoma, differential expression
of OS-related genes provides a potential basis for clinical drug treatment and clinical
decision-making (Pedro et al., 2018). In SKCM patients, the concentration of ROS is
reported to be elevated (Liu-Smith, Dellinger & Meyskens, 2014), yet only a few potential
mechanisms underlying the roles of OS genes in SKCM have been evaluated. To our
knowledge, no systematic study has investigated if OS hub genes are correlated with the
prognosis or progression of SKCM. In our study, we obtained the expression profiles
of healthy skin and SKCM samples from The Cancer Genome Atlas (TCGA) and the
Genome Tissue Expression (GTEx) databases to investigate hub genes related to SKCM
prognosis. Subsequently, a prognostic risk model was constructed using the identified
OS-related genes and the clinical significance and function of each OS gene in SKCM were
systematically explored.

MATERIALS AND METHODS
Processing of raw data
RNA sequencing samples from 472 individuals were obtained from the TCGA
database, which comprised of 471 SKCM samples and one healthy skin tissue sample
(https://portal.gdc.cancer.gov/). In addition, to increase the number of healthy samples,
we collected 812 RNA sequencing data from healthy skin tissues obtained from the GTEx
database (https://gtexportal.org/home/datasets) (Human Genomics, 2015; Gentles et al.,
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2015). A total of 1399 OS-related genes with relevance score ≥ 7 were collected from
the Gene Cards database (https://www.genecards.org). Under |log2 fold change|≥ 2 and
a standard false discovery rate (FDR) <0.05, an R package was used to detect genes
differentially expressed in SKCM and healthy skin samples (Li et al., 2020). Meanwhile, an
average count cutoff of 1 was used to eliminate genes. After univariate and multivariate
Cox analyses, 16 OS-related genes associated with SKCM prognosis were obtained for
the construction of the risk model. We used the National Center for Biotechnology
Information-Gene Expression Omnibus database to download the GSE65904 dataset, a
cohort of 214 SKCM patients for external verification. The basic characteristics of these
SKCM samples were all displayed in Table 1.

Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway
enrichment analysis and Gene Ontology (GO)
KEGG enrichment analysis and GO of OS-associated differentially expressed genes
(DEGs) were performed to assess their biological functions. The Database for Annotation,
Visualization, and Integrated Discovery 6.8 (Huang, Sherman & Lempicki, 2009) was used
to perform the analyses.

Establishing protein-protein interaction (PPI) network and screening
for important modules
PPI information from OS-associated DEGs was acquired from the STRING platform
(http://www.string-db.org/) (Szklarczyk et al., 2019). The PPI network was developed using
Cytoscape 3.7.0. The virtual modules and hub genes in the PPI network with a Molecular
Complex Detection (MCODE) score and node count >5 (p< 0.05) were selected using the
MCODE plug-in (Bader & Hogue, 2003).

Construction of a prognostic risk model
The univariate Cox regression of hub genes found in the PPI network was performed using
the ‘survival’ R package. Subsequently, multivariate Cox regression was used to further
analyze the above OS-related genes and select genes to build the prognostic risk model. We
calculated the risk value of patients with SKCM based on the expression and coefficient
values of 16 OS genes and classified them into high- and low-risk queues through the
median risk score. The risk score was determined according to the equation below:

Risk score=6expgenei×βi,

where expgenei is the expression level of 16 OS-associated genes and β is the coefficient
value for the gene. Receiver operating characteristic (ROC) curves were generated using
the ‘timeROC’ and ‘survivalROC’ packages for R and were applied to assess the accuracy of
our risk model to predict the overall survival rate of SKCM patients. Separate nomograms
were constructed based on clinical characteristics and the 16 OS genes. The calibration
chart was used to detect the predictive power of the above nomograms (one based on
clinical characteristics and one based on the 16 OS genes) for the overall survival time of
SKCM patients. To validate the prognostic performance of the constructed risk model, the
analyses described above were conducted using data from the GSE65904 cohort.
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Table 1 Basic characteristics of the clinical variables in SKCM patients.

Clinical variables TCGA
cohort

Clinical
variables

GSE65904
cohort

Survival status Survival status
Dead 224 Dead 102
Survived 239 Survived 108
Unknown Unknown 4
Median age (year) 57.84 Median age (year) 62.35
Sex Sex
Female 174 Female 89
Male 289 Male 124
Unknown Unknown 1
T stage Tumor stage
0 23 General 23
1 42 In-transit 15
2 77 Local 11
3 91 Primary 16
4 150 Regional 139
Unknown 80 Unknown 10
N stage Tissue
0 227 Cutaneous 22
1 75 Lymph node 130
2 50 Subcutaneous 33
3 57 Visceral 10
Unknown 54 Unknown 19
M stage
0 411
1 24
Unknown 28
AJCC stage
1 78
2 136
3 174
4 23
Unknown 52
Metastatic status
Metastatic 361
Primary 99
Others 3

Validation of expression levels and prognostic values of hub genes
After clarifying the translational expression level of hub genes in the TCGA cohort, we
verified the differential expression of 16 OS genes between SKCM and normal skin tissues
using data from the Human Protein Atlas (HPA) (Thul et al., 2017). In the TCGA cohort,
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Figure 1 (A) Flowchart describing the schematic overview of the study design. (B) Volcano plot of OS-
associated DEGs in TCGA-SKCM cohort.

Full-size DOI: 10.7717/peerj.11258/fig-1

a survival analysis of 16 OS genes was performed using the Kaplan–Meier (KM) approach
to ascertain whether they were correlated with the prognosis of SKCM patients.

RESULTS
Identification of OS-associated DEGs
Figure 1A shows the workflow of the study. In total, 1399 OS genes were selected to study
their differential expression in SKCM and healthy tissues. Of these, 156 were identified as
OS-associated DEGs (63 upregulated and 93 downregulated genes) in SKCM (Fig. 1B).

Functional enrichment analysis of OS-associated DEGs
We used the KEGG pathway analysis to analyze the DEGs and found that upregulated
genes were mostly correlated with cytokin-cytokin receptor interaction and hunman T-cell
leukemia virus 1 infection (Fig. 2A), while downregulated genes were predominantly linked
with fluid shear stress and atherosclerosis (Fig. 2B). GO analysis was also performed to
further explore the DEGs. As a result, with regard to biological processes, upregulated
DEGs were significantly augmented in leukocyte migration and leukocyte chemotaxis
(Fig. 3A), whereas DEGs that were downregulated were mainly augmented in response
to OS and cellulare response to OS (Fig. 3B). With regard to cell location, upregulated
genes were mainly augmented on the external side of plasma membrane and secretory
granule membrance (Fig. 3A). Downregulated genes were enriched in the vesicle lumen
and cytoplasmic vesicle lumen (Fig. 3B). Finally, it was evident that upregulated OS genes
were concentrated in cytokine activity and cytokine receptor binding (Fig. 3A), while
downregulated OS genes were mostly implicated in antioxidant activity and heme binding
(Fig. 3B).
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Figure 2 KEGG enrichment analysis of OS-associated DEGs. (A) Top 30 classes of KEGG enrichment
terms about up-regulated DEGs. (B) Top 30 classes of KEGG enrichment terms about down-regulated
DEGs.

Full-size DOI: 10.7717/peerj.11258/fig-2

Creation of a PPI network for OS-associated DEGs and screening of
key modules
To further explore the inner relationship of OS-associated DEGs, a PPI network was
established with 144 nodes and 834 edges (Fig. 4A). The most meaningful module with 19
nodes and 158 edges was subsequently identified (Fig. 4B). OS-related genes within the key
module were primarily involved in chemokine-mediated signaling transduction, leukocyte
migration, response to chemokine, and chemokine signaling pathway.

Screening of hub genes and construction of a prognostic risk model
A total of 144 OS-associated DEGs were identified from the PPI network. After univariate
Cox regressions, 61 OS genes were identified as genes of prognostic value in SKCM patients
(Fig. 5A). The multivariate Cox regression model helped to select 16 hub genes (CDK2,
CCR5, NDUFA9, NDUFA13, HLA.DRB1, CXCR3, FOXM1, CCL4, ISG15, FCGR2A,
FCGR3A, PIK3R2, SLPI, SELL, PSEN2, andGJA1) that were used to calculate the prognostic
risk model (Fig. 5B, Table 2).

Validation of the prognostic value of the risk model
The median risk score of the prognostic risk model was used to separate SKCM patients in
the TCGAandGSE65904 cohorts into high- and low-risk queues (Figs. 6A, 6B). The survival
time of SKCM patients in the high-risk group was significantly lower when compared to
the low-risk group (Figs. 6C, 6D). A ROC curve was constructed to validate the accuracy
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Figure 3 GO enrichment analysis of OS-associated DEGs. (A) Top 10 classes of GO enrichment terms
about up-regulated DEGs in biological process (BP), cellular component (CC), and molecular function
(MF). (B) Top 10 classes of GO enrichment terms about down-regulated DEGs in BP, CC, and MF.

Full-size DOI: 10.7717/peerj.11258/fig-3

Figure 4 PPI network andmodules screening. (A) PPI network of OS-associated DEGs. (B) Critical
module from PPI network. Green circles represent down-regulated genes, and red circles represent up-
regulated genes.

Full-size DOI: 10.7717/peerj.11258/fig-4
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Figure 5 Identification of hub OS genes in TCGA cohort. (A) Univariate Cox regression analysis for
identification prognosis-associated OS genes. (B) Multivariate Cox proportional hazards regression model
was constructed based on the identified prognostic-related OS genes.

Full-size DOI: 10.7717/peerj.11258/fig-5

Table 2 Sixteen prognosis-associated hub OS genes identified by multivariate Cox regression analysis.

Symbol coef HR Lower
95% CI

High
95%CI

P-value

CDK2 0.0993 1.1044 0.9682 1.2597 0.1393
CCR5 0.5314 1.7014 1.1290 2.5638 0.0111
NDUFA9 −0.4646 0.6284 0.4083 0.9672 0.0347
NDUFA13 0.4240 1.5280 1.1096 2.1042 0.0094
HLA.DRB1 −0.2531 0.7764 0.6477 0.9307 0.0062
CXCR3 −0.3069 0.7358 0.5371 1.0080 0.0561
FOXM1 0.3925 1.4807 1.2259 1.7883 0.0000
CCL4 −0.3873 0.6789 0.5224 0.8823 0.0038
ISG15 −0.1498 0.8609 0.7684 0.9645 0.0098
FCGR2A −0.1357 0.8731 0.7509 1.0152 0.0777
FCGR3A 0.2993 1.3489 1.0747 1.6931 0.0098
PIK3R2 0.6541 1.9234 1.1688 3.1653 0.0101
SLPI 0.1903 1.2096 1.1106 1.3174 0.0000
SELL 0.2599 1.2968 1.1058 1.5208 0.0014
PSEN2 0.2011 1.2228 1.0143 1.4741 0.0349
GJA1 0.1313 1.1403 1.0096 1.2879 0.0345
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Figure 6 Construction of prognostic model in the TCGA and GSE65904 cohort. (A) Risk score distri-
bution, survival status, and expression heat map of TCGA cohort. (B) Risk score distribution, survival sta-
tus, and expression heat map of GSE cohort. (C) Survival curve of TCGA cohort. (D) Survival curve of
GSE cohort. (E) ROC curves for forecasting overall survival in TCGA cohort. (F) ROC curves for forecast-
ing overall survival in GSE cohort.

Full-size DOI: 10.7717/peerj.11258/fig-6
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of our risk model. It indicated that our risk model had a moderate predictive effect using
data from the TCGA cohort (area under the ROC curve [AUC] of 1-year survival =
0.742; 3-year survival = 0.723; and 5-year survival = 0.764) (Fig. 6E). Similarly, both the
prognostic effect and accuracy were validated in the GSE65904 cohort, in which the AUC
of 3-year survival was 0.705 (Fig. 6F). The univariate and multivariate Cox regressions of
different clinical characteristics of SKCM patients in the TCGA cohort showed that the
gene-based risk score was a robust prognostic parameter for SKCM patients (Figs. 7A,
7B). When compared with other clinical features in the TCGA and GSE65904 cohort, our
prognostic risk model showed a better prognostic performance in all AUCs (Figs. 7C–7H),
revealing that our gene-based prognostic risk model displayed moderate specificity and
sensitivity with regard to predicting SKCM prognosis. The correlation analysis between
clinical parameters and risk score indicated that SKCM patients in the T3 and T4 stages or
those with primary cancer had a higher risk score. (Figs. 7I, 7J). A heatmap was drawn to
show the correlation between the levels of 16 OS genes in the TCGA and GSE65904 cohorts
against different clinical parameters, including high- and low-risk groups, TNM stage, age,
and gender (Fig. 7K, 7L).

Furthermore, in the TCGA and GSE65904 cohorts, the nomograms of our risk score
and different clinical parameters were constructed to predict the overall prognosis of
SKCM patients (Fig. 8A, 7B). In parallel, the calibration diagram evidenced that the
above nomograms had a good predictive effect on the clinical outcome of SKCM patients
(Figs. 8C–8F).

Validating the prognostic value and expression levels of hub genes
In SKCM samples, the expression levels of CDK2, CCR5, HLA-DRB1, CXCR3, FOXM1,
CCL4, ISG15, FCGR2A, FCGR3A, SELL, and PSEN2 were considerably increased, while
the levels of NDUFA9, NDUFA13, PIK3R2, SLPI, and GJA1 were markedly decreased
when compared with that in healthy samples (File S1A). These results were validated by
immunohistochemistry analysis from the HPA database (File S1B).

To visualize the interactions between hub DEGs, we constructed a PPI network using
the STRING database online tool (Fig. 9A). The genes FCGR2A and CCR5 showed the
highest interacting degrees among the hub genes (Fig. 9B). The KM method showed that
a high expression level of HLA-DRB1, CXCR3, CCL4, ISG15, FCGR2A, FCGR3A, SELL,
and CCR5 were correlated with a significant increase in the overall survival rate in SKCM,
whereas a high expression level of PSEN2, CDK2, FOXM1, GJA1, NDUFA9, NDUFA13,
PIK3R2, and SLPI were correlated with a significant decrease of the overall survival rate
(File S2). Moreover, as shown in File S3, the genes SELL, PSNE2, FOXM1, CDK2, and
HDUFA9were all significantly related towith SKCMages, while genesHDUFA13 andCCL4
were significantly connected the ganders of SKCM patients. For the TCGA and GSE65904
cohorts, we also constructed the nomograms related to the 16 OS genes to predict the
1-, 3-, and 5-year survival probability of SKCM patients (File S4). The calibration of the
nomograms associated with the 16 OS genes presented good consistency between the
predicted and observed outcomes.
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Figure 7 Efficacy evaluation of constructed prognostic model.Univariate (A) and multivariate (B)
Cox regression analysis of the clinicopathological features in TCGA cohort. ROC curves for forecasting
overall survival in TCGA (C-E) and GSE65904 (F-H) cohort. (I) The relationship between the risk scores
and T stage in TCGA cohort. (J) The relationship between the risk scores and metastatic ability in TCGA
cohort.The heatmap shows the distribution of clinicopathological features and OS genes expression in
TCGA (K) and GSE65904 (L) cohort.

Full-size DOI: 10.7717/peerj.11258/fig-7
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Figure 8 Construction of nomogram based on the risk score and other clinical factors.Nomograms
for predicting SKCM 1-, 3-, and 5-year overall survival in TCGA (A) and GSE65904 (B) cohort. (C-D)
The calibration plot of the nomogram in TCGA cohort. (E-F) The calibration plot of the nomogram in
GSE65904 cohort.

Full-size DOI: 10.7717/peerj.11258/fig-8

Figure 9 The interactions between identified hub DEGs. (A) The PPI network of 16 prognosis-
associated OS genes based on STRING database. (B) Spearman correlation analysis of 16 OS genes.

Full-size DOI: 10.7717/peerj.11258/fig-9

DISCUSSION
The incidence of SKCM has increased over the past 50 years, and it ranks 19th among the
most common malignant tumors worldwide (Holmes, 2014). Currently, the management
of SKCM is through surgical resection, although it does not sufficiently improve the overall
survival rate (Swetter et al., 2019). OS is known to be involved in the occurrence and
development of several tumors (Kruk & Aboul-Enein, 2017), however the prognostic value
of OS genes on tumor survival remains unclear. Here, we sought to identify molecular
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biomarkers to predict the prognosis of SKCM and provide a rationale for decisions
regarding treatment. Therefore, we analyzed the differential expression of OS-related
genes between SKCM and normal samples, obtaining 156 DEGs (63 upregulated and
93 downregulated genes). GO enrichment analysis indicated that DEGs were mainly
involved in OS, chemokine, and ROS-associated functions, whereas KEGG pathway
analysis suggested that they could have a significant impact on the initiation and growth
of certain tumors, such as prostate cancer, hepatocellular carcinoma, pancreatic cancer,
bladder cancer, and especially melanoma.

A PPI network was built to analyze the interactions between OS-associated DEGs and
identify a keymodule. Furthermore, univariate andmultivariateCox regressions revealed 16
hub genes, including HLA-DRB1, CXCR3, CCL4, ISG15, FCGR2A, FCGR3A, SELL, CCR5,
PSEN2, CDK2, FOXM1, GJA1, NDUFA9, NDUFA13, PIK3R2, and SLPI. Interestingly,
these genes were found to have several cancer-related roles: CXCR3 can interact with
LRP1 leading to ligand-induced conformational changes on the cell membrane, which
results in increased tumor cell migration (Boyé et al., 2017); ISG15 is highly expressed
in hepatocellular carcinoma tissues and interacts with XIAP to drive proliferation
and metastasis (Li et al., 2014; Tong et al., 2020); CCR5 is positively associated with the
size of the primary tumor (Suarez-Carmona et al., 2019), whereas its overexpression
significantly promotes leukocyte accumulation, angiogenesis, and tumor progression
in oral squamous cell carcinoma (Da Silva et al., 2017); NDUFA9 is related to colitis-
associated cancer and may be connected with the activation of the LKB1/AMPK pathway
in colorectal epithelial cells (Wang, Cui & Qu, 2019); PIK3R2 is closely related to liver
cancer prognosis, since its overexpression significantly increases the probability of liver
cancer metastasis and angiogenesis (Du et al., 2014); and SLPI provides a local immune
response to human papillomavirus infection in the cervical mucosa (Sahin et al., 2018),
while its modulation significantly inhibits the expression of apoptosis-associated genes,
promoting the proliferation and metastasis of gastric cancer (Du et al., 2017; Sahin et al.,
2018). Although themodulation effects of these genes had been explored in various tumors,
few studies have systematically analyzed their specific prognostic values in SKCM.

In the present study, the survival analysis results obtained through the KM method
showed that the expression levels of 16 OS-related genes were associated with SKCM
patients’ survival. Elevated expression of PSEN2, CDK2, FOXM1, GJA1, NDUFA9,
NDUFA13, PIK3R2, and SLPI was associated with a lower survival rate, indicating that
these genes may be oncogenes. Conversely, overexpression of HLA-DRB1, CXCR3, CCL4,
ISG15, FCGR2A, FCGR3A, SELL, and CCR5 was associated with a significantly higher
survival rate, revealing their vital role in inhibiting the progression of cancer.

The ROC curves and survival analyses confirmed the advanced biological implications
of our model to predict the outcomes of SKCM patients. In addition, it showed an
improved predictive accuracy when compared to other clinical parameters. Cox regressions
evidenced that our risk score was an independent prognostic parameter for SKCM patients.
Nomograms constructed based on the gene expression levels and risk signature ascertained
the credibility of our risk model to estimate the overall survival time of SKCM patients.
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Given the fundamental role of OS in SKCM metastasis and progression (Obrador et al.,
2019), we also detected the relationship between the clinical factors and calculated risk
score. The results suggested that our risk model was able to estimate the metastasis and T
stage of patients with SKCM, highlighting its high correlation with cancer prognosis and
progression.

Nonetheless, there are some limitations in this study. First, this study was designed as a
retrospective analysis; more prospective research should be performed to verify our results.
Second, our results lack in vitro or in vivo exploration to confirm the reliability of our
mechanism analysis. Therefore, we need to conduct several further experiments to prove
the mechanistic connections between these genes and SKCM.

CONCLUSION
In conclusion, we systematically studied prognosis-associated OS genes for SKCM using
a series of bioinformatics techniques and identified 16 hub genes that were correlated
with overall survival rate. We also successfully developed and validated a prognostic risk
model for melanoma using OS genes. Overall, this result may help to study the progression
and metastasis of SKCM more thoroughly and provide a deeper understanding of the
mechanisms involved in these processes.
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