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Abstract

Deep learning techniques have achieved remarkable success in lesion segmentation and

classification between benign and malignant tumors in breast ultrasound images. However,

existing studies are predominantly focused on devising efficient neural network-based learn-

ing structures to tackle specific tasks individually. By contrast, in clinical practice, sonogra-

phers perform segmentation and classification as a whole; they investigate the border

contours of the tissue while detecting abnormal masses and performing diagnostic analysis.

Performing multiple cognitive tasks simultaneously in this manner facilitates exploitation of

the commonalities and differences between tasks. Inspired by this unified recognition pro-

cess, this study proposes a novel learning scheme, called the cross-task guided network

(CTG-Net), for efficient ultrasound breast image understanding. CTG-Net integrates the two

most significant tasks in computerized breast lesion pattern investigation: lesion segmenta-

tion and tumor classification. Further, it enables the learning of efficient feature representa-

tions across tasks from ultrasound images and the task-specific discriminative features that

can greatly facilitate lesion detection. This is achieved using task-specific attention models

to share the prediction results between tasks. Then, following the guidance of task-specific

attention soft masks, the joint feature responses are efficiently calibrated through iterative

model training. Finally, a simple feature fusion scheme is used to aggregate the attention-

guided features for efficient ultrasound pattern analysis. We performed extensive experi-

mental comparisons on multiple ultrasound datasets. Compared to state-of-the-art multi-

task learning approaches, the proposed approach can improve the Dice’s coefficient, true-

positive rate of segmentation, AUC, and sensitivity of classification by 11%, 17%, 2%, and

6%, respectively. The results demonstrate that the proposed cross-task guided feature

learning framework can effectively fuse the complementary information of ultrasound image

segmentation and classification tasks to achieve accurate tumor localization. Thus, it can

aid sonographers to detect and diagnose breast cancer.
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Introduction

Breast cancer is one of the leading causes of cancer death in women [1]. One important study

[2] reported that early diagnosis and treatment of breast cancer can reduce mortality. Breast

ultrasound (BUS) imaging is widely used for breast cancer screening because of its safety, low

cost, and effectiveness of use on dense breast tissue [3]. However, ultrasound screening for

breast cancer is dependent on the judgment of the sonographer, and long hours of repetitive

work or inexperience on the part of the sonographer can increase the risk of misdiagnosis. To

help sonographers achieve more reliable and accurate diagnoses, the use of a computer-aided

diagnosis (CAD) system is particularly important.

A CAD system would be helpful for BUS image analysis to detect lesions induced by breast

cancer. As illustrated in Fig 1, a BUS image typically comprises several layers corresponding to

the physical structure. The layers are, in order from the top to the bottom of the image, skin

and fat, mammary gland, and muscle and rib. Lesions generally occur in the mammary gland

layer. The literature [4] has reported three major difficulties in developing CAD systems for

BUS images: 1) BUS images are commonly obscure because of speckle noise, low contrast, and

artifacts; 2) the breast structure is complex owing to patient differences; and 3) tumors are

diverse, leading to wide variability in echo intensity. Thus, the development of CAD systems

for the automated interpretation of BUS data has been a long-standing research topic. Various

conventional computer vision and machine learning approaches have been used for this task

[5]. However, conventional approaches require specialized and skillful extraction of hand-

crafted features, making it difficult to handle multiple types of lesions in poor-quality images.

In recent years, deep neural networks approaches have continuously demonstrated advanced

performance over conventional approaches in various cognitive tasks owing to their powerful

capability for automated feature learning. The shift to applying deep learning for BUS image

analysis is currently underway [6].

Two common tasks used for BUS image analysis are segmentation and classification, and

their outputs differ. The segmentation task involves marking the boundaries of different tissue

areas and locating suspicious lesion areas, whereas the classification task involves determining

the presence of lesions in the images and the benignity or malignancy of the lesions. Existing

studies typically perform segmentation and classification separately. In practice, both tasks are

classification in a broad sense (classification is performed at the image level and segmentation

at the pixel level). They both make decisions by analyzing patterns in ultrasound images or var-

iations between adjacent tissue regions. If one task is processed effectively, we can expect that

Fig 1. Schematic of the anatomical structure of a breast ultrasound (BUS) image.

https://doi.org/10.1371/journal.pone.0271106.g001
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useful knowledge could be learned from this task to help the other task. Consequently, per-

forming both tasks together could jointly improve the performance of both.

A straightforward approach to perform segmentation and classification jointly is to first

segment candidate lesion regions from the entire BUS image and classify them as either nor-

mal or lesioned (benign or malignant); this is called the cascade approach (Fig 2(1)). However,

the sequential training of segmentation and classification is necessary in the cascade approach,

which leads to additional computational costs. Moreover, the inference in any given stage

depends on that in the previous stage. This means that if the previous inference stage fails, the

subsequent stage necessarily fails.

The multi-task learning (MTL) approach (Fig 2(2)) can perform segmentation and classifi-

cation simultaneously without the above-mentioned problems. It is based on the concept of

using a shared feature-learning mechanism to extract suitable and efficient feature representa-

tions. The shared feature mechanism can learn common knowledge between tasks. However,

differences still exist between the participating tasks and we need to consider these differences

to suit each actual task. Segmentation and classification can provide complementary informa-

tion to each other because they are performed under different perspectives. We expect to

exploit this information to generate effective task-specific feature representations for further

performance improvement.

Consequently, we propose an efficient feature-learning scheme, called the cross-task

approach (Fig 2(3)), for considering both the commonality and differences between lesion seg-

mentation and tumor classification tasks. The cross-task approach aims to maximize the

Fig 2. Illustration of the approaches used for performing BUS image segmentation and classification jointly. (1) Cascade approach; (2)

Multi-task learning approach; (3) Cross-task approach.

https://doi.org/10.1371/journal.pone.0271106.g002
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utilization of the knowledge distilled from solving each task to achieve mutual improvement in

cognition tasks in BUS images. It has the following two primary advantages. 1) More efficient

learning of important features from redundant features can be realized through optimization

of the performance with respect to the related tasks. Specifically, the lesion segmentation

results can provide localization information for subsequent analysis, i.e., the extracted visual

features are anticipated to be applicable to lesion classification. Additionally, the categorization

results rendered by classification can further highlight the lesion regions by employing an

attention mechanism in the neural network, which can significantly facilitate the segmentation

of lesions with finer boundaries. 2) Prior knowledge of breast anatomy obtained from experts

can be easily embedded. The knowledge of breast anatomy obtained through segmentation

can be used to eliminate over-detection, which could happen in regions where lesions are

unlikely to occur, and to improve the sensitivity of judgments in regions where lesions are

likely to occur.

The contributions of this study are summarized as follows:

• A cross-task approach is proposed to jointly train and mutually improve the correlation

tasks in BUS image analysis.

• The cross-task guided network (CTG-Net) is devised to implement cross-task learning for

BUS image segmentation and classification.

• Extensive comparative experiment conducted with start-of-the-art classification, segmenta-

tion, and multi-task approaches on both private and public datasets are presented. The

results obtained on real data validate the proposed approach.

• The proposed approach achieves excellent performance on several private and public data-

sets with visual differences proving that the proposed approach has good generalization per-

formance and can minimize bias caused by the dataset.

The rest of the paper is organized as follows. Section 2 introduces the related work to the

proposed method. Section 3 describes the datasets adopted and explains the overall structure

of the proposed method, component units, and loss function. Section 4 presents the experi-

mental setup, evaluation metrics, and experimental results. Section 5 discusses the ablation

experiments and failure cases. Finally, this study is concluded in Section 6.

Related work

Over the last two decades, extensive research has been conducted on CAD diagnostic methods

for BUS images to reduce the workload of sonographers and improve the accuracy of diagno-

sis. The BUS analysis methods can be categorized into two groups: cascade and multi-task

learning approaches. Fig 2 presents a conceptual flowchart of the two approaches. In this sec-

tion, we first review the latest literature and then demonstrate the proposed cross-task guided

multi-task approach.

BUS image analysis using cascade approach

Fig 2(1) gives a conceptual illustration of the cascade approach. In this approach, the suspi-

cious region of the lesion is first segmented, and then classified. Both tasks are performed in a

sequential manner. As one typical study of the cascade approach for BUS image analysis,

Huang et al. [7] proposed to first segment the tumor region using a conventional level set

approach and then performing a benign and malignant classification of the tumor region. In

another study, Wang et al. [8] first identified the tumor candidate region using a target

PLOS ONE Cross-task guided network for breast ultrasound diagnosis

PLOS ONE | https://doi.org/10.1371/journal.pone.0271106 August 11, 2022 4 / 25

https://doi.org/10.1371/journal.pone.0271106


detection network. Subsequently, they performed a benign versus malignant classification of

the tumor candidate region.

Studies have also been conducted to tackle individual tasks. For example, various hand-

crafted features had been proposed to characterize the shape, texture, position, and orientation

of tissue and lesion regions [9, 10]. Statistical classifiers were employed to recognize those pat-

terns (LDA [11], SVM [12], MLP [13]).

Recently, deep convolutional neural networks (DCNNs) have become mainstream methods

for BUS image analysis [14]. In this approach, a unified model is adopted to learn feature rep-

resentations and classify BUS image visual patterns, such as combining DCNNs with image

processing techniques to help classification [15]. The latest tweaks to neural networks, such as

deep transfer learning [16–19] and the attention model [8, 20, 21], have also been employed.

However, the limited availability of data with annotations has been hindering progress. For the

BUS image segmentation task, fully convolutional networks [22] and U-Net [23] are the pri-

mary backbone models that can favorably characterize local and global information for lesion

region segmentation. More recent studies have focused on devising U-Net variants that can

further boost the segmentation performance [24–27].

Although the cascaded approach employs a straightforward and reasonable design to unite

the segmentation and classification tasks, the sequential process is computationally inefficient.

Furthermore, the final classification inevitably fails if the candidate tumor region is incorrectly

predicted in the previous stage.

BUS image analysis using the MTL approach

The MTL approach was introduced to address the issues in the cascade approach. A typical

flowchart of this approach is presented in Fig 2(2). The fundamental idea is to exploit the

underlying information shared between tasks. For lesion region detection in BUS images, it is

evident that the task of mammary gland segmentation and tumor classification have some

level of correlation. Thus, it is appropriate to introduce MTL for the application. At its core,

MTL aims to learn the generalized representations that are robust and efficient across different

tasks. Shared feature learning is achieved by using a particular network design. The front-end

layers of the MTL network are designated for feature extraction, followed by parallel indepen-

dent branches that can exploit specific tasks individually. The feature sharing-based mecha-

nisms can learn multiple tasks simultaneously. With the idea of MTL being widely investigated

in natural images [28–30] and other types of medical images (dermoscopy color images [31],

abdominal computed tomography scans [32], brain magnetic resonance images [33]), jointly

trained BUS image classification and segmentation has also evolved as a major topic. For

example, Thome et al. [34] developed an MTL method to perform breast cancer classification

and segmentation tasks jointly; the study validated the superiority of the MTL approach.

Zhang et al. [35] proposed a soft and hard attention MTL model that integrates BUS images

segmentation and classification tasks through soft and hard attention mechanisms, aiming at

more efficient use of lesion region information to improve the respective performances. Zhou

et al. [36] used the VNet architecture to develop a CAD system that can jointly perform 3D

automatic breast ultrasound (ABUS) image classification and segmentation CAD system. They

exploited the extracted multi-scale features to improve the image classification task and

achieve better results than a single task through an iterative feature refinement strategy. Zhang

et al. [37] proposed BI-RADS-Net for explainable BUS CAD based on multi-task learning. The

model outputs the probability of class and malignancy of a tumor by performing multiple clas-

sification and regression tasks. Cao et al. [38] proposed a multi-task learning method based on

label distribution correction for overcoming the problem of insufficient labeled training data.
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They performed breast tumor classification task jointly using two labels from different

domains of expertise and demonstrated the effectiveness of the method on the collected

dataset.

The above survey reveals that the MTL approach could be a promising approach, however,

there was little in-depth investigation along this research direction. In contrast to previous

studies, our contribution is three-fold, which are as follows. First, it is acknowledged that find-

ing suitable auxiliary tasks plays the most important role for MTL. The tasks should have some

level of correlation, otherwise, training on irrelevant tasks can result in negative transfer and

deteriorate the performance. To the best of our knowledge, this is the first study to formulate

lesion classification and its region segmentation as a multi-task learning problem for BUS

image analysis. The two tasks are highly correlated and thus appropriate to be investigated

through multi-task learning. Second, to achieve superior performance in lesion classification

and segmentation, we adopted the attention mechanism in the proposed neural network

design, which enables the network to focus on a few particular aspects that are related to suspi-

cious lesion areas and ignore the rest. In other words, it is an integral building block to gener-

ating pixel-wise labels for the lesion region. Third, MTL has been commonly formulated as a

minimization of a linear combination of individual tasks’ loss functions. The task-specific

weights are critical parameters to tune through the learning process. We adopted a self-

adjusted scheme to estimate the task-specific weights through optimization, which is more effi-

cient and robust compared to conventional methods such as grid search through cross-

validation.

We propose a novel MTL scheme that adopts a particular cross-task guided feature learning

design. The core idea is to exploit the intermediate results of individual tasks to recalibrate the

joint feature representations and ultimately boost the lesion detection performance. The pro-

posed scheme differs from other MTL scheme in two key features. First, it adopts the attention

model to generate task-wise feature representations, which enables more efficient high-level

feature learning. Secondly, we aggregate multiple intermediate features for robust lesion region

detection. The proposed scheme is illustrated in Fig 2(3) and the details are presented in Sec-

tion 3.

Materials and methods

In this section, we first introduce the dataset. Then, we explain the motivation and conceptual

design of the cross-task approach. Finally, We present the flowchart of the proposed cross-task

guided network (CTG-Net) for BUS image segmentation and classification, subsequentially,

introduce each component of the CTG-Net in detail.

Dataset

In this study, a private dataset was used to evaluate the ability of the deep learning model to

distinguish between normal tissue and lesions, and two public datasets were used to evaluate

its ability to distinguish between benign and malignant breast cancers. Fig 3 shows sample

images from each of the three datasets, and illustrates the average image size in each dataset.

We conducted experiments using five-fold cross-validation, which is the most commonly

applied validation protocol for empirical analysis, on each of the three datasets. Therefore, we

adopted the same criterion to maximize a fair comparison. Notably, lesion images belonging

to the same patient were assigned to the same dataset, and the images in each class were

divided in equal proportions.

Since this research does not use biological tissues obtained from the human body, it is not

necessary to obtain informed consents from the research participants following the “Ethical
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Guidelines for Medical Research Involving Human Subjects” set by the Japanese Ministry of

Health, Labour and Welfare. Therefore, data were collected using the opt-out method rather

than obtaining informed consents from the participants. Specifically, the following informa-

tion regarding the study was posted on the website of Takamatsu Heiwa Hospital, allowing

research participants to refuse the following: (1) outline of the study; (2) names of the research

institution, head of the research institution, and principal investigator; (3) statement that the

research protocol and materials of this study may be obtained or inspected and the method of

obtaining or inspecting such materials (the statement also mentions that the information may

not be obtained or viewed if it would interfere with the protection of the personal information

or intellectual property of research participants); (4) procedures for disclosure of personal

information; (5) notification of the purpose of using personal information and the method of

handling personal information, including the fact that participants may refuse to have their

personal information provided to outside organizations; and (6) contact information for

inquiries and complaints. This procedure was approved by the Ethics Committee of Takama-

tsu Heiwa Hospital on January 18, 2018, and by the Ethics Committee of the National Institute

of Advanced Industrial Science and Technology on March 9, 2018 (No. hi2018–0267).

THH dataset. The private Takamatsu Heiwa Hospital (THH) dataset was collected from 23

patients examined at Takamatsu Peace Hospital, Japan. From the DICOM multiframe images

acquired using a Toshiba Aplio 500 ultrasound system equipped with a Toshiba PLT-1204BX

transducer, 2718 normal and 2022 lesion images were collected. The labels between normal

and lesion frames and the ground truth of the mammary gland and lesion locations were

assigned by an sonographer.

UDIAT dataset [39]. The UDIAT dataset comprises 163 images, with 110 benign and 53

malignant. The UDIAT Diagnostic Centre of the Parc Tauli Corporation, Sabadell (Spain) col-

lected the images using the Siemens ACUSON Sequoia C512 system with 17L5 linear array

transducer.

Fig 3. Sample BUS images from the THH, UDIAT, and BUSI datasets with average image size.

https://doi.org/10.1371/journal.pone.0271106.g003
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BUSI dataset [40]. The BUSI dataset contains 133 normal, 487 benign, and 210 malignant

images. It was captured by Baheya Hospital using a LOGIQ E9 ultrasound and LOGIQ E9

Agile ultrasound system with ML6–15-D Matrix linear transducer, and the tumor contours

were annotated by a specialized sonographer to obtain ground truth.

The THH dataset were obtained by breast surgeons with over 17 years of experience using

ultrasound equipment from patients who underwent breast ultrasound examinations at Taka-

matsu Heiwa Hospital between May 2012 and January 2017 and met the following criteria.

• Selection criteria: (1) Those with findings, such as masses and nonmassive lesions in the

mammary glands, or without apparent findings; and (2) those who do not refuse to partici-

pate in this study.

• Exclusion criteria: (1) patients who have undergone mastectomy; (2) those substantially

thicker or thinner mammary glands or mammary glands with severe mastopathy; (3) those

with inadequate samples; and (4) patients who are deemed inappropriate as research partici-

pants by the principal investigator.

This procedure was approved by the Ethics Committee of Takamatsu Heiwa Hospital on

January 18, 2018, and by the Ethics Committee of the National Institute of Advanced Indus-

trial Science and Technology on March 9, 2018 (No. hi2018–0267).

The UDIAT and BUSI datasets were provided by [39, 40], respectively, and were used

under institutional or patient approval. Detailed public datasets access information are pro-

vided by the Supporting Information S1 Code.

Methodology

In this section, we first explain the motivation and conceptual design of the cross-task

approach. We then present a flowchart for the proposed CTG-Net for BUS image segmenta-

tion and classification. Subsequently, we describe each component of CTG-Net in detail.

BUS image classification and segmentation are two closely related cognitive tasks in breast

cancer diagnosis. This research endeavors to investigate both commonalities and differences

between the two tasks to achieve complementary information ensemble for better BUS image

analysis. Classification and segmentation can achieve mutual complementarity based on two

critical evidences: (1) Previous studies [7, 8] demonstrated that segmentation can provide clas-

sification with a prior lesion localization information and help classification to exclude inter-

ference from regions that hinder judgment. (2) Previous studies [41, 42] performed weakly

supervised segmentation using class activation maps for classification and demonstrated that

class-specific diagnostic information can highlight lesion regions to help fine segmentation. In

this regard, we propose a novel architecture for MTL based on cross-task guided feature learn-

ing that can favorably exploit the valuable information conveyed by the “attention feature

maps” that are obtained in solving individual tasks. The attention feature map denotes the soft

masks generated by the attention module of individual task-specific networks. Moreover, It

can be understood to be the probabilistic high-level feature representation of each task, and

can be calibrated iteratively through network training. The proposed approach is illustrated in

Fig 4. It is noteworthy that the proposed scheme is inherently capable of transferring knowl-

edge between different but related tasks through the link between tasks. Therefore, the features

obtained in the shared network, and the soft attention masks, can be learned jointly to maxi-

mize the generalization of the features across multiple tasks. Furthermore, a feature fusion

layer is incorporated that aggregates the intermediate results of individual tasks for fine-

grained lesion detection.
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Network architecture overview

In this section, we elucidate the design of the proposed cross-task guided MTL architecture. A

comprehensive flowchart for CTG-Net is presented in Fig 5. The proposed learning architec-

ture comprises four main components: feature extraction unit, coarse segmentation unit,

lesion classification unit, and fine segmentation unit. In the ensuing subsections, we describe

the functions of each unit in detail.

Fig 4. Illustration of the cross-task approach for achieving mutual improvement between tasks.

https://doi.org/10.1371/journal.pone.0271106.g004

Fig 5. Architecture of the cross-task guided network (CTG-Net). The network comprises a shared features backbone and three units for BUS

image classification and segmentation. ASPP, Atrous Spatial Pyramid Pooling; GAP, Global Average Pooling; FC, Fully Connected Layer;

Concat, Features Channel Concatenation.

https://doi.org/10.1371/journal.pone.0271106.g005
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Feature extraction unit

The feature extraction unit utilizes a VGG [43] pre-trained model with ImageNet as the back-

bone network. Given a single BUS image as input—denoted by I 2 RM�N
, where M and N are

the height and width of the BUS image, respectively. First, the BUS image is fed into the back-

bone network that outputs the initial shared feature F. Then, we use the Atrous Spatial Pyra-

mid Pooling (ASPP) [44] module to generate shared features F0 ¼ fF0ig
H�W
i¼1

, F0 2 RD�HW ,

where H and W are the height and width of the feature maps, and D is the number of channels.

The ASPP structure is employed because of its favorable scale-invariant property, which can

be helpful in characterizing visual features for small objects.

Coarse segmentation unit

The coarse segmentation unit uses shared features F0 to predict the coarse tissue boundaries

M 2 R3�HW
. It consists of three channel binary masks for the mammary gland region Mm,

coarse lesion location Ml, and remaining background Mb, respectively. The coarse segmenta-

tion unit comprises four upsampling layers, each of which is followed by two convolutional

layers. The three channel convolutional layers finally output a coarse mask M. Based on the

anatomy of the female breast, the mammary gland region is regarded as a potential area of

lesion occurrence. The coarse mask M provides critical spatial information about the lesion

candidate’s presence, which can also facilitate tumor classification. To this end, we further pass

the coarse mask M, which acts as an intermediate feature, to develop higher-level features that

are anticipated to achieve accurate lesion classification.

Lesion classification unit

The classification unit distinguishes between normal and lesion (benign and malignant) BUS

images and obtains task-specific features from the segmentation. Owing to the small propor-

tion of lesioned regions in BUS images and the varying shapes, to obtain reliable attention

maps as a guide to locate the lesions, we propose a lesion attention module (LAM), shown in

Fig 6. LAM uses the predicted mammary gland region mask Mm and the coarse lesion region

mask Ml together as the attention map for the classification task to enhance the feature repre-

sentation of the lesion. Then, the final feature FLAM for classification is generated by aggregat-

ing the shared features:

FLAM ¼ F0 þ Fma þ Fla: ð1Þ

Here, we perform feature summation to aggregate multiple feature maps. The resultant FLAM

feature can characterize multiple levels of visual information to highlight the lesion region

with high accuracy.

Given the predicted mammary gland region mask Mm and the coarse lesion region mask

Ml, the attention features of the mammary gland region and the lesion region, which are

denoted by Fma and Fla respectively, can be extracted from the following computation:

Fma ¼ F0 �Mm; ð2Þ

Fla ¼ F0 �Ml; ð3Þ

where� denotes element-wise multiplication. Specifically, we fuse the mammary gland mask

and lesion region mask in LAM. The objective is to compensate for the inaccuracy in the initial

lesion classification that can incur miss detection of lesion regions with visual ambiguity. The
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probabilistic representation of attention maps can help remedy the errors in the initial mam-

mary gland region segmentation.

After performing global average pooling (GAP) on FLAM, the produced features are trans-

formed into a global feature vector Gglobal ¼ fgcg
C
c¼1

, Gglobal 2 R
D1�C from the classification unit,

where C is the number of classes, gc is the feature vector of the c-th category, and D1 is the

number of channels. To achieve the classification, it is then fed to the fully connected (FC)

layer and the softmax activation function to obtain the prediction scores Hscore ¼ fhcg
C
c¼1

. In

addition, the global feature vector Gglobal and the normalized prediction scores Hscore provide

information about the lesion category as specific knowledge generated in the classification

task. Inspired by the [45], we use the category information to generate attentional features on

lesions. They are passed to the fine segmentation unit to guide the segmentation and obtain

the final fine segmentation results.

Fine segmentation unit

The fine segmentation unit segments more accurate lesion regions to obtain task-specific fea-

tures from the classification. The result of fine segmentation is obtained by concatenating cate-

gory attention features FCSM and self-attentive features FAKGM to produce a better pixel-level

predictive feature representation Ffine and then performing an upsampling operation.

Ffine ¼ Concat½FCSM; FAKGM�; ð4Þ

where Concat denotes a concatenation operation on features along the channel dimension.

Ffine effectively achieves lesion segmentation by fusing shared features and task-specific

features.

Fig 6. Schematic of Lesion Attention Module (LAM).� denotes element-wise multiplication and� denotes

element-wise addition.

https://doi.org/10.1371/journal.pone.0271106.g006
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The category attention features FCSM are obtained by the category selection module (CSM).

They are used to improve feature representation by generating category-related attentional fea-

tures from the classification results task-specific features from the classification. The structure

of CSM is shown in Fig 7. The global feature vectors Gglobal are first transformed with a 1 × 1

convolution operation. Subsequently, Gglobal performs re-weighting of the feature vectors for

each class on the category prediction scores Hscore. Then, the same number of channels as Gglo-

bal are generated using the 1 × 1 convolution operation on the shared features F0. Finally, the

two perform matrix multiplication to obtain a weighted feature map based on all classes that

are the class attention features FCSM, as follows:

FCSM ¼ ½ConvðGglobalÞ � Hscore
T�ConvðF0Þ; ð5Þ

where Conv indicates that the features have passed through a convolutional layer.

The self-attentive features FAKGM, generated by the anatomical knowledge guided module

(AKGM), shown in Fig 8, comprise the mammary gland region mask and the self-attentive

structure [46] to capture broader contextual information and suppress false positives in

regions beyond the mammary gland tissue.

The structure of AKGM is shown in Fig 8. The shared features F0 are first fed into the same

convolution layer to generate the new feature maps Query (Q), Key (K), and Value (V). Q, K,

and V are extracted from the same features and are used to calculate the correlation between

features internally. Then, we use the mammary gland region mask Mm to perform element-

wise multiplication with Q and K to obtain Q0 and K0, respectively. It can obtain more accurate

and meaningful spatial location information within the anatomical constraints of the breast.

Subsequently, we perform matrix multiplication between the transpose of K0 and Q0, and apply

Fig 7. Schematic of the Category Selection Module (CSM).� denotes element-wise multiplication and� denotes

matrix multiplication. Conv indicates that the features have passed through a convolutional layer.

https://doi.org/10.1371/journal.pone.0271106.g007
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the softmax function to calculate similarity weights S:

S ¼ softmaxððQ0 � ðK 0ÞTÞ

¼ softmaxððQ�MmÞ � ðK �MmÞ
T
Þ:

ð6Þ

Then, the similarity weights S and V perform a matrix multiplication. Finally, we multiply it by

a scale parameter α and perform an element-wise sum operation with the shared features F0 to

obtain the self-attentive features with mammary gland constraints FAKGM:

FAKGM ¼ aðS� VÞ þ F0; ð7Þ

where α is a scalar initialized to zero and is automatically learned during network training.

Introducing learnable α makes the self-attention features start learning by relying on the

shared features first, and then gradually learning self-attention features containing local to

global contextual information as the weights are increased.

Loss function

For classification, we used cross-entropy loss function training. We employed Dice loss [47],

which performs well under the class imbalance problem, as the loss function for the segmenta-

tion task since the pixels in the tumor region are severely imbalanced compared to those in the

background region. Our CTG-Net is end-to-end, and the overall network is trained by a joint

loss function including one cross-entropy loss Lcls in classification unit, two Dice loss Lcseg,

and Lfseg in the coarse and fine segmentation units. Therefore, the overall loss function is

Fig 8. Schematic of the Anatomical Knowledge Guidance Module (AKGM).� denotes element-wise multiplication,

� denotes matrix multiplication and� denotes element-wise addition. Conv indicates that the features have passed

through a convolutional layer.

https://doi.org/10.1371/journal.pone.0271106.g008
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defined as

Ltotal ¼ l1Lcls þ l2ðLcseg þ LfsegÞ; ð8Þ

where λ1 and λ2 are the task weights for the classification and segmentation, respectively. For

the joint optimization of multi-task learning, it is necessary to reasonably assign task weights

because of the different training difficulties between tasks. We employed dynamic weight aver-

aging [28] to determine task weights λ1 and λ2 because this method allows each task to be per-

formed at a similar training rate.

For task k, the weights λk are defined as

lkðtÞ≔
K exp ðwkðt � 1Þ=TÞ
P

i exp ðwiðt � 1Þ=TÞ
;

wkðt � 1Þ ¼
Lkðt � 1Þ

Lkðt � 2Þ
;

ð9Þ

where wk(�) calculates the relative descending rate of loss, i is the number of tasks, wi(�) calcu-

lates the relative descending rate of loss for each task, t is an iteration index, and T is a constant

for controlling the softness of the task weighting. Further, T is set to two in this study accord-

ing to experience and experiments, and Lk(�) is the loss value for each iteration.

Experimental evaluation and results

Experiment setup

Training and implementation details. The proposed framework was implemented in

Python based on PyTorch. To accelerate the training process, we used VGG16 [43] pre-trained

with ImageNet as the initial state of the feature extraction unit, and other parameters were ini-

tialized using random values. We trained the entire network using the Adam [48] optimizer

with an initial learning rate of 0.0001 (β1 = 0.9, β2 = 0.99, � = 10−8). Although better optimiza-

tion methods have been proposed, the Adam optimizer has a simple mechanism and is often

used as a standard optimization method by various methods. Therefore, this study uses the

Adam optimizer to assess the intrinsic superiority of the proposed approach by checking

whether the standard optimization method can also obtain good performance. Furthermore,

we trained 100 epochs with a batch size of 16 on the network and observed that the training

terminated when the validation set did not improve after 10 consecutive epochs. Algorithm 1

provides the algorithm details to clearly show the optimization process of our proposed

method.

Algorithm 1 Cross-task guided network CTG-Net
1: Input: BUS image I with segmentation true mask and class true label
2: Initialization: Feature extraction unit use VGG16 pre-trained with
ImageNet, other parts use random values
3: repeat
4: F0  ASPP(pre-trained VGG16(I)) . ASPP: atrous spatial pyramid
pooling
5: M(Ml, Mm)  softmax (upsample(F0))
6: Gglobal  FCLayer (GAP(LAM(F0, M))) . GAP: global average pooling
7: Hscore  softmax(Gglobal)
8: Ffine  Concat(CSM(F0, Hscore, Gglobal), AKGM(F0, Mm))
9: . Concat: concatenation operation
10: Fine mask  softmax (upsample(Ffine))
11: ℓcseg, ℓcls, ℓfseg  calculate the respective losses using {M,
Hscore, Fine mask}
12: Calculate ℓtotal by Eqs (8) and (9)
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13: Update model parameter θ by Adam optimizer
14: until validation set not improve after 10 consecutive epochs
15: Output: Parameter set of the CTG-Net model θ
16: function1 LAM(F0: shared features, M: coarse mask (Ml, Mm))
17: Fma  F0 �Mm
18: Fla  F0 �Ml . �: element-wise multiplication
19: Return: FLAM  F0 + Fma + Fla
20: end function1
21: function2 CSM(F0, Hscore: prediction scores, Gglobal: global feature
vector)
22: Return: FCSM  [ConvðGglobalÞ � HT

score] Conv(F0)
23: . Conv: convolutional layer operations
24: end function2
25: function3 AKGM(F0, Mm: mammary gland map)
26: Calculate S using {Mm,F0} by Eq (6) . S: similarity weights
27: V  Conv(F0)
28: Return: FAKGM  α(S�V) + F0

29: . α: learnable parameters, �: matrix multiplication
30: end function3

Evaluation metrics. Segmentation task: To evaluate the image segmentation results, we

used four performance metrics: Dice’s coefficient (DSC), Jaccard index (JI), true positive rate

(TPR), and false positive rate (FPR). Both DSC and JI are measures of similarity between two

pixel sets, with the difference being that DSC primarily reflects the average performance for

given cases, whereas JI is relatively affected by the worst cases.

DSC ¼
2jAg \ Apj

jAgj þ jApj
; JI ¼

jAg \ Apj

jAg [ Apj
;

TPR ¼
jAg \ Apj

jAg j
; FPR ¼

jðAg [ ApÞ n Ag j

jAg [ Apj
;

where Ag is the pixel set in the lesion region of the ground truth, Ap is the pixel set in the lesion

region generated by a segmentation method, and |�| indicates the number of elements of the

set. DSC, JI, TPR, and FPR take values in the range [0, 1].

Classification task: We evaluated the performance of the classification results using six per-

formance metrics: area under the ROC curve (AUC), accuracy (Acc), sensitivity (Sen), speci-

ficity (Spe), precision (Pre), and F1-score (F1).

Acc ¼
TP þ TN

TP þ TN þ FPþ FN
; Sen ¼

TP
TP þ FN

; Spc ¼
TN

TN þ FP
;

Pre ¼
TP

TP þ FP
; F1 ¼ 2�

Pre� Sen
Preþ Sen

;

where TP (True Positive) denotes the number of correctly classified lesion images, TN (True

Negative) denotes the number of correctly classified normal images, FP (False Positive)

denotes the number of normal images incorrectly classified as lesion images, and FN (False

Negative) denotes the number of lesion images incorrectly classified as normal images.

Comparisons with state-of-the-art methods

We compared the segmentation and classification performance of our proposed CTG-Net

with several state-of-the-art methods from the perspectives of both single-task and multi-task

approaches.
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Comparisons with single-task methods. 1) Discrimination between normal tissues and
lesions. For the segmentation task, we compared CTG-Net with the widely used BUS image

segmentation methods U-Net [23], Attention U-Net [45], Nested U-Net [49], and MAU-Net

[25]. The results of the comparison are listed in Table 1(A). The results show that the proposed

CTG-Net is poor in terms of FPR, but exhibits significantly better performance in terms of

DSC, JI, and TPR. In addition, the qualitative results of CTG-Net and the other methods are

presented in columns (c)–(g) of Fig 9. Moreover, CTG-Net still provides more robust perfor-

mance even for lesions with blurred boundaries and small sizes.

For the classification task, we compared CTG-Net with the commonly used BUS image

classification models such as AlexNet [50], VGG16 [43], ResNet18 [51], and DenseNet121

[52]. Based on the results in Table 1(B), CTG-Net significantly outperformed the other meth-

ods on all classification metrics. Note that CTG-Net achieved significant improvements for

AUC, Acc, Sen, and F1, although ResNet18 and DenseNet121 achieved better performance

because of the extraction of deeper semantic features. Columns (h)–(l) of Fig 9 presents visual

examples of class activation maps [53]. AlexNet and VGG16 failed to achieve reliable recogni-

tion of lesions; instead, they focused more on the background. Conversely, ResNet18 and Den-

seNet121 roughly localized lesions, but they also focused more on the background.

Meanwhile, CTG-Net achieved a more stable and effective focus on the lesion region.

Table 1. Segmentation and classification performance compared with other state-of-art segmentation models on the THH dataset.

(A) (B)

Segmentation Classification

Method DSC JI TPR FPR Method AUC Acc Sen Spc Pre F1

U-Net 0.49 0.36 0.37 0.03 AlexNet 0.81 0.82 0.73 0.90 0.81 0.77

Attention U-Net 0.51 0.40 0.40 0.01 VGG16 0.81 0.82 0.67 0.95 0.90 0.77

Nested U-Net 0.53 0.40 0.41 0.02 ResNet18 0.82 0.85 0.70 0.95 0.90 0.79

MA U-Net 0.66 0.54 0.56 0.04 DenseNet121 0.83 0.85 0.71 0.95 0.91 0.80

CTG-Net (ours) 0.78 0.67 0.78 0.13 CTG-Net (ours) 0.90 0.90 0.86 0.94 0.90 0.87

The best results are indicated in boldface.

https://doi.org/10.1371/journal.pone.0271106.t001

Fig 9. Visualization of segmentation results and class activation maps for the BUS image private dataset. (a) BUS images; (b) ground

truth (white areas are lesions); (c)–(g) segmentation results are achieved, by U-Net, Attention U-Net, Nested U-Net, MA U-Net, CTG-Net

(ours), respectively; (h)–(l) class activation maps are achieved by AlexNet, VGG16, ResNet18, DenseNet121, and CTG-Net (ours),

respectively.

https://doi.org/10.1371/journal.pone.0271106.g009
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2) Discrimination between benign and malignant. The proposed method was compared

with several state-of-the-art segmentation (see Table 2) and classification (see Table 3) meth-

ods on two common BUS image public datasets. The compared methods have different back-

bone networks and training strategies. Compared with the other state-of-the-art methods on

public datasets, we calculated the false-positive rate of CTG-Net using the same method

employed in [54] and denoted it the tumor-based false-positive rate (tFPR), which is

given by

tFPR ¼
jðAg [ ApÞ n Agj

jAg j
:

The tFPR can be greater than one. tFPR was employed that the tumor area in the BUS image is

small and it can better describe the segmentation performance.

For the segmentation task, we compared CTG-Net with the BUS image segmentation meth-

ods such as FCN-AlexNet [22], SegNet [55], U-Net [23], CE-Net [56], MultiResUNet [57],

RDAU-Net [58], SCAN [59], DenseU-Net [60], STAN [26], and ESTAN [54]. Table 2 summa-

rizes the quantitative results obtained from the two datasets for all segmentation methods.

Table 2. Segmentation performance compared with state-of-the-art segmentation models on the UDIAT and BUSI datasets.

Dataset UDIAT BUSI

Method DSC JI TPR tFPR DSC JI TPR tFPR

FCN-AlexNet(2017) 0.61 0.47 0.87 1.17 0.68 0.55 0.87 1.14

SegNet(2017) 0.71 0.60 0.85 0.83 0.72 0.62 0.77 0.55

U-Net (2015) 0.75 0.65 0.78 0.41 0.73 0.63 0.77 0.56

CE-Net(2019) 0.72 0.61 0.74 0.48 0.73 0.64 0.77 0.64

MultiResUNet(2020) 0.75 0.66 0.79 0.26 0.75 0.67 0.78 0.37

RDAU-NET(2019) 0.77 0.67 0.78 0.30 0.76 0.68 0.80 0.42

SCAN(2018) 0.72 0.63 0.73 0.43 0.72 0.63 0.73 0.43

DenseU-Net(2019) 0.72 0.64 0.74 0.43 0.72 0.64 0.74 0.43

STAN(2020) 0.78 0.70 0.80 0.27 0.75 0.66 0.76 0.42

ESTAN(2020) 0.82 0.74 0.84 0.22 0.78 0.70 0.80 0.36

CTG-Net (ours) 0.82 0.74 0.84 0.12 0.79 0.70 0.82 0.15

The best results are indicated in boldface, and the second-best results are underlined.

https://doi.org/10.1371/journal.pone.0271106.t002

Table 3. Classification performance compared with state-of-the-art classification models on the UDIAT and BUSI datasets.

Dataset UDIAT BUSI

Method AUC Acc Sen Spc Pre F1 AUC Acc Sen Spc Pre F1

DenseNet121(2016) 0.82 0.83 0.52 0.98 0.93 0.67 0.88 0.82 0.77 0.84 0.69 0.73

ResNet50(2016) 0.84 0.80 0.65 0.87 0.71 0.68 0.83 0.77 0.77 0.76 0.60 0.67

MLCNN (2019) - 0.84 0.85 0.83 - - - - - - - -

BVANet(2020) 0.87 0.86 0.68 0.94 0.86 0.76 0.89 0.84 0.76 0.88 0.75 0.75

BIRADS-SSDL(2020) 0.70 0.79 0.50 0.96 0.84 0.63 - - - - - -

CTG-Net (ours) 0.86 0.86 0.87 0.85 0.75 0.80 0.89 0.90 0.84 0.93 0.85 0.85

The best results are indicated in boldface and the second-best results are underlined.

https://doi.org/10.1371/journal.pone.0271106.t003
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CTG-Net achieved the best performance (highest DSC and JI, and lowest tFPR) on both data-

sets. Note that CTG-Net achieved lower tFPR than that of the other methods while maintain-

ing a high TPR. Although AlexNet-FCN achieved the best TPR (0.87 and 0.87), it was at the

cost of high tFPR (1.17 and 1.14).

We referred to the visualization results of Bryar et al. [54] to depict the qualitative results

yielded on the public dataset. Fig 10 presents the results of segmentation compared with our

method. Regardless of whether the tumors were small (first and fourth rows) or difficult to dis-

tinguish from the background (second and third rows), the CTG-Net results were comparable

to those of the state-of-the-art ESTAN model in terms of visualization results. By contrast, the

other comparison methods produced high false positives and even failed to detect the tumors.

Compared with the overall performance of ESTAN, CTG-Net achieved superior segmentation

performance, especially in terms of false-positive suppression.

For the classification task, we compared the classification results with those of the state-of-

the-art classification methods, such as DenseNet121 [52], ResNet50 [51], MLCNN [58], BVA-

Net [61], and BIRADS-SSDL [62]. Based on the classification results in Table 3, on the UDIAT

dataset, the proposed CTG-Net achieved the best values in terms of Acc, Sen, and F1, but did

not perform well in terms of Spe and Pre. However, on the BUSI dataset, CTG-Net achieved

the best values for all metrics. In terms of the overall performance, the other methods used for

comparison sacrificed specificity for higher sensitivity. By contrast, our method maintained

high specificity and high sensitivity.

Comparisons with multi-task learning methods. We further compared the performance

of the proposed model with several state-of-the-art MTL methods [34, 63, 64] for normal tissue

and lesion discrimination on the THH dataset to verify the effectiveness of our proposed

cross-task guidance. Based on Table 4, CTG-Net has a significant advantage on most of the

metrics compared to other methods. These experimental results demonstrate that the pro-

posed method outperforms existing MTL methods in terms of both segmentation and classifi-

cation performance. This is because the proposed CTG-Net relies on task-specific features

extracted from the tasks to achieve a reliable focus on lesions and direct and substantial facili-

tation effect between tasks.

Fig 10. Examples of results compared with the state-of-the-art methods on BUS image public datasets. The state-of-the-art results are from [54]

and the results for CTG-Net are from this present study. (a) BUS images, (b) ground truth (white areas are lesions and text are true class labels). (c)–

(m) Segmentation results achieved by (c) FCN-AlexNet, (d) SegNet, (e) U-Net, (f) CE-Net, (g) MultiResUNet, (h) RDAU-Net, (i) SCAN, (j)

DenseU-Net, (k) STAN, (l) ESTAN, and (m) our CTG-Net.

https://doi.org/10.1371/journal.pone.0271106.g010
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Discussions

Ablation study

We also need to determine the importance of each module in the performance improvement

on the segmentation and classification tasks. In this section, we discuss the ablation study per-

formed to verify the effectiveness of each module. The ablation study experiments were per-

formed on our collected THH dataset and baseline networks (first row of Table 5) were

constructed by removing LAM, AKGM, and CSM from CTG-Net. Table 5 shows that the

attentional features generated from the prediction results of the segmentation and classifica-

tion tasks can mutually facilitate each other, thus improving the performance of both breast

lesion segmentation and classification. In the ensuing subsections, we compare the effective-

ness of each component in the fine segmentation and classification units in detail.

Evaluation of CSM and AKGM for segmentation tasks. The features used for fine seg-

mentation comprise category attentive features from the CSM and self-attentive features with

breast anatomical constraints from the AKGM. Table 6 shows the segmentation performance

when the two modules are used independently. We can see that AKGM results in few false pos-

itives when used alone for fine segmentation. By contrast, the number of false positives

increase when CSM alone is used but the segmentation performance is better. This means that

Table 4. Segmentation and classification performance compared with state-of-the-art multi-task learning methods on the THH dataset.

Segmentation Classification

Method DSC JI TPR FPR AUC Acc Sen Spc Pre F1

Y-Net (2018) 0.60 0.40 0.47 0.19 0.76 0.78 0.55 0.97 0.92 0.69

SC-Net (2019) 0.67 0.43 0.61 0.10 0.88 0.89 0.80 0.96 0.93 0.86

Multimix (2021) 0.63 0.49 0.54 0.14 0.71 0.74 0.56 0.86 0.74 0.64

CTG-Net (ours) 0.78 0.67 0.78 0.13 0.90 0.90 0.86 0.94 0.90 0.87

The best results are indicated in boldface, and the second-best results are underlined.

https://doi.org/10.1371/journal.pone.0271106.t004

Table 5. Quantitative results for CTG-Net and baseline (i.e., CTG-Net without any task-specific feature extraction module) on the THH dataset.

Segmentation Classification

Method DSC TPR FPR AUC Acc F1

Baseline 0.68 0.68 0.16 0.84 0.86 0.81

CTG-Net 0.78 0.78 0.13 0.90 0.90 0.87

The best results are indicated in boldface.

https://doi.org/10.1371/journal.pone.0271106.t005

Table 6. Ablation study of fine segmentation unit in CTG-Net.

AKGM CSM DSC TPR FPR

✓ 0.72 0.76 0.17

✓ 0.74 0.78 0.19

✓ ✓ 0.78 0.78 0.13

The best results are indicated in boldface. AKGM denotes Anatomical Knowledge Guidance Module; CSM denotes

Category Selection Module.

https://doi.org/10.1371/journal.pone.0271106.t006
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segmenting more accurate lesion boundaries increases the risk of false positives. Finally, we

obtained the best lesion segmentation performance by concatenating AKGM and CSM, which

proves that the mutual combination is effective.

Evaluation of LAM for classification tasks. The aim of our proposed LAM is to provide

stable and reliable lesion attention to the classification task using the results of the segmenta-

tion task, thereby facilitating the classification of normal breast tissue and lesions. We com-

bined three features in LAM: the shared feature F0, lesion region attention feature Fla, and

mammary gland region attention feature Fma based on the coarse segmentation results.

Table 7 shows the results of the three features under different combination strategies. From

the results we can conclude the following: (1) The results of any multiple feature combination

strategy are better than those obtained using the shared feature F0 alone. (2) The results of the

F0 + Fma combination strategy are slightly lower than those of the F0 + Fla combination strategy,

which means that the attention using the lesion region can extract more discriminative fea-

tures to aid classification. (3) The results of the Fla + Fma combined strategy were not the best

in terms of accuracy owing to the missing shared features resulting in a loss of global informa-

tion between the two tasks. (4) The fact that the method with all components achieved the best

classification performance indicates the efficacy of the proposed feature combination strategy.

The results in Table 7 show that the proposed LAM module enables effective focus on impor-

tant regions in BUS images by using prediction masks, and thus positively boosts the

classification.

Limitations

Despite exhibiting excellent performance for both segmentation and classification, the pro-

posed CTG-Net still makes incorrect predictions in certain specific cases. As shown in Fig 11,

false positives and missed detections occurred in images (1) and (2) owing to low contrast, and

incomplete segmentation occurred in images (3) and (4) owing to the ambiguity created by

blurred boundaries. In addition, further analysis revealed that segmentation labels may not be

correctly predicted even if category labels are. For instance, image (1) is correctly predicted as

a normal category, but a false positive region is segmented. Image (2) is correctly predicted for

the malignant tumor category, but the tumor region is not correctly segment.

The problem of blurred boundaries in few samples remains challenging. Therefore, we

intend to introduce the loss of lesion boundaries to address this problem. In addition, for the

problem of inconsistent predictions of segmentation and classification tasks, an effective loss

function should be designed to supervise the inter-task outputs of each other and ensure the

consistency of their predictions.

Table 7. Ablation study of classification unit in CTG-Net.

LAM AUC Acc F1

F0 Fla Fma

✓ 0.80 0.83 0.75

✓ ✓ 0.84 0.86 0.80

✓ ✓ 0.83 0.84 0.79

✓ ✓ 0.84 0.85 0.81

✓ ✓ ✓ 0.90 0.90 0.87

The best results are indicated in boldface. LAM denotes Lesion Attention Module.

https://doi.org/10.1371/journal.pone.0271106.t007
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Conclusion

In this study, we proposed CTG-Net for implementing the cross-task approach in BUS image

segmentation and classification tasks. Unlike conventional MTL approaches, CTG-Net allows

the embedding of breast anatomy knowledge to provide prior guidance. Moreover, CTG-Net

can generate task-specific features from the prediction results between segmentation and clas-

sification tasks to achieve cross-task guided learning for mutual maximum facilitation. The

experimental results demonstrate the effectiveness of CTG-Net not only for the recognition of

normal and lesion images, but also for the recognition of benign and malignant breast cancers.

They also demonstrate that CTG-Net has a significant advantage over existing BUS image seg-

mentation and classification methods. It is anticipated that CTG-Net will improve the accu-

racy and efficiency of diagnosis by sonographers.

In future work, we will investigate more efficient loss functions to help the proposed model

obtain more robust BUS diagnosis results. This includes the introduction of a boundary loss

function to help obtain explicit boundaries for different lesions and the investigation of a loss

function to help obtain uniform recognition results to ensure consistency of prediction in seg-

mentation and classification.

Fig 11. Illustration of segmentation failure examples. (a) BUS Images, (b) ground truth, (c) CTG-Net predictions.

Image (1) is from the THH dataset, images (2) and (3) are from the UDIAT dataset, and image (4) is from the BUSI

dataset. The text represents the category labels.

https://doi.org/10.1371/journal.pone.0271106.g011
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Supporting information

S1 Code. The code of CTG-Net. This file includes the implementation code of CTG-Net,

training and testing details, datasets acquisition information.
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