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Abstract 

RNAs are essential molecules in v olv ed in numerous biological functions. Understanding RNA functions requires the knowledge of their 3D 

str uct ures. Computational methods ha v e been de v eloped f or o v er tw o decades to predict the 3D conformations from RNA sequences. These 
computational methods ha v e been widely used and are usually categorised as either ab initio or template-based. The performances remain 
to be impro v ed. R ecently, the rise of deep learning has changed the sight of no v el approaches. Deep learning methods are promising, but 
their adaptation to RNA 3D str uct ure prediction remains difficult. In this paper, w e giv e a brief re vie w of the ab initio , template-based and 
no v el deep learning approaches. We highlight the different a v ailable tools and provide a benchmark on nine methods using the RNA-Puzzles 
dataset. We provide an online dashboard that shows the predictions made by benchmarked methods, freely available on the EvryRNA platform: 
https://e vryrna.ibisc.univ-e vry.fr/e vryrna/state _ of _ the _ rnart/. 
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ibonucleic acids (RNAs) are macromolecules that play di-
erse biological roles in living organisms. RNAs are involved
n numerous physiological processes, such as protein synthe-
is, RNA splicing, or transcription regulation, as well as in
arious human diseases. RNAs also have the potential to be
sed as therapeutic agents for different purposes, like cancer
 1 ). Understanding RNA functions is a challenging task that
as been studied for decades. 
The biological function of RNA is, like protein, determined

y the 3D conformation of the molecule. This folding can be
etermined by experimental methods like X-ray crystallogra-
hy, NMR or, more recently, cryo-EM ( 2 ). Nonetheless, these
ethods are costly both in time and resources. On the other
and, sequencing methods (like next-generation sequencing
 3 )) have progressed, and a large number of sequences has be-
ome available, without any structural data. As a result, there
s a huge gap between the known RNA sequences compared
o the solved 3D structures. Up to December 2023, there are
296 solved RNA structures in the PDB ( 4 ) compared to 2 924
24 RNA sequences in Rfam ( 5 ). Only 136 out of 4170 RNA
amilies have at least one known structure. Therefore, compu-
ational methods have been developed for the past decades to
ompute RNA 3D structure from the sequence. Two main ap-
roaches have emerged: the ab initio and the template-based.
hile the first uses molecular dynamics and force fields, the

atter relies on a database of known structures. None of these
pproaches predicts RNA structure perfectly and methods still
merge. 

Since its first appearance in CASP13 ( 6 ), Alphafold ( 7 ,8 )
rom DeepMind has successfully predicted an enormous num-
er of protein 3D structures. The team used deep learning
echniques to predict the atomic positions of each amino acid
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of the sequence with high precision. Nonetheless, it can not
be applied directly to RNAs due to the protein and RNA in-
trinsic physical differences. Indeed, the sequences are different
between RNA and proteins in terms of individual elements
(amino-acid compared to nucleotides), diversity of sequence
range (RNA sequences range in length from a few tens to sev-
eral tens of thousands of nucleotides, while proteins are a few
hundred amino acids long), the number of available structure
data and the stability of the folding (a given sequence of pro-
tein can fold into one stable conformation compared to mul-
tiple conformations for RNA). As a direct utilization of Al-
phaFold for RNAs is not possible, works have emerged to
adapt AlphaFold’s success to RNAs. The breakthrough suc-
cess of AlphaFold is not yet found for RNAs ( 9 ), but some
inspired works have promising performances. 

Works have been done to review the state-of-the-art exist-
ing methods. A recent study ( 10 ) describes up-to-date mod-
els while highlighting the need to use probing data. Another
review ( 11 ) also describes past methods and points out the
detailed types of inputs that can be integrated into devel-
oped models. On the other hand, a review ( 12 ) describes
only the ab initio methods with the force fields used for each
method. A final recent review ( 13 ) discusses recent advances
in terms of RNA but is not specific to the 3D structures. It
sheds light on the machine learning advancements in the RNA
field. 

In this paper, we aim to give the reader a comprehen-
sive overview of the RNA 3D structure prediction. Through
a detailed description of ab initio , template-based and deep
learning approaches, we detail the available tools and bench-
mark them on a dataset to compare their performances.
The results are easily reproducible and an interface with
the predicted 3D structures is provided and freely available
2024. Accepted: May 8, 2024 
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on the EvryRNA platform: https://evryrna.ibisc.univ-evry.fr/
evryrna/state _ of _ the _ rnart/. The user can interact with the
dashboard to select the RNA to visualize and look at the dif-
ferent predictions computed for the benchmark. 

The paper is organized as follows: we first provide an
overview of the main predictive methods developed through
decades for predicting RNA 3D structure. We give a broad
overview of the field and include state-of-the-art deep learn-
ing approaches, with published or preprint works. Finally, we
benchmark the models available on a common dataset to as-
sess their global performances. 

Methods 

Computational methods aim to predict the atomistic posi-
tions and interactions in the RNA molecule. These methods
try to reproduce the complexity of RNA, which can be single
or multi-stranded (association of different strands of RNA),
or even circular (where 3’ and 5’ ends are covalently linked).
Computational methods tend to follow the same steps: sam-
pling the conformational space (creation of a set of candi-
date structures) and discrimination of the candidates. The fi-
nal structure is usually chosen with either the lowest energy
or the center of a cluster of lowest energy structures. Methods
can be classified as ab initio , template-based or deep learning-
based. Ab initio methods integrate the physics of the system,
while template-based methods are based on constructing a
mapping between sequences to known motifs. Deep learning
approaches use data to feed a neural network architecture that
predicts RNA 3D structures from sequence or MSA (Multiple
Sequence Alignment). 

We present in the following a description of the state-
of-the-art methods for RNA 3D structure prediction. The
methods are organized by approach type ( ab initio , template-
based and deep learning) and chronologically. A timeline of
all the methods, including the required inputs, is shown in
Figure 1 . 

Ab initio methods 

Ab initio (or prediction-based) methods tend to simulate the
physics of the system. They also capture the folding dynamics,
such as energy landscapes. RNA molecules are represented at
the atom level, and forces are applied to simulate real environ-
ment conditions. To explore the conformation space, sampling
algorithms are used, like Monte Carlo (MC) ( 14 ) or molecu-
lar dynamics sampling ( 15 ). As the simulation can be time-
consuming, a key parameter of ab initio methods is the gran-
ularity of the nucleotide representation. It is characterized by
the number of beads per nucleotide, wherein atoms are omit-
ted and substituted with new representative atoms. A bead
refers to the number of atoms per nucleotide, which defines
the granularity of the method. NAST ( 16 ), for instance, uses
one atom per nucleotide, while other methods like iFoldRNA
( 17 ), OxRNA ( 18 ), HIRE-RNA ( 19 ), SimRNA ( 20 ), IsRNA1
( 21 ), IsRNA2 ( 22 ) and RNAJP ( 23 ) tend to have more atoms
per nucleotide. Other methods use different granularity like
Ernwin ( 24 ) with helix as a base or BARNACLE ( 25 ) with a
Bayesian model. 

iFoldRNA ( 17 ) is a three-bead per nucleotide method with
discrete molecular dynamics to simulate the RNA folding pro-
cess. Another version of iFoldRNA, called iFoldRNA v2 ( 26 ),
adds clustering on root mean square deviation (RMSD) after
simulation to reconstruct the center of founded clusters. Each 

bead represents a phosphate, sugar or nucleobase. The force 
field incorporates angle interactions, base pairing, base stack- 
ing, or hydrophobic interactions. 

A web server is provided, but not the source code. The web 

server requires having an account. When connected, a user 
can make predictions from a sequence and, optionally, a 2D 

structure. The computation time is high: a sequence with less 
than 100 nucleotides takes more than one day to be processed.

NAST ( 16 ) models at the one-point-per-residue resolu- 
tion but considers the geometrical constraints from ribosome 
structures before discriminating the obtained structures with 

root-mean-square deviation. It utilizes knowledge-based sta- 
tistical potential to guide the simulation and cluster-generated 

structures. The bead is located at the C 3 

′ atom. 
No web server is provided; the source code is available and 

written in Python 2. 
B ARN ACLE ( 25 ) is based on a Bayesian parametrized 

model using the seven angles characterizing a nucleotide with 

a hidden Markov chain process. It models marginal distribu- 
tions for the dihedral angles using a mixture of probability 
distributions. It links the dependencies between angles with 

a Markov chain of hidden states. It helps reduce input rep- 
resentation while capturing the length distribution of helical 
regions. 

No web server is provided, but the source code is available.
We tried to run the code, but we got errors. We also tried to 

convert the Python 2 code to Python 3 without success. 
OxRNA ( 18 ) is a 5-bead coarse-grained approach that uses 

both virtual move Monte Carlo (VCMC) and umbrella sam- 
pling ( 27 ) to sample the conformational space. It manages to 

characterize the thermodynamics of RNA molecules. The po- 
tential energy of the model splits terms that are non-nearest- 
neighbour pairs of nucleotide and neighbours. It also incorpo- 
rates temperature dependence, as the coarse-grained interac- 
tion is assumed to be free energy rather than potential energy.

A web server and source code are available. Nonetheless,
the source code details the web server. The required inputs for 
the local or web servers are of a specific format, with configu- 
ration and topology files. Therefore, it is not straightforward 

to properly convert a sequence to server inputs. 
Ernwin ( 24 ) uses Markov chain Monte Carlo (MCMC) 

with a helix-based model that maps the helices to cylinders 
and loops to close edges connected to a helix. The force field 

uses five energy terms like steric clash energy or knowledge- 
based potential of mean force. 

A web server and a source code are available. The web 

server only returns coarse-grained molecules. There is still, up- 
to-date, no full-atom reconstruction included. 

HiRE-RNA ( 19 ) shows that noncanonical and multiple 
base interactions are necessary to capture the full physi- 
cal behaviour of complex RNAs, with a six-bead nucleotide 
method. It uses a model with geometric parameters deter- 
mined from 200 structures. The potential integrates stacking 
and base-pairing terms that consider base orientations. The 
Replica-Exchange Molecular Dynamics (REMD) simulations 
are used for sample strategies. 

There is no web server nor source code available. 
SimRNA ( 20 ) uses Monte Carlo steps with a five-bead nu- 

cleotide approach guided by an energy that considers local 
and non-local terms. The local term includes bond length 

or angle interactions, while non-local terms consider base- 
to-backbone interactions. The sampling procedure is the 

https://evryrna.ibisc.univ-evry.fr/evryrna/state_of_the_rnart/
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Figure 1. Ov ervie w of the state-of-the-art methods f or predicting RNA 3D str uct ures. T he different inputs are either ra w sequence, secondary str uct ure, 
tertiary str uct ure or multiple sequence alignment (MS A). Dashed methods are preprint works. 
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asymmetric Metropolis algorithm ( 28 ). The predicted struc-
tures are based on clustering methods of lower energies. 

Web server and standalone server are available. The code
is well-documented and can be used easily. The web server is
user-friendly, and numerous customisations can be added to
the simulation. The code can be used locally but requires a lot
of resources (and CPU) to be run efficiently. 

IsRN A ( 29 ), IsRN A1 ( 21 ) and IsRNA2 ( 22 ) are based on
a coarse-grained method with five-bead per nucleotide to pre-
dict noncanonical base pairs. The energy used includes bond
length, bond angle bending and torsion angle energies. The en-
ergy also combines covalent energy functions for base-pairing
interactions. Non-local terms like base-base, base-backbone
and backbone-backbone interactions are also included. In the
IsRNA1 model, the canonical base-pairing adds interaction
distances to consider bond strength compared to IsRNA. Is-
RNA2 better integrates noncanonical base pairing interac-
tions in large RNAs compared to IsRNA1. 

A web server is available for IsRNA1, while the source code
can only be downloaded with an account. The installation re-
quires multiple libraries that also require having an account
on other websites. The web server takes multiple hours to pre-
dict hundreds of nucleotides. No web server is available for
IsRNA2, and the web server for IsRNA1 starts its simulation
process with structures predicted from IsRNA. 

RNAJP ( 23 ) uses a coarse-grained approach at both atom
and helix levels. It represents a nucleotide with five beads
to describe the Watson–Crick, Hoogsten and sugar edges in
bases. The force field used is a sum of 12 energy terms consid-
ering bonded interactions in length, bond and torsion angles,
as well as base pairing and base stacking interactions. The en-
ergy integrated uses terms for the manipulation of helices and
loops. 

No web server is available and the source code can only
be downloaded with an account. We had errors with the
bp_stk_paras folder, where capitalization variations were
missing. We managed to get the program running by modi-
fying this folder. 

Using physics-based modelling, coarse-grained approaches
can predict RNA tertiary structures from raw sequences. The
energy-based scoring function helps discriminate or guide pre-
dicted structures. Final predictions are usually either the low-
est energy molecules or centroid of clusters. Current coarse-
grained approaches fail to consider the formation of non-
canonical pairs and, even more, the base side of interactions.
The size of the considered RNA limits those methods: the
longer the sequence, the more time-consuming the simulation
is. The simulation time is not linear with the sequence length:
an increase in the sequence length would highly increase the
number of conformational states. Having an efficient sam-
pling method is a challenging task and the key to efficient ab
initio methods. The final limitation of those methods is the dis-
criminator function, which is usually energy-based. An inac-
curate energy function could result in a non-native predicted
structure and bias the sampling method, which often guides
the sampling procedure. 

Template-based methods 

Template-based (or fragment-assembly) approaches rely on
the fact that molecules that have evolution similitude adopt
similar structures. A template molecule can be used as a struc-
tural basis, where other mutated sequences tend to retain sim-
ilar and global conformations. A database of known RNA 

structures is used as a reference. Those structures have a map- 
ping between their sequence and motif / structure / fragment.
The size of the fragments considered is a key parameter 
for the efficiency and accuracy of the method. It can be at 
the nucleotide level or at the secondary structure elements 
(SSEs) level, for instance. Methods like RNABuilder ( 30 ) 
and ModeRNA ( 31 ) use one nucleotide per fragment, while 
F ARNA / F ARF AR ( 32 ) and F ARF AR 2 ( 33 ) use three nu-
cleotides per fragment. MC-Sym ( 34 ), RNAComposer ( 35 ),
Vfold ( 36 ), VfoldLA ( 37 ), 3dRNA ( 38–41 ), Vfold Pipeline 
( 42 ) and FebRNA ( 43 ) consider as base representation SSEs.
The predicted structure can be refined to prevent clashes with 

energy minimization. 
F ARNA / F ARF AR ( 32 ) is one of the first template-based 

methods to predict RNA 3D structures. It is inspired by 
Rosetta low-resolution protein structure prediction method 

( 44 ). It uses an energy function of six terms relying on physics- 
based constraints, a metropolis criterion for fragment as- 
sembly using torsion angles replaced at each Monte Carlo 

step. While energy is computed atomistically with F ARF AR,
FARNA uses a simplified coarse-grained potential. Both ener- 
gies can form non-canonical pairs but are limited by size and 

cannot predict large molecules. F ARNA / F ARF AR uses short 
segments as blocks (three-nucleotide segments) and thus needs 
numerous MC samplings to find a stable structure. F ARF AR 2 

( 33 ) was proposed to increase the accuracy and speed. It also 

adds a clustering method to discriminate the most common 

structures. 
There is a web server for F ARF AR and F ARF AR 2, but no 

source code is available. The prediction time is quite high, with 

multiple days for a single prediction. 
MC-Sym ( 34 ) uses the SSEs, with nucleotide cycle modulus 

as blocks. It takes as inputs both raw sequence and 2D struc- 
tures from MC-Fold ( 34 ) method to minimize the physics- 
based force field. It relies on a representation of nucleotide 
relationships named nucleotide cyclic motif (NCM), incorpo- 
rating more context-dependent information. This representa- 
tion is used to infer a scoring function for both secondary and 

tertiary structure prediction. A database with lone-pair loops 
and double-stranded NCMs is used in the pipeline and in the 
scoring function. 

The source code is unavailable, but a well-documented web 

server is provided. The web server is user-friendly, and there is 
almost no waiting time for a job to run. However, it requires 
secondary structures from MC-Fold to predict 3D structures.

RNABuilder ( 30 ) uses multi-resolution modelling (MRM) 
and multibody dynamics simulation. It is based on a target- 
template alignment that assigns correspondences between 

residues and spatial constraints. It is described to predict 
Azoarcus group I intron and can be extended to other struc- 
tured RNAs. It combines secondary and tertiary base pairing 
contacts in the force field. It can also solve structures with 

small connecting regions without a template. 
No web server is available but a source code is available,

well-documented and usable. 
ModeRNA ( 31 ) searches for fragments in a database to 

replace the mutated structure before using energy minimiza- 
tion to refine the final structure. It uses atomic coordinates 
of the template and prevents backbone discontinuities by 
adding short fragments of other structures. It provides differ- 
ent strategies to build RNA structures that can be modified 

easily. 
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A web server and a code are provided. Both of them require
 3D structure as input. 

Vfold3D ( 45 ) constructs 3D structures from fragment
atabases. It uses the lowest free energy secondary structures
onverted to known fragments. The reconstruction of frag-
ents is coarse-grained before being converted to all-atom.
he final refinement of the structures uses AMBER energy
inimization ( 46 ,47 ). VfoldLA ( 37 ) uses a template database
ith single-stranded loops or junctions. Instead of searching

or whole motifs, its granularity is finer and allows smaller
locks to be integrated. It helps prevent the limit of Vfold3D,
hich uses whole motifs (instead of smaller blocks) limited by

he number of available RNA data. Integration of two previ-
us methods has been done in Vfold-Pipeline ( 42 ). Given a se-
uence in input, the pipeline uses Vfold2D ( 48 ) to predict the
econdary structure and then uses either Vfold3D or VfoldLA
or the final 3D structure prediction. 

A web server is available for either Vfold3D, VfoldLA and
fold-Pipeline. The source code is also available and usable. 
RNAComposer ( 35 ) creates a database (named RNA

RABASE ( 49 )) with fragment mapping 2D elements to 3D
otifs before using refinement. The SSEs are used as mini-
um blocks to assemble the different fragments. The method
ses the Kabsch algorithm ( 50 ) to assemble the 3D structure
lements. The refinement of the structure concatenates two
nergy minimization methods: torsion angles energy (using
YANA ( 51 )) and atom coordinate with CHARMM ( 52 ). 
There is a web server accessible, but no source code is pro-

ided. 
3dRNA ( 38 ) uses a fragment assembly approach guided by

 scoring function, 3dRNAScore ( 53 ), where the SSEs consid-
red are improved by more base pairs from connected stems.
t uses SSEs as blocks and predicted structures with a clus-
ering approach using 3dRNAScore as criteria. Improvements
ave been made over the years ( 39–41 ) with, for instance, an

ncrease of about ten times the number of templates in the
D template library ( 41 ). It also adds the possibility to predict
ircular RNAs. 

A web server is provided, and the source code is available
nly after login. It is required to have other software installed
o run the standalone code. 

FebRNA ( 43 ) creates a 3D fragment ensemble and identifies
he 3D coarse-grained structure using cgRNASP ( 54 ) score,
ith three-bead per nucleotide. It performs all-atom recon-

truction followed by refinement. The building of fragments
s executed with secondary structure tree (SST) ( 55 ), where
ach stem is considered as a node of a tree structure. A 3D
tructure is build through sequential superposition between
oarse-grained atoms of a loop and stem according to the SST
rder. 
No web server is accessible, but the source code is available

nd well-documented. Nevertheless, we did not manage to run
he code because we had errors. 

Template-based methods allow the prediction of RNA 3D
tructures with the help of available data. They create a
atabase mapping sequence to fragments (or motifs) before
ssembling it to refine final structures. However, the number
f experimental RNA structures is a bottleneck for the good
ccuracy of the models. Templates like SSEs tend to be inaccu-
ate or missing in the constituted database, preventing good
redictions of structures. They also fail to generalize to un-
een structures. As many RNA families have not yet been dis-
covered, such approaches would probably fail to predict new
families. 

Deep learning approaches 

In the CASP competition, an end-to-end approach has been
introduced and overperformed all previous works for predict-
ing protein 3D structure: AlphaFold ( 7 ,8 ). It has changed the
structural biology field and raised the interest of researchers.
Recent works have been done to predict RNA 2D structures
( 56–58 ), as the available data is much higher than solved 3D
structures. Other deep learning works try to predict energy
function ( 59 ,60 ), while others infer torsion angles from the
sequence ( 61 ). Such angles can nevertheless be used to help
the prediction of 3D structures. Preprint works have been re-
leased like DeepFoldRNA ( 62 ), RhoFold ( 63 ) and NuFold
( 64 ) to predict 3D structures with attention-based ( 65 ) meth-
ods. Four deep learning approaches, epRNA ( 66 ), DRfold
( 67 ), RoseTTAFoldNA ( 68 ) and trRosettaRNA ( 69 ), have re-
cently been published. As advancements in the field are mov-
ing fast, we describe both preprint and published works in the
following. 

DeepFoldRNA ( 62 ) is a preprint work that predicts RNA
structures from sequence alone by coupling deep self-attention
neural networks with gradient-based folding simulations. It
predicts distance and orientation maps, as well as torsion an-
gles, with transformer-like blocks. It uses MSA and 2D struc-
ture as inputs. A BERT-like ( 70 ) loss was also implemented to
make the model more robust. A self-distillation approach is
used to get around the lack of data. It incorporates bp-RNA-
1m ( 71 ) sequences to predict their structures and integrate
them into the training set. To convert the neural network out-
puts to 3D structures, they use L-BFGS ( 72 ) folding simula-
tions with energy defined by the weighted sum of the negative
log-likelihood of the binned probability predictions. 

A web server and a source code are provided. We tried to
predict sequences from the web server but never received the
results. 

RhoFold ( 63 ) is a preprint work with an end-to-end
differentiable approach for predicting RNA 3D structures.
The model’s input is the MSA, and features are extracted
with a pre-trained model RNA-FM ( 73 ) (trained over more
than 23 million sequences). RNA-FM gives an MSA co-
evolution matrix and pairwise residue features. A module
called E2EFormer with gated attention layers is applied to
predict the main frame ( C 

′ 
4 , C 

′ 
1 , N 1 / N 9 ) in the backbone and

four torsion angles ( α, β, γ, ω ). An IPA (invariant point atten-
tion) is used in modelling 3D positions. It predicts each frame’s
rotation and translation matrices based on the sequence and
pair representation from the E2Eformer module. Given the
predicted frames and angles, the structure module can gener-
ate the full-atom coordinates of an RNA without simulation.
It also uses self-distillation with bp-RNA-1m ( 71 ) and com-
bines the training process with a loss that takes into account
1D (sequence masking), 2D and 3D (Frame Aligned Point Er-
ror (FAPE)) elements. 

A web server and a source code are provided. The web
server is easily usable, while the standalone code requires more
than 500 GB of space to download the database, even for in-
ference. 

RoseTTAFoldNA ( 68 ) is a published work with an end-
to-end deep learning approach that predicts 3D structure for
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RNA molecules and protein–DNA and protein–RNA com-
plexes. It incorporates three representations of molecules: se-
quence (1D) with MSA representation, residue-pair distances
(2D) and cartesian coordinates (3D). The 3D representation
uses the position and orientation of phosphate, as well as
torsion angles. The model can take as input protein, DNA
and RNA. It was trained on five types of structures: pro-
tein structures, AlphaFold2 predictions, protein complexes,
protein / NA complexes and RNA structures. The network was
first trained before being fine-tuned, where energy terms were
added to the loss of the network. 

A source code is provided, but no web server exists. The
source code requires more than 500Gb of free space to down-
load sequence and structure databases. 

trRosettaRNA ( 69 ) is a published work inspired by two
methods for 3D protein structure prediction, AlphaFold2 ( 8 )
and trRosetta ( 74–76 ). It uses MSA and secondary structure
(predicted by SPOT-RNA ( 77 )) as inputs. The network archi-
tecture is inspired by AlphaFold2 Evoformer block and thus
uses transformer networks. The full atom reconstruction uses
energy minimization with restraints from predicted geome-
tries weighted by parameters optimized from random RNA
from the training set. The model is trained on PDB data with
sequences that have homologs. It uses bpRNA ( 71 ) from Rfam
( 5 ) for self-distillation to increase the available data. Distilla-
tion is regulated with a Kullback-Leibler divergence. 

A web server is available, but no standalone code. 
epRNA ( 66 ) is a published work with an Euclidean

parametrization-based neural network that predicts RNA ter-
tiary structure from sequence only. It is trained to predict a dis-
tance matrix that is then added to the loss. The network uses
convolutional networks and uses one hot encoding as input.
epRNA uses RNAs from the PDB and splits them into train-
ing and test sets (60% for training and 40% for testing). The
method achieves invariance in terms of rotation and transla-
tion, but not for the reflection of the molecule. It means that
the mirror image of a chiral molecule is chemically distinct,
but this distinction is not made in the network. 

A source code is available, but no web server. The code is
easy to use, and the installation process is straightforward.
There is no need to install huge datasets to perform predic-
tions. 

NuFold ( 64 ) is a preprint work with an adaptation of Al-
phaFold2 work for RNAs. It considers the base frame with
four atoms: O 4 

′ , C 1 

′ , C 4 

′ and either N 1 (for C and U) or
N 9 (for G and A). It also adds heads to predict the distance
between C 4 

′ and P atoms, and the torsional angles to help
the full-atom reconstruction. It uses as inputs MSA and sec-
ondary structure predicted by IPknot ( 78 ). The NuFold net-
work comprises two key components: the EvoFormer block
and the structure model. The EvoFormer part is a transformer
model that embeds information into single and pair represen-
tations. The structure model converts the embedding into 3D
structures. It is recycled three times to increase the accuracy
of predictions. The network outputs are the translation and
rotation of the four base frames and torsion angles. The tor-
sion angles guide the reconstruction of full-atom representa-
tion from the base frames. 

No web server is available, and no code yet. It is said that
the code will be available after a clean-up by the authors. 

DRfold ( 67 ) is a published work with an end-to-end
transformer-based approach that takes as input RNA se-
quence and secondary structure. It uses a three-bead repre- 
sentation for a nucleotide. It converts the inputs into sequence 
and pair representations before feeding them to transformer 
blocks. A structure module outputs frames converted to FAPE 

(frame aligned point error) potential, while a geometry mod- 
ule predicts rotation and translation property converted to ge- 
ometry potentials. These predicted frame vectors and geome- 
try restraints are aggregated to a potential for structure recon- 
struction. The final step includes all-atom reconstruction and 

refinement using Arena ( 79 ) and OpenMM ( 80 ). 
No web server is provided, but a source code is available.

It requires the download of numerous libraries. 
Deep learning methods are promising and have good per- 

formances on testing datasets. Nonetheless, deep learning 
models need a huge amount of data, which is unavailable for 
RNA 3D structures. To avoid this bottleneck, methods use 
self-distillation. They also mainly input MSA representation 

like AlphaFold. MSA remains a limitation as the number of 
known RNA families is restricted. The overall quality of the 
predicted structures remains to be validated with new data 
from unseen families. 

A summary of the state-of-the-art tools, including informa- 
tion on their implementation, is given in Table 1 . We have 
added a column mentioning whether the methods explicitly 
predict multi-stranded RNAs. Only one method explicitly 
points out the fact that they predict circular RNAs: 3dRNA. 

Results 

In this section, we detail the results of available methods for 
RNA 3D structure prediction. To have a fair comparison be- 
tween existing methods, we benchmark them on three differ- 
ent test sets. We evaluated and compared the predicted struc- 
tures using standard metrics described in a previous work 

( 81 ). 

Benchmarked tools 

As summarized in Table 1 , some of the state-of-the-art meth- 
ods do not have a web server or a standalone code available.
It is the case of Hire-RNA ( 19 ) and NuFold ( 64 ). 

Among the remaining tools, unfortunately, many are hard 

to use or not working. 
Among the available standalone codes, we only manage to 

run RNAJP ( 23 ). DeepFoldRNA ( 62 ), FebRNA ( 43 ) or RoseT- 
TFoldNA ( 68 ) require the download of databases. Those 
databases could have more than 500Gb and thus be hardly 
usable for users. Ernwin ( 24 ) and epRNA ( 66 ) only return 

coarse-grained structures and thus increase the use complex- 
ity. Among the web servers available, ModeRNA ( 31 ) needs 
as input an initial 3D structure, which we did not have for 
the benchmark (and would also bias the comparison with the 
other methods). OxRNA ( 18 ) requires a specific input format,
which makes it hard for the user to use. F ARF AR 2 ( 33 ) has
a web server with a computation time too long to be included 

(multiple days of predictions), where our predictions did not 
lead to results. DeepFoldRNA ( 62 ) and Drfold ( 67 ) have web 

servers where we did not get the structures after making the 
request. The server of iFoldRNA ( 17 ) is very hard to con- 
nect to and failed to perform all the predictions: we were only 
able to have a few predictions As a benchmark, we thus con- 
sidered the remaining ten methods described in Table 2 . We 
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Table 1. Summary of the state-of-the-art softwares for the prediction of RNA 3D str uct ures 

Name Type Granularity Multi-stranded 
Web 
Server Standalone code Language 

F ARNA / F ARF AR ( 32 ) Template-based 3-nt / fragment Yes - Link C++ 
MC-Sym ( 34 ) Template-based SSEs Yes Link Link Rosetta 
iFoldRNA 

( 17 ) / iFoldRNA v2 ( 26 ) 
Ab initio 3-bead No Link - - 

NAST ( 16 ) Ab initio 1-bead No - Link Python 2 
BARNACLE ( 25 ) Ab initio - No - Link Python 2 
RNABuilder ( 30 ) Template-based 1-nt / fragment Yes - Link C++ 
ModeRNA ( 31 ) Template-based 1-nt / fragment Yes Link Link Python 2 
Vfold ( 36 ) / VfoldLA 

( 37 ) / Vfold3D ( 45 ) 
Template-based SSEs Yes Link Link C++ 

RNAComposer ( 35 ) Template-based SSEs Yes Link - - 
3dRNA ( 38 ) Templated-based SSEs No Link - Python 

3 / C++ 
OxRNA ( 18 ) Ab initio 5-bead Yes Link Link C++ 
Ernwin ( 24 ) Ab initio Helix grained Yes Link Link Python 2 / 3 
HiRE-RNA ( 19 ) Ab initio 6 / 7-bead Yes - - - 
SimRNA ( 20 ) Ab initio 5-bead Yes Link Link C++ 
F ARF AR 2 Template-based 3-nt / fragment Yes Link - - 
IsRNA1 ( 21 ) / IsRNA2 
( 22 ) 

Ab initio 4 / 5-bead Yes Link Link C++ 

FebRNA ( 43 ) Template-based 3-bead / SSEs No - Link Python 3 / C 

RhoFold ( 63 ) Deep Learning 3-bead Yes Link Link Python 3 
DeepFoldRNA ( 62 ) Deep-learning 3-bead No Link Link Python 

3 / C++ 
trRosettaRNA ( 69 ) Deep Learning 5-bead No Link Link Python 3 
RoseTTAFoldNA ( 68 ) Deep Learning - Yes - Link Python 3 
Vfold Pipeline ( 42 ) Template-based SSEs Yes Link Link C++ 
RNAJP ( 23 ) Ab initio 5-bead / helix Yes - Link Python 3 
epRNA ( 66 ) Deep Learning - No - Link Python 3 
NuFold ( 64 ) Deep Learning 4-bead No - - - 
DRfold ( 67 ) Deep Learning 3-bead No Link Link Python 3 

For each method is provided its type, granularity level, availability and implementation. We also mention if the method deals with multi-stranded RNAs. 

Table 2. B enchmark ed tools. T he state-of-the-art tools are listed from the 
less to the most recent 

Model Inputs Method type 

MC-Sym ( 34 ) Seq+2D Template-based 
Vfold3D ( 45 ) Seq+2D Template-based 
RNAComposer ( 35 ) Seq+2D Template-based 
SimRNA ( 20 ) Seq+2D Ab initio 
3dRNA ( 41 ) Seq+2D Template-based 
IsRNA1 ( 21 ) Seq+2D Ab initio 
RhoFold ( 63 ) Seq Deep Learning 
trRosettaRNA ( 69 ) Seq Deep Learning 
Vfold-Pipeline ( 42 ) Seq+2D Template-based 
RNAJP ( 23 ) Seq+2D Ab initio 

Each tool is given its inputs and its method type. Seq refers to the raw se- 
quence, and 2D for the secondary structure. 
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sed RNA-tools ( 82 ) to clean the predicted structures and to
ormalize them. This software enables the operation of RNA
tructures and allows their standardization to help better eval-
ate them. All methods were used with their web servers ex-
ept for RNAJP, which was used locally. We set a computation
imit for RNAJP computation (50 × 10 

6 steps in the simula-
ion). For SimRNA, we stop the simulation at 20000 frames.

e used the web server for Rhofold, which does not use MSA
nd might get lower performances than the MSA version. 

Not all tools could predict directly from the sequences, a
econdary structure is required. We decided, when needed, to
se the secondary structure predicted by MXFold2 ( 83 ), a re-
ent deep learning-based tool giving good prediction results.
The choice of MXFold2 was arbitrary but should be consis-
tent between the models to have a fair comparison. For MC-
Sym, it is required a secondary structure from MC-Fold ( 34 ).

Test sets 

To compare the models’ performances, we used three different
test sets. We considered single-stranded RNAs to enable the
comparison between all the models. The aim of the bench-
mark is to enable the comparison of user-available models,
where no specific parameters optimization is performed for
the predictions. We kept RNA with sequence below 200 nu-
cleotides, except for two RNAs from the first test set (sequence
length of 210 and 298 nucleotides), to have a complex enough
dataset for the comparison. 

The first test set, which we call Test Set I, is a non-redundant
dataset of RNA structures from RNAsolo ( 84 ). We down-
loaded the representative RNA molecules from RNAsolo with
a resolution below 4 Å and removed the structures with a se-
quence identity higher than 80%. Then, we considered only
the structures with a unique Rfam family ID ( 5 ), leading to 29
non-redundant RNA molecules, with a sequence between 40
and 298 nucleotides. The details of each PDB ID and Rfam
family from Test Set I are described in Supplementary Table 
S1 . Nonetheless, this dataset does not ensure that there has
been no data leakage in the training of the different models. 

We also included predictions from a collaborative test set
from the community: RNA-Puzzles ( 85–88 ), which we re-
fer as Test Set II. The RNA molecules proposed through the
years as a challenge are solved structures that have challenging

https://rosie.rosettacommons.org/rna_denovo
https://www.major.iric.ca/MC-Sym/
https://www.major.iric.ca/MC-Pipeline/
https://dokhlab.med.psu.edu/ifoldrna/#/submit
https://simtk.org/projects/nast
https://sourceforge.net/projects/barnacle-rna/
https://simtk.org/projects/rnatoolbox
https://iimcb.genesilico.pl/modernaserver/submit/model/
https://iimcb.genesilico.pl/modernaserver/
http://rna.physics.missouri.edu/vfold3D/
http://rna.physics.missouri.edu/vfold_software_download/vfold3D_download.html
https://rnacomposer.cs.put.poznan.pl/
http://biophy.hust.edu.cn/new/3dRNA
https://oxdna.org/
https://github.com/sulcgroup/oxdna-web/
http://rna.tbi.univie.ac.at/ernwin
https://github.com/ViennaRNA/ernwin/tree/master
https://genesilico.pl/SimRNAweb
https://genesilico.pl/software/stand-alone/simrna
https://rosie.rosettacommons.org/farfar2/submit
http://rna.physics.missouri.edu/IsRNA/index.html
http://rna.physics.missouri.edu/vfold_software_download/vfold3D_download.html
https://github.com/Tan-group/FebRNA
https://proj.cse.cuhk.edu.hk/aihlab/rhofold/#/
https://github.com/RFOLD/RhoFold
https://zhanggroup.org/DeepFoldRNA/
https://github.com/robpearc/DeepFoldRNA
https://yanglab.qd.sdu.edu.cn/trRosettaRNA/
https://yanglab.qd.sdu.edu.cn/trRosettaRNA/download/
https://github.com/uw-ipd/RoseTTAFold2NA
http://rna.physics.missouri.edu/vfoldPipeline/index.html
http://rna.physics.missouri.edu/vfold_software_download/vfoldpipeline_download.html
http://rna.physics.missouri.edu/RNAJP/index.html
https://bitbucket.org/dokhlab/eprna-euclidean-parametrization-of-rna/src/master/
https://zhanggroup.org/DRfold/
https://github.com/leeyang/DRfold/
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae048#supplementary-data
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Table 3. Metric values for INF -WC, INF -stack and INF-NWC for the differ- 
ent benchmarked models 

INF-WC INF-STACK INF-NWC 

MC-Sym 0.26 / 0.67 / - 0.54 / 0.64 / - 0.14 / 0.06 / - 
Vfold3D 0.60 / 0.67 / 0.55 0.58 / 0.58 / 0.56 0.00 / 0.00 / 0.00 
RNAComposer 0.62 / 0.75 / 0.73 0.62 / 0.67 / 0.65 0.21 / 0.33 / 0.10 
SimRNA 0.57 / 0.78 / 0.59 0.65 / 0.70 / 0.65 0.08 / 0.07 / 0.10 
3dRNA 0.59 / 0.74 / 0.62 0.57 / 0.66 / 0.61 0.07 / 0.25 / 0.12 
IsRNA1 0.61 / 0.80 / 0.65 0.64 / 0.68 / 0.65 0.01 / 0.00 / 0.00 
RhoFold 0.50 / 0.70 / 0.31 0.60 / 0.66 / 0.54 0.10 / 0.20 / 0.03 
trRosettaRNA 0.69 / 0.78 / 0.55 0.57 / 0.63 / 0.55 0.13 / 0.20 / 0.06 
Vfold-Pipeline 0.62 / 0.78 / 0.63 0.61 / 0.70 / 0.56 0.15 / 0.29 / 0.00 
RNAJP 0.59 / 0.55 / 0.69 0.67 / 0.65 / 0.72 0.19 / 0.15 / 0.12 

Each value is given for the three test sets, separated by a ‘ / ’. We excluded 
MC-Sym for Test Set III, as we did not get enough predictions. 

 

 

 

 

 

properties: multi-stranded structures, ribozymes, riboswitches
and more. We considered single-stranded RNAs, which rep-
resent 22 RNAs with a sequence between 27 and 188 nu-
cleotides. As some predictions are available in the published
results of RNA-Puzzles, they are results of the optimization
of parameters from each group, which is nearly available
for users. As this benchmark aims to report results on user-
available solutions, we included predictions we made from
the tools, easily reproducible for this benchmark. More de-
tails about the considered RNAs, as well as their families, are
given in Supplementary Table S2 . 

A collaboration between RNA-Puzzles and CASP teams led
to the CASP 15 competition ( 89 ). 12 RNA targets were pro-
posed. As four targets exceed 200 nucleotides, most of the
models fail to predict these structures. Therefore, we consid-
ered the eight target RNAs with sequence lengths below 200
nucleotides, which we named Test Set III. This dataset aims to
evaluate the robustness of the methods. Details on the struc-
tures for Test Set III are available in Supplementary Table S3 .

Evaluation metrics 

To evaluate and compare the quality of predictions, we used
different metrics. Each metric has its specificity, which is why
we computed most of the available metrics using RNAdvisor
( 81 ). 

The first metric is the well-known RMSD (root-mean-
square-deviation), which is very sensitive to local differences.
The INF (Interaction Network Fidelity) ( 90 ) metric incorpo-
rates RNA key interactions to evaluate RNA 3D structures
better. Details on the INF score are included to depict the type
of interactions that are conserved in the prediction: canoni-
cal Watson-Crick interactions (INF-WC), non-canonical inter-
actions with non-Watson–Crick base pairs (INF-NWC) and
stacking in helices interactions (INF-STACK). The INF-ALL
metric summarises all these interactions into one value. The
εRMSD ( 91 ) is another tentative to incorporate RNA speci-
ficities. The TM-score ( 92 ,93 ) and lDDT ( 94 ) are, respec-
tively, the normalisation of atom deviation metric and inter-
atomic differences, both inspired by protein evaluation met-
rics. Other common metrics inspired by proteins are the GDT-
TS ( 95 ) (accounts for superimposition with different distance
cutoffs with aligned structures) and the CAD-score ( 96 ) (mea-
sures the structural similarity in a contact-area function). To
compare the torsional angle deviation that characterizes RNA
molecules, the MCQ (mean of circular quantities) ( 97 ) can be
computed. Finally, the P-VALUE ( 98 ) assesses if a prediction
is better than a random one. 

RMSD , εRMSD , MCQ, DI and P-VALUE metrics have
good results when the values are low, whereas high values are
better for INF, lDDT, GDT-TS and TM-score. 

Benchmark results 

We present here the prediction results obtained by each of
the tools summarized in Table 1 . The predictions are reported
according to the different metrics presented above. We had
struggled to get secondary structures for long sequences us-
ing MC-Fold ( 99 ), and we decided to exclude MC-Sym in the
comparison for Test Set III (as we managed to predict only
two structures). 

The normalized mean of the metrics is reported for the
three test sets in Figure 2 , as well as for the pooled test set
(all test sets gathered). We applied the min-max normaliza-
tion over the whole datasets, and reversed the decreasing met- 
rics. Thus, each shown metric has values between 0 and 1,
where 1 means best predictions and 0 is worst predictions.
trRosettaRNA outperforms the other methods in terms of cu- 
mulative metrics for Test Set I and Test Set II. It is followed 

by Rhofold and Vfold-Pipeline, which are almost similar for 
Test Set I and Test Set II. Results remain low for Test Set 
I compared to the two other test sets. While having good 

RMSD values, the deep learning approaches do not have the 
best INF and MCQ scores (in all test sets). It means the deep 

learning approaches can have a general idea of the skeleton 

structures, but hardly reproduce the specific key RNA inter- 
actions. It is confirmed in Table 3 , where the non-Watson–
Crick (non-WC) (non-canonical interactions) and stacking in- 
teractions (non-covalent interactions between adjacent nu- 
cleotide bases) are always better reproduced for ab initio 

or template-based methods (RNAComposer and IsRNA1 for 
non-WC, SimRNA, Vfold-Pipeline and RNAJP for stacking 
interactions). For Test Set III, the deep learning models do 

not achieve good results, and the best method seems to be Is- 
RNA1, followed by RNAJP, Vfold-Pipeline and 3dRNA. The 
worst method is RhoFold, showing difficulties in having ro- 
bust predictions. For the pooled test set, this is trRosettaRNA,
which performs better overall. It is followed by Rhofold and 

Vfold-Pipeline. Both deep learning methods have lower val- 
ues of MCQ and INF compared to Vfold-Pipeline. MC-Sym 

and SimRNA seem to perform worse than the other methods,
which could be explained by the lack of simulation time. They 
still produce results with better INF and MCQ values than the 
deep learning approaches. 

Details on the different benchmarks and results obtained 

are provided in the Supplementary file . Mean values for each 

method are described in Supplementary Table S4 (Test Set I),
Supplementary Table S5 (Test Set II), Supplementary Table S6 

(Test Set III) and Supplementary Table S7 (All). The associated 

distribution for each metric is illustrated in Supplementary 
Figure S1 (Test Set I), Supplementary Figure S2 (Test Set II) 
and Supplementary Figure S3 (Test Set III). Detailed results of 
each method for each RNA are available in Supplementary 
Figure S4 (Test Set I), Supplementary Figure S5 (Test Set II) 
and Supplementary Figure S6 (Test Set II). 

To illustrate and compare visually the predictions obtained 

by each of the considered methods, we arbitrarily selected a 
structure from the RNA-Puzzles challenge: puzzle rp03, a Ri- 
boswitch (PDB ID: 3OWZ). The predicted structures, as well 
as the native structure, are shown in Figure 3 . The detailed 

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae048#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae048#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae048#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae048#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae048#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae048#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae048#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae048#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae048#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae048#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae048#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae048#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae048#supplementary-data
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Figure 2. The normalized mean of metrics for each of the benchmarked methods on the different datasets. The pooled test set is named ‘All’. For each 
metric, we normalised by the min–max to ensure values are between 0 and 1, and we reverse the order for descending metrics (RMSD, εRMSD, 
P-VALUE and MCQ). For a given metric, a model with a score near 1 means it has the best score compared to the other models. 

Figure 3. Predicted str uct ures (in blue) for RNAPuzzle 03 (rp03) (id: 3OWZ, length: 84 nucleotides) compared to native str uct ure (in green) using 
state-of-the-art methods. ( A ) MC-Sym. ( B ) Vfold3D. ( C ) RNAComposer. ( D ) SimRNA. ( E ) 3dRNA. ( F ) IsRNA1. ( G ) RhoFold. ( H ) trRosettaRNA. ( I ) 
Vfold-Pipeline. ( J ) RNAJP. Alignment was done using CHIMERA ( 100 ) and Needleman–Wunsh algorithm ( 101 ). 
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etrics for each prediction are available in Supplementary 
able S8 . We did an alignment to show them on the same
cale using the matching tool of Chimera ( 100 ). The model
hat seems to superimpose the reference structure well is tr-
osettaRNA, with an RMSD of 2.38. We observe good visual

olding for the deep learning models and Vfold-pipeline. On
he other hand, RNAJP and RNAComposer predictions do
ot seem to fit well with the native shape. The metric values for
ach model for this RNA are given in Supplementary Table S8 .

omputation time 

s stated above, except RNAJP, all benchmarked tools are
vailable only as web servers. Therefore, a precise compar-
ison of computation time performances is not possible. We
thus report here for each tool the rough computation time we
measure for processing a given RNA. 

Figure 4 summarizes the rough inference computation time
to predict RNA 3D structures for each model. We report the
computation time for the RNAs with the shortest and the
most extended sequences (RNA that are successfully predicted
for all the methods). Vfold3D and Vfold-Pipeline have similar
computation times: Vfold3D and Vfold-Pipeline are almost
the same models; the only difference is the use of VfoldLA
when Vfold3D does not provide predictions in Vfold-Pipeline.
We observe that the ab initio methods have a computation
time higher than the template-based and deep learning meth-
ods. This is due to the simulation processes that require a high

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae048#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae048#supplementary-data
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Figure 4. Approximate time for computation of RNA-Puzzles str uct ures. 
The minimum time is for an RNA of 27 nucleotides, while the maximum 

time is computed for an RNA of 188 nucleotides. The computation time 
is an approximation, as it was run on web servers and might be slowed 
do wn b y other pending jobs. T he time reported f or RhoFold is with the 
relaxation (which is slo w er than the raw prediction). RNAJP computation 
time is computed locally with a simulation time set to 50 × 10 6 steps. 
IsRNA1 maximum time is around 15 hours, and SimRNA maximum 

computation time is around two days. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RNAs. 
number of computation steps. The template-based methods
almost always return a structure with less than 2 hours of
computation (including the queue in the web servers). On the
other hand, deep learning methods tend to be very fast for in-
ference. RhoFold predicts with high throughput, and what is
the most time-consuming is the relaxation of the prediction.
The ab initio methods are the slowest ones, with a minimum
time of two hours. They often propose advanced parameters
for the computation, like chemical probing restraints, distance
restraints, or even freezing some residues (like those proposed
in SimRNA). 

State-of-the-RNArt dashboard 

We provide a dashboard (illustrated in Figure 5 ) with different
visualizations of the predicted structures for the nine bench-
marked models. The dashboard, called State-of-the-RNArt,
is freely available on the EvryRNA platform: https://evryrna.
ibisc.univ-evry.fr/ evryrna/ state _ of _ the _ rnart/. The user can
choose which RNA to compare the predictions from among
the different challenges of RNA-Puzzles ( 85–88 ). We also
included some of the predictions we made on the CASP-
RNA ( 89 ). We make available all the obtained predictions
and their evaluation with the different metrics. The State-
of-the-RNArt Dashboard allows thus the reproducibly of
our benchmarks and a quick visualization of the obtained
3D structures. 

Discussion 

Ab initio methods are physic-based approaches that incorpo-
rate different levels of granularity in nucleotide representa-
tion. The coarse-grained approach is a trade-off between ef-
ficiency in the representation and accuracy in the prediction.
We found these methods harder to use in practice as the simu-
lation process can be very time-consuming. The standalone
codes are usually unavailable or difficult to run, and good 

results would require high computation time and resources.
They have the advantage of allowing customisation in the sim- 
ulation, with the easy integration of constraints. They also 

predict RNA structures with more native features with bet- 
ter conservation of torsional angles than deep learning meth- 
ods. It might be explained by the lack of data to create good 

guiding functions. Further development of ab initio models 
could incorporate a coarse-grained approach with efficient 
sample procedure and well-chosen force-field. It must be as- 
sociated with full-atom reconstruction methods, adapted and 

efficient. 
Template-based methods try to map sequences to structural 

motifs before merging them into a whole structure, which is 
then refined. These methods are more efficient than the ab 

initio while still being limited. Their usage is easier than ab 

initio methods, but standalone codes remain hard to repro- 
duce locally. Improvement of template-based methods could 

be based on the addition of existing physics-based methods 
that can predict structures not already seen. It could alleviate 
the prediction of unseen structures. Refining the structure after 
assembling could also be improved to best include fragments.

The performances of deep learning approaches seem 

promising. By using available data and self-distillation pro- 
cedures, they perform well on the RNA-Puzzles and RNA- 
solo datasets. They fail, like the other two approaches, on 

the CASP-RNA dataset. Their performances remain incompa- 
rable to AlphaFold for proteins, and the next AlphaFold for 
RNA has not yet been found ( 9 ). Their usage in terms of web 

servers is very user-friendly: only a sequence is required, and 

the prediction is made very quickly. We regret the standalone 
codes that often require the download of a huge dataset, which 

is almost non-feasible for standard users. These methods are 
limited by a common neural network drawback: interpretabil- 
ity. Knowing the folding process would highly increase RNA 

understanding and is a step the community would appreciate.
The integration of physics into deep learning methods could 

help reduce the black box trap as well as prevent models from 

overfitting. 
Hybrid methods are a direction that is taken by the commu- 

nity with recent solutions ( 103 ) proposed in CASP-RNA ( 89 ).
For instance, the second best solution from CASP-RNA uses 
structures predicted by template-methods VfoldLA ( 37 ) and 

Vfold3D ( 45 ) before using coarse-grained simulations from 

IsRNA ( 21 , 22 , 29 ) and RNAJP ( 23 ). Hybrid solutions are usu-
ally a mix of previous methods to take the best of each of them.
These recent methods are not yet available to users, so we did 

not include them in our benchmark. 
All the previously discussed models still need to be im- 

proved with the possibility of outputting multiple structures 
corresponding to environment-dependent RNA molecules.
Works remain to allow the prediction of long non-coding 
RNAs, as well as the non-canonical interactions that are 
still a challenge. Limitations for the classification of non- 
canonical base pairings can be explained by the lack of 3D 

data, where the systems hardly incorporate these specificities.
The sequence length is still a bottleneck, where integration of 
all possible interactions increases the complexity and limits 
existing models. The predictions of multi-stranded and circu- 
lar RNAs remain limited: more than half of the methods can 

predict multi-stranded RNAs, but only one for the circular 

https://evryrna.ibisc.univ-evry.fr/evryrna/state_of_the_rnart/
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Figure 5. Screenshot of the State-of-the-RNArt dashboard. ( A ) The user can choose the RNA (or challenge) with its native str uct ure to process with the 
different RNA 3D str uct ure prediction tools. It is associated with the predicted metrics normalized by the maximum value for each metric for the given 
RNA challenge. ( B ) 3D visualizations of the different predictions of the benchmarked models. The native str uct ure is coloured in orange, while the 
predictions are in blue. The predictions are superimposed with the native str uct ure for visualization using the US-align ( 102 ) tool. The associated metrics 
are also shown on top of the str uct ures. 
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